nuttx/arch/arm/src/kinetis/kinetis_usbhshost.c
anjiahao d07792a343 Initialize global mutext/sem by NXMUTEX_INITIALIZER and SEM_INITIALIZER
Signed-off-by: anjiahao <anjiahao@xiaomi.com>
Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
2022-11-14 09:34:04 +09:00

5452 lines
172 KiB
C

/****************************************************************************
* arch/arm/src/kinetis/kinetis_usbhshost.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/irq.h>
#include <nuttx/arch.h>
#include <nuttx/kmalloc.h>
#include <nuttx/wqueue.h>
#include <nuttx/signal.h>
#include <nuttx/mutex.h>
#include <nuttx/semaphore.h>
#include <nuttx/usb/usb.h>
#include <nuttx/usb/usbhost.h>
#include <nuttx/usb/ehci.h>
#include <nuttx/usb/usbhost_devaddr.h>
#include <nuttx/usb/usbhost_trace.h>
#include <arch/irq.h>
#include "arm_internal.h"
#include "chip.h"
#include "hardware/kinetis_sim.h"
#include "hardware/kinetis_usbhs.h"
#include "kinetis_usbhshost.h"
#include <arch/board/board.h>
#if defined(CONFIG_KINETIS_USBHS) && defined(CONFIG_USBHOST)
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Configuration ************************************************************/
/* Pre-requisites */
#if !defined(CONFIG_SCHED_WORKQUEUE)
# error Work queue support is required (CONFIG_SCHED_WORKQUEUE)
#elif !defined(CONFIG_SCHED_HPWORK)
# error Hi-priority work queue support is required (CONFIG_SCHED_HPWORK)
#endif
/* Configurable number of Queue Head (QH) structures. The default is 4. */
#ifndef CONFIG_KINETIS_EHCI_NQHS
# define CONFIG_KINETIS_EHCI_NQHS (4)
#endif
/* Configurable number of Queue Element Transfer Descriptor (qTDs). The
* default is 6
*/
#ifndef CONFIG_KINETIS_EHCI_NQTDS
# define CONFIG_KINETIS_EHCI_NQTDS (6)
#endif
/* Buffers must be aligned to the cache line size */
#ifndef ARMV7M_DCACHE_LINESIZE
# define ARMV7M_DCACHE_LINESIZE 32
#endif
#define DCACHE_LINEMASK (ARMV7M_DCACHE_LINESIZE -1)
/* Configurable size of a request/descriptor buffers */
#ifndef CONFIG_KINETIS_EHCI_BUFSIZE
# define CONFIG_KINETIS_EHCI_BUFSIZE 128
#endif
#define KINETIS_EHCI_BUFSIZE \
((CONFIG_KINETIS_EHCI_BUFSIZE + DCACHE_LINEMASK) & ~DCACHE_LINEMASK)
/* Debug options */
#ifndef CONFIG_DEBUG_USB_INFO
# undef CONFIG_KINETIS_EHCI_REGDEBUG
#endif
/* Isochronous transfers are not currently supported */
#undef CONFIG_USBHOST_ISOC_DISABLE
#define CONFIG_USBHOST_ISOC_DISABLE 1
/* Registers ****************************************************************
* Traditionally, NuttX specifies register locations using individual
* register offsets from a base address. That tradition is broken here and,
* instead, register blocks are represented as structures. This is done here
* because, in principle, EHCI operational register address may not be known
* at compile time; the operational registers lie at an offset specified in
* the 'caplength' byte of the Host Controller Capability Registers.
*
* However, for the case of the KINETIS EHCI, we know apriori that locations
* of these register blocks.
*/
/* Host Controller Capability Registers */
#define HCCR ((struct ehci_hccr_s *)KINETIS_USBHS_HCCR_BASE)
/* Host Controller Operational Registers */
#define HCOR ((volatile struct ehci_hcor_s *)KINETIS_USBHS_HCOR_BASE)
/* Interrupts ***************************************************************
* This is the set of interrupts handled by this driver.
*/
#define EHCI_HANDLED_INTS (EHCI_INT_USBINT | EHCI_INT_USBERRINT | \
EHCI_INT_PORTSC | EHCI_INT_SYSERROR | \
EHCI_INT_AAINT)
/* The periodic frame list is a 4K-page aligned array of Frame List Link
* pointers. The length of the frame list may be programmable. The
* programmability of the periodic frame list is exported to system software
* via the HCCPARAMS register. If non-programmable, the length is 1024
* elements. If programmable, the length can be selected by system software
* as one of 256, 512, or 1024 elements.
*/
#define FRAME_LIST_SIZE 1024
/* DMA **********************************************************************/
/* For now, we are assuming an identity mapping between physical and virtual
* address spaces.
*/
#define kinetis_physramaddr(a) (a)
#define kinetis_virtramaddr(a) (a)
/* USB trace ****************************************************************/
#ifdef HAVE_USBHOST_TRACE
# define TR_FMT1 false
# define TR_FMT2 true
# define TRENTRY(id,fmt1,string) {string}
# define TRACE1_FIRST ((int)__TRACE1_BASEVALUE + 1)
# define TRACE1_INDEX(id) ((int)(id) - TRACE1_FIRST)
# define TRACE1_NSTRINGS TRACE1_INDEX(__TRACE1_NSTRINGS)
# define TRACE2_FIRST ((int)__TRACE1_NSTRINGS + 1)
# define TRACE2_INDEX(id) ((int)(id) - TRACE2_FIRST)
# define TRACE2_NSTRINGS TRACE2_INDEX(__TRACE2_NSTRINGS)
#endif
/* Port numbers */
#define RHPNDX(rh) ((rh)->hport.hport.port)
#define RHPORT(rh) (RHPNDX(rh)+1)
/****************************************************************************
* Private Types
****************************************************************************/
/* Internal representation of the EHCI Queue Head (QH) */
struct kinetis_epinfo_s;
struct kinetis_qh_s
{
/* Fields visible to hardware */
struct ehci_qh_s hw; /* Hardware representation of the queue head */
/* Internal fields used by the EHCI driver */
struct kinetis_epinfo_s *epinfo; /* Endpoint used for the transfer */
uint32_t fqp; /* First qTD in the list (physical address) */
uint8_t pad[4]; /* Padding to assure 32-byte alignment */
struct kinetis_qh_s *flink; /* Link for async await and free list */
};
/* Internal representation of the
* EHCI Queue Element Transfer Descriptor (qTD)
*/
struct kinetis_qtd_s
{
/* Fields visible to hardware */
struct ehci_qtd_s hw; /* Hardware representation of the queue head */
/* Internal fields used by the EHCI driver */
};
/* The following is used to manage lists of free qTDs */
struct kinetis_list_s
{
struct kinetis_list_s *flink; /* Link to next entry in the list
* Variable length entry data follows
*/
};
/* List traversal call-out functions */
typedef int (*foreach_qh_t)(struct kinetis_qh_s *qh, uint32_t **bp,
void *arg);
typedef int (*foreach_qtd_t)(struct kinetis_qtd_s *qtd, uint32_t **bp,
void *arg);
/* This structure describes one endpoint. */
struct kinetis_epinfo_s
{
uint8_t epno:7; /* Endpoint number */
uint8_t dirin:1; /* 1:IN endpoint 0:OUT endpoint */
uint8_t devaddr:7; /* Device address */
uint8_t toggle:1; /* Next data toggle */
#ifndef CONFIG_USBHOST_INT_DISABLE
uint8_t interval; /* Polling interval */
#endif
uint8_t status; /* Retained token status bits (for debug purposes) */
volatile bool iocwait; /* TRUE: Thread is waiting for transfer completion */
uint16_t maxpacket:11; /* Maximum packet size */
uint16_t xfrtype:2; /* See USB_EP_ATTR_XFER_* definitions in usb.h */
uint16_t speed:2; /* See USB_*_SPEED definitions in ehci.h */
int result; /* The result of the transfer */
uint32_t xfrd; /* On completion, will hold the number of bytes transferred */
sem_t iocsem; /* Semaphore used to wait for transfer completion */
#ifdef CONFIG_USBHOST_ASYNCH
usbhost_asynch_t callback; /* Transfer complete callback */
void *arg; /* Argument that accompanies the callback */
#endif
};
/* This structure retains the state of one root hub port */
struct kinetis_rhport_s
{
/* Common device fields. This must be the first thing defined in the
* structure so that it is possible to simply cast from struct usbhost_s
* to struct kinetis_rhport_s.
*/
struct usbhost_driver_s drvr;
/* Root hub port status */
volatile bool connected; /* Connected to device */
volatile bool lowspeed; /* Low speed device attached */
struct kinetis_epinfo_s ep0; /* EP0 endpoint info */
/* This is the hub port description understood by class drivers */
struct usbhost_roothubport_s hport;
};
/* This structure retains the overall state of the USB host controller */
struct kinetis_ehci_s
{
volatile bool pscwait; /* TRUE: Thread is waiting for port status change event */
mutex_t lock; /* Support mutually exclusive access */
sem_t pscsem; /* Semaphore to wait for port status change events */
struct kinetis_epinfo_s ep0; /* Endpoint 0 */
struct kinetis_qh_s *qhaawait; /* List of waiting Queue Head (QH) structures */
struct kinetis_qh_s *qhfree; /* List of free Queue Head (QH) structures */
struct kinetis_list_s *qtdfree; /* List of free Queue Element Transfer Descriptor (qTD) */
struct work_s work; /* Supports interrupt bottom half */
#ifdef CONFIG_USBHOST_HUB
/* Used to pass external hub port events */
volatile struct usbhost_hubport_s *hport;
#endif
/* Root hub ports */
struct kinetis_rhport_s rhport[KINETIS_EHCI_NRHPORT];
};
#ifdef HAVE_USBHOST_TRACE
/* USB trace codes */
enum usbhost_trace1codes_e
{
__TRACE1_BASEVALUE = 0, /* This will force the first value to be 1 */
EHCI_TRACE1_SYSTEMERROR, /* EHCI ERROR: System error */
EHCI_TRACE1_QTDFOREACH_FAILED, /* EHCI ERROR: kinetis_qtd_foreach failed */
EHCI_TRACE1_QHALLOC_FAILED, /* EHCI ERROR: Failed to allocate a QH */
EHCI_TRACE1_BUFTOOBIG, /* EHCI ERROR: Buffer too big */
EHCI_TRACE1_REQQTDALLOC_FAILED, /* EHCI ERROR: Failed to allocate request qTD */
EHCI_TRACE1_ADDBPL_FAILED, /* EHCI ERROR: kinetis_qtd_addbpl failed */
EHCI_TRACE1_DATAQTDALLOC_FAILED, /* EHCI ERROR: Failed to allocate data buffer qTD */
EHCI_TRACE1_DEVDISCONNECTED, /* EHCI ERROR: Device disconnected */
EHCI_TRACE1_QHCREATE_FAILED, /* EHCI ERROR: kinetis_qh_create failed */
EHCI_TRACE1_QTDSETUP_FAILED, /* EHCI ERROR: kinetis_qtd_setupphase failed */
EHCI_TRACE1_QTDDATA_FAILED, /* EHCI ERROR: kinetis_qtd_dataphase failed */
EHCI_TRACE1_QTDSTATUS_FAILED, /* EHCI ERROR: kinetis_qtd_statusphase failed */
EHCI_TRACE1_TRANSFER_FAILED, /* EHCI ERROR: Transfer failed */
EHCI_TRACE1_QHFOREACH_FAILED, /* EHCI ERROR: kinetis_qh_foreach failed: */
EHCI_TRACE1_SYSERR_INTR, /* EHCI: Host System Error Interrupt */
EHCI_TRACE1_USBERR_INTR, /* EHCI: USB Error Interrupt (USBERRINT) Interrupt */
EHCI_TRACE1_EPALLOC_FAILED, /* EHCI ERROR: Failed to allocate EP info structure */
EHCI_TRACE1_BADXFRTYPE, /* EHCI ERROR: Support for transfer type not implemented */
EHCI_TRACE1_HCHALTED_TIMEOUT, /* EHCI ERROR: Timed out waiting for HCHalted */
EHCI_TRACE1_QHPOOLALLOC_FAILED, /* EHCI ERROR: Failed to allocate the QH pool */
EHCI_TRACE1_QTDPOOLALLOC_FAILED, /* EHCI ERROR: Failed to allocate the qTD pool */
EHCI_TRACE1_PERFLALLOC_FAILED, /* EHCI ERROR: Failed to allocate the periodic frame list */
EHCI_TRACE1_RESET_FAILED, /* EHCI ERROR: kinetis_reset failed */
EHCI_TRACE1_RUN_FAILED, /* EHCI ERROR: EHCI Failed to run */
EHCI_TRACE1_IRQATTACH_FAILED, /* EHCI ERROR: Failed to attach IRQ */
#ifdef HAVE_USBHOST_TRACE_VERBOSE
EHCI_VTRACE1_PORTSC_CSC, /* EHCI Connect Status Change */
EHCI_VTRACE1_PORTSC_CONNALREADY, /* EHCI Already connected */
EHCI_VTRACE1_PORTSC_DISCALREADY, /* EHCI Already disconnected */
EHCI_VTRACE1_TOPHALF, /* EHCI Interrupt top half */
EHCI_VTRACE1_AAINTR, /* EHCI Async Advance Interrupt */
EHCI_VTRACE1_CLASSENUM, /* EHCI Hub port CLASS enumeration */
EHCI_VTRACE1_USBINTR, /* EHCI USB Interrupt (USBINT) Interrupt */
EHCI_VTRACE1_ENUM_DISCONN, /* EHCI Enumeration not connected */
EHCI_VTRACE1_INITIALIZING, /* EHCI Initializing EHCI Stack */
EHCI_VTRACE1_HCCPARAMS, /* EHCI HCCPARAMS */
EHCI_VTRACE1_INIITIALIZED, /* EHCI USB EHCI Initialized */
#endif
__TRACE1_NSTRINGS, /* Separates the format 1 from the format 2 strings */
EHCI_TRACE2_EPSTALLED, /* EHCI EP Stalled */
EHCI_TRACE2_EPIOERROR, /* EHCI ERROR: EP TOKEN */
EHCI_TRACE2_CLASSENUM_FAILED, /* EHCI usbhost_enumerate() failed */
#ifdef HAVE_USBHOST_TRACE_VERBOSE
EHCI_VTRACE2_ASYNCXFR, /* EHCI Async transfer */
EHCI_VTRACE2_INTRXFR, /* EHCI Interrupt Transfer */
EHCI_VTRACE2_IOCCHECK, /* EHCI IOC */
EHCI_VTRACE2_PORTSC, /* EHCI PORTSC */
EHCI_VTRACE2_PORTSC_CONNECTED, /* EHCI RHPort connected */
EHCI_VTRACE2_PORTSC_DISCONND, /* EHCI RHport disconnected */
EHCI_VTRACE2_MONWAKEUP, /* EHCI RHPort connected wakeup */
EHCI_VTRACE2_EPALLOC, /* EHCI EPALLOC */
EHCI_VTRACE2_CTRLINOUT, /* EHCI CTRLIN/OUT */
EHCI_VTRACE2_HCIVERSION, /* EHCI HCIVERSION */
EHCI_VTRACE2_HCSPARAMS, /* EHCI HCSPARAMS */
#endif
__TRACE2_NSTRINGS /* Total number of enumeration values */
};
/* USB trace data structure */
struct kinetis_ehci_trace_s
{
#if 0
uint16_t id;
bool fmt2;
#endif
const char *string;
};
#endif /* HAVE_USBHOST_TRACE */
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Register operations ******************************************************/
static uint16_t kinetis_read16(const uint8_t *addr);
static uint32_t kinetis_read32(const uint8_t *addr);
#if 0 /* Not used */
static void kinetis_write16(uint16_t memval, uint8_t *addr);
static void kinetis_write32(uint32_t memval, uint8_t *addr);
#endif
#ifdef CONFIG_ENDIAN_BIG
static uint16_t kinetis_swap16(uint16_t value);
static uint32_t kinetis_swap32(uint32_t value);
#else
# define kinetis_swap16(value) (value)
# define kinetis_swap32(value) (value)
#endif
#ifdef CONFIG_KINETIS_EHCI_REGDEBUG
static void kinetis_printreg(volatile uint32_t *regaddr, uint32_t regval,
bool iswrite);
static void kinetis_checkreg(volatile uint32_t *regaddr, uint32_t regval,
bool iswrite);
static uint32_t kinetis_getreg(volatile uint32_t *regaddr);
static void kinetis_putreg(uint32_t regval, volatile uint32_t *regaddr);
#else
static inline uint32_t kinetis_getreg(volatile uint32_t *regaddr);
static inline void kinetis_putreg(uint32_t regval,
volatile uint32_t *regaddr);
#endif
static int ehci_wait_usbsts(uint32_t maskbits, uint32_t donebits,
unsigned int delay);
/* Allocators ***************************************************************/
static struct kinetis_qh_s *kinetis_qh_alloc(void);
static void kinetis_qh_free(struct kinetis_qh_s *qh);
static struct kinetis_qtd_s *kinetis_qtd_alloc(void);
static void kinetis_qtd_free(struct kinetis_qtd_s *qtd);
/* List Management **********************************************************/
static int kinetis_qh_foreach(struct kinetis_qh_s *qh, uint32_t **bp,
foreach_qh_t handler, void *arg);
static int kinetis_qtd_foreach(struct kinetis_qh_s *qh,
foreach_qtd_t handler,
void *arg);
static int kinetis_qtd_discard(struct kinetis_qtd_s *qtd, uint32_t **bp,
void *arg);
static int kinetis_qh_discard(struct kinetis_qh_s *qh);
/* Cache Operations *********************************************************/
#if 0 /* Not used */
static int kinetis_qtd_invalidate(struct kinetis_qtd_s *qtd, uint32_t **bp,
void *arg);
static int kinetis_qh_invalidate(struct kinetis_qh_s *qh);
#endif
static int kinetis_qtd_flush(struct kinetis_qtd_s *qtd, uint32_t **bp,
void *arg);
static int kinetis_qh_flush(struct kinetis_qh_s *qh);
/* Endpoint Transfer Handling ***********************************************/
#ifdef CONFIG_KINETIS_EHCI_REGDEBUG
static void kinetis_qtd_print(struct kinetis_qtd_s *qtd);
static void kinetis_qh_print(struct kinetis_qh_s *qh);
static int kinetis_qtd_dump(struct kinetis_qtd_s *qtd,
uint32_t **bp, void *arg);
static int kinetis_qh_dump(struct kinetis_qh_s *qh,
uint32_t **bp, void *arg);
#else
# define kinetis_qtd_print(qtd)
# define kinetis_qh_print(qh)
# define kinetis_qtd_dump(qtd, bp, arg) OK
# define kinetis_qh_dump(qh, bp, arg) OK
#endif
static inline uint8_t kinetis_ehci_speed(uint8_t usbspeed);
static int kinetis_ioc_setup(struct kinetis_rhport_s *rhport,
struct kinetis_epinfo_s *epinfo);
static int kinetis_ioc_wait(struct kinetis_epinfo_s *epinfo);
static void kinetis_qh_enqueue(struct kinetis_qh_s *qhead,
struct kinetis_qh_s *qh);
static struct
kinetis_qh_s *kinetis_qh_create(struct kinetis_rhport_s *rhport,
struct kinetis_epinfo_s *epinfo);
static int kinetis_qtd_addbpl(struct kinetis_qtd_s *qtd, const void *buffer,
size_t buflen);
static struct kinetis_qtd_s *kinetis_qtd_setupphase(
struct kinetis_epinfo_s *epinfo, const struct usb_ctrlreq_s *req);
static struct
kinetis_qtd_s *kinetis_qtd_dataphase(struct kinetis_epinfo_s *epinfo,
void *buffer, int buflen, uint32_t tokenbits);
static struct kinetis_qtd_s *kinetis_qtd_statusphase(uint32_t tokenbits);
static ssize_t kinetiskinetis_virtramaddr_async_setup(
struct kinetis_rhport_s *rhport, struct kinetis_epinfo_s *epinfo,
const struct usb_ctrlreq_s *req, uint8_t *buffer, size_t buflen);
#ifndef CONFIG_USBHOST_INT_DISABLE
static int kinetis_intr_setup(struct kinetis_rhport_s *rhport,
struct kinetis_epinfo_s *epinfo, uint8_t *buffer, size_t buflen);
#endif
static ssize_t kinetis_transfer_wait(struct kinetis_epinfo_s *epinfo);
#ifdef CONFIG_USBHOST_ASYNCH
static inline int kinetis_ioc_async_setup(struct kinetis_rhport_s *rhport,
struct kinetis_epinfo_s *epinfo, usbhost_asynch_t callback,
void *arg);
static void kinetis_asynch_completion(struct kinetis_epinfo_s *epinfo);
#endif
/* Interrupt Handling *******************************************************/
static int kinetis_qtd_ioccheck(struct kinetis_qtd_s *qtd, uint32_t **bp,
void *arg);
static int kinetis_qh_ioccheck(struct kinetis_qh_s *qh, uint32_t **bp,
void *arg);
#ifdef CONFIG_USBHOST_ASYNCH
static int kinetis_qtd_cancel(struct kinetis_qtd_s *qtd, uint32_t **bp,
void *arg);
static int kinetis_qh_cancel(struct kinetis_qh_s *qh,
uint32_t **bp, void *arg);
#endif
static inline void kinetis_ioc_bottomhalf(void);
static inline void kinetis_portsc_bottomhalf(void);
static inline void kinetis_syserr_bottomhalf(void);
static inline void kinetis_async_advance_bottomhalf(void);
static void kinetis_ehci_bottomhalf(void *arg);
static int kinetis_ehci_interrupt(int irq,
void *context, void *arg);
/* USB Host Controller Operations *******************************************/
static int kinetis_wait(struct usbhost_connection_s *conn,
struct usbhost_hubport_s **hport);
static int kinetis_rh_enumerate(struct usbhost_connection_s *conn,
struct usbhost_hubport_s *hport);
static int kinetis_enumerate(struct usbhost_connection_s *conn,
struct usbhost_hubport_s *hport);
static int kinetis_ep0configure(struct usbhost_driver_s *drvr,
usbhost_ep_t ep0, uint8_t funcaddr,
uint8_t speed, uint16_t maxpacketsize);
static int kinetis_epalloc(struct usbhost_driver_s *drvr,
const struct usbhost_epdesc_s *epdesc,
usbhost_ep_t *ep);
static int kinetis_epfree(struct usbhost_driver_s *drvr,
usbhost_ep_t ep);
static int kinetis_alloc(struct usbhost_driver_s *drvr,
uint8_t **buffer, size_t *maxlen);
static int kinetis_free(struct usbhost_driver_s *drvr,
uint8_t *buffer);
static int kinetis_ioalloc(struct usbhost_driver_s *drvr,
uint8_t **buffer, size_t buflen);
static int kinetis_iofree(struct usbhost_driver_s *drvr,
uint8_t *buffer);
static int kinetis_ctrlin(struct usbhost_driver_s *drvr,
usbhost_ep_t ep0,
const struct usb_ctrlreq_s *req,
uint8_t *buffer);
static int kinetis_ctrlout(struct usbhost_driver_s *drvr,
usbhost_ep_t ep0,
const struct usb_ctrlreq_s *req,
const uint8_t *buffer);
static ssize_t kinetis_transfer(struct usbhost_driver_s *drvr,
usbhost_ep_t ep, uint8_t *buffer,
size_t buflen);
#ifdef CONFIG_USBHOST_ASYNCH
static int kinetis_asynch(struct usbhost_driver_s *drvr, usbhost_ep_t ep,
uint8_t *buffer, size_t buflen,
usbhost_asynch_t callback, void *arg);
#endif
static int kinetis_cancel(struct usbhost_driver_s *drvr,
usbhost_ep_t ep);
#ifdef CONFIG_USBHOST_HUB
static int kinetis_connect(struct usbhost_driver_s *drvr,
struct usbhost_hubport_s *hport,
bool connected);
#endif
static void kinetis_disconnect(struct usbhost_driver_s *drvr,
struct usbhost_hubport_s *hport);
/* Initialization ***********************************************************/
static int kinetis_reset(void);
/****************************************************************************
* Private Data
****************************************************************************/
/* In this driver implementation, support is provided for only a single
* USB device. All status information can be simply retained in a
* single global instance.
*/
static struct kinetis_ehci_s g_ehci =
{
.lock = NXMUTEX_INITIALIZER,
.pscsem = SEM_INITIALIZER(0),
.ep0.iocsem = SEM_INITIALIZER(1),
};
/* This is the connection/enumeration interface */
static struct usbhost_connection_s g_ehciconn;
/* Maps USB chapter 9 speed to EHCI speed */
static const uint8_t g_ehci_speed[4] =
{
0, EHCI_LOW_SPEED, EHCI_FULL_SPEED, EHCI_HIGH_SPEED
};
/* The head of the asynchronous queue */
static struct kinetis_qh_s g_asynchead aligned_data(32);
#ifndef CONFIG_USBHOST_INT_DISABLE
/* The head of the periodic queue */
static struct kinetis_qh_s g_intrhead aligned_data(32);
/* The frame list */
#ifdef CONFIG_KINETIS_EHCI_PREALLOCATE
static uint32_t g_framelist[FRAME_LIST_SIZE] aligned_data(4096);
#else
static uint32_t *g_framelist;
#endif
#endif /* CONFIG_USBHOST_INT_DISABLE */
#ifdef CONFIG_KINETIS_EHCI_PREALLOCATE
/* Pools of pre-allocated data structures. These will all be linked into the
* free lists within g_ehci. These must all be aligned to 32-byte boundaries
*/
/* Queue Head (QH) pool */
static struct kinetis_qh_s g_qhpool[CONFIG_KINETIS_EHCI_NQHS]
aligned_data(32);
/* Queue Element Transfer Descriptor (qTD) pool */
static struct kinetis_qtd_s g_qtdpool[CONFIG_KINETIS_EHCI_NQTDS]
aligned_data(32);
#else
/* Pools of dynamically data structures. These will all be linked into the
* free lists within g_ehci. These must all be aligned to 32-byte boundaries
*/
/* Queue Head (QH) pool */
static struct kinetis_qh_s *g_qhpool;
/* Queue Element Transfer Descriptor (qTD) pool */
static struct kinetis_qtd_s *g_qtdpool;
#endif
#ifdef HAVE_USBHOST_TRACE
/* USB trace strings */
static const struct kinetis_ehci_trace_s g_trace1[TRACE1_NSTRINGS] =
{
TRENTRY(EHCI_TRACE1_SYSTEMERROR, TR_FMT1,
"EHCI ERROR: System error: %06x\n"),
TRENTRY(EHCI_TRACE1_QTDFOREACH_FAILED, TR_FMT1,
"EHCI ERROR: kinetis_qtd_foreach failed: %d\n"),
TRENTRY(EHCI_TRACE1_QHALLOC_FAILED, TR_FMT1,
"EHCI ERROR: Failed to allocate a QH\n"),
TRENTRY(EHCI_TRACE1_BUFTOOBIG, TR_FMT1,
"EHCI ERROR: Buffer too big. Remaining %d\n"),
TRENTRY(EHCI_TRACE1_REQQTDALLOC_FAILED, TR_FMT1,
"EHCI ERROR: Failed to allocate request qTD"),
TRENTRY(EHCI_TRACE1_ADDBPL_FAILED, TR_FMT1,
"EHCI ERROR: kinetis_qtd_addbpl failed: %d\n"),
TRENTRY(EHCI_TRACE1_DATAQTDALLOC_FAILED, TR_FMT1,
"EHCI ERROR: Failed to allocate data buffer qTD, 0"),
TRENTRY(EHCI_TRACE1_DEVDISCONNECTED, TR_FMT1,
"EHCI ERROR: Device disconnected %d\n"),
TRENTRY(EHCI_TRACE1_QHCREATE_FAILED, TR_FMT1,
"EHCI ERROR: kinetis_qh_create failed\n"),
TRENTRY(EHCI_TRACE1_QTDSETUP_FAILED, TR_FMT1,
"EHCI ERROR: kinetis_qtd_setupphase failed\n"),
TRENTRY(EHCI_TRACE1_QTDDATA_FAILED, TR_FMT1,
"EHCI ERROR: kinetis_qtd_dataphase failed\n"),
TRENTRY(EHCI_TRACE1_QTDSTATUS_FAILED, TR_FMT1,
"EHCI ERROR: kinetis_qtd_statusphase failed\n"),
TRENTRY(EHCI_TRACE1_TRANSFER_FAILED, TR_FMT1,
"EHCI ERROR: Transfer failed %d\n"),
TRENTRY(EHCI_TRACE1_QHFOREACH_FAILED, TR_FMT1,
"EHCI ERROR: kinetis_qh_foreach failed: %d\n"),
TRENTRY(EHCI_TRACE1_SYSERR_INTR, TR_FMT1,
"EHCI: Host System Error Interrupt\n"),
TRENTRY(EHCI_TRACE1_USBERR_INTR, TR_FMT1,
"EHCI: USB Error Interrupt (USBERRINT) Interrupt: %06x\n"),
TRENTRY(EHCI_TRACE1_EPALLOC_FAILED, TR_FMT1,
"EHCI ERROR: Failed to allocate EP info structure\n"),
TRENTRY(EHCI_TRACE1_BADXFRTYPE, TR_FMT1,
"EHCI ERROR: Support for transfer type %d not implemented\n"),
TRENTRY(EHCI_TRACE1_HCHALTED_TIMEOUT, TR_FMT1,
"EHCI ERROR: Timed out waiting for HCHalted. USBSTS: %06x\n"),
TRENTRY(EHCI_TRACE1_QHPOOLALLOC_FAILED, TR_FMT1,
"EHCI ERROR: Failed to allocate the QH pool\n"),
TRENTRY(EHCI_TRACE1_QTDPOOLALLOC_FAILED, TR_FMT1,
"EHCI ERROR: Failed to allocate the qTD pool\n"),
TRENTRY(EHCI_TRACE1_PERFLALLOC_FAILED, TR_FMT1,
"EHCI ERROR: Failed to allocate the periodic frame list\n"),
TRENTRY(EHCI_TRACE1_RESET_FAILED, TR_FMT1,
"EHCI ERROR: kinetis_reset failed: %d\n"),
TRENTRY(EHCI_TRACE1_RUN_FAILED, TR_FMT1,
"EHCI ERROR: EHCI Failed to run: USBSTS=%06x\n"),
TRENTRY(EHCI_TRACE1_IRQATTACH_FAILED, TR_FMT1,
"EHCI ERROR: Failed to attach IRQ%d\n"),
#ifdef HAVE_USBHOST_TRACE_VERBOSE
TRENTRY(EHCI_VTRACE1_PORTSC_CSC, TR_FMT1,
"EHCI Connect Status Change: %06x\n"),
TRENTRY(EHCI_VTRACE1_PORTSC_CONNALREADY, TR_FMT1,
"EHCI Already connected: %06x\n"),
TRENTRY(EHCI_VTRACE1_PORTSC_DISCALREADY, TR_FMT1,
"EHCI Already disconnected: %06x\n"),
TRENTRY(EHCI_VTRACE1_TOPHALF, TR_FMT1,
"EHCI Interrupt: %06x\n"),
TRENTRY(EHCI_VTRACE1_AAINTR, TR_FMT1,
"EHCI Async Advance Interrupt\n"),
TRENTRY(EHCI_VTRACE1_CLASSENUM, TR_FMT1,
"EHCI Hub port %d: Enumerate the device\n"),
TRENTRY(EHCI_VTRACE1_USBINTR, TR_FMT1,
"EHCI USB Interrupt (USBINT) Interrupt: %06x\n"),
TRENTRY(EHCI_VTRACE1_ENUM_DISCONN, TR_FMT1,
"EHCI Enumeration not connected\n"),
TRENTRY(EHCI_VTRACE1_INITIALIZING, TR_FMT1,
"EHCI Initializing EHCI Stack\n"),
TRENTRY(EHCI_VTRACE1_HCCPARAMS, TR_FMT1,
"EHCI HCCPARAMS=%06x\n"),
TRENTRY(EHCI_VTRACE1_INIITIALIZED, TR_FMT1,
"EHCI USB EHCI Initialized\n"),
#endif
};
static const struct kinetis_ehci_trace_s g_trace2[TRACE2_NSTRINGS] =
{
TRENTRY(EHCI_TRACE2_EPSTALLED, TR_FMT2,
"EHCI EP%d Stalled: TOKEN=%04x\n"),
TRENTRY(EHCI_TRACE2_EPIOERROR, TR_FMT2,
"EHCI ERROR: EP%d TOKEN=%04x\n"),
TRENTRY(EHCI_TRACE2_CLASSENUM_FAILED, TR_FMT2,
"EHCI Hub port %d usbhost_enumerate() failed: %d\n"),
#ifdef HAVE_USBHOST_TRACE_VERBOSE
TRENTRY(EHCI_VTRACE2_ASYNCXFR, TR_FMT2,
"EHCI Async transfer EP%d buflen=%d\n"),
TRENTRY(EHCI_VTRACE2_INTRXFR, TR_FMT2,
"EHCI Intr Transfer EP%d buflen=%d\n"),
TRENTRY(EHCI_VTRACE2_IOCCHECK, TR_FMT2,
"EHCI IOC EP%d TOKEN=%04x\n"),
TRENTRY(EHCI_VTRACE2_PORTSC, TR_FMT2,
"EHCI PORTSC%d: %04x\n"),
TRENTRY(EHCI_VTRACE2_PORTSC_CONNECTED, TR_FMT2,
"EHCI RHPort%d connected, pscwait: %d\n"),
TRENTRY(EHCI_VTRACE2_PORTSC_DISCONND, TR_FMT2,
"EHCI RHport%d disconnected, pscwait: %d\n"),
TRENTRY(EHCI_VTRACE2_MONWAKEUP, TR_FMT2,
"EHCI RHPort%d connected: %d\n"),
TRENTRY(EHCI_VTRACE2_EPALLOC, TR_FMT2,
"EHCI EPALLOC: EP%d TYPE=%d\n"),
TRENTRY(EHCI_VTRACE2_CTRLINOUT, TR_FMT2,
"EHCI CTRLIN/OUT: RHPort%d req: %02x\n"),
TRENTRY(EHCI_VTRACE2_HCIVERSION, TR_FMT2,
"EHCI HCIVERSION %x.%02x\n"),
TRENTRY(EHCI_VTRACE2_HCSPARAMS, TR_FMT2,
"EHCI nports=%d, HCSPARAMS=%04x\n"),
#endif
};
#endif /* HAVE_USBHOST_TRACE */
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: kinetis_read16
*
* Description:
* Read 16-bit little endian data
*
****************************************************************************/
static uint16_t kinetis_read16(const uint8_t *addr)
{
#ifdef CONFIG_ENDIAN_BIG
return (uint16_t)addr[0] << 8 | (uint16_t)addr[1];
#else
return (uint16_t)addr[1] << 8 | (uint16_t)addr[0];
#endif
}
/****************************************************************************
* Name: kinetis_read32
*
* Description:
* Read 32-bit little endian data
*
****************************************************************************/
static inline uint32_t kinetis_read32(const uint8_t *addr)
{
#ifdef CONFIG_ENDIAN_BIG
return (uint32_t)kinetis_read16(&addr[0]) << 16 |
(uint32_t)kinetis_read16(&addr[2]);
#else
return (uint32_t)kinetis_read16(&addr[2]) << 16 |
(uint32_t)kinetis_read16(&addr[0]);
#endif
}
/****************************************************************************
* Name: kinetis_write16
*
* Description:
* Write 16-bit little endian data
*
****************************************************************************/
#if 0 /* Not used */
static void kinetis_write16(uint16_t memval, uint8_t *addr)
{
#ifdef CONFIG_ENDIAN_BIG
addr[0] = memval & 0xff;
addr[1] = memval >> 8;
#else
addr[0] = memval >> 8;
addr[1] = memval & 0xff;
#endif
}
#endif
/****************************************************************************
* Name: kinetis_write32
*
* Description:
* Write 32-bit little endian data
*
****************************************************************************/
#if 0 /* Not used */
static void kinetis_write32(uint32_t memval, uint8_t *addr)
{
#ifdef CONFIG_ENDIAN_BIG
kinetis_write16(memval >> 16, &addr[0]);
kinetis_write16(memval & 0xffff, &addr[2]);
#else
kinetis_write16(memval & 0xffff, &addr[0]);
kinetis_write16(memval >> 16, &addr[2]);
#endif
}
#endif
/****************************************************************************
* Name: kinetis_swap16
*
* Description:
* Swap bytes on a 16-bit value
*
****************************************************************************/
#ifdef CONFIG_ENDIAN_BIG
static uint16_t kinetis_swap16(uint16_t value)
{
return ((value >> 8) & 0xff) | ((value & 0xff) << 8);
}
#endif
/****************************************************************************
* Name: kinetis_swap32
*
* Description:
* Swap bytes on a 32-bit value
*
****************************************************************************/
#ifdef CONFIG_ENDIAN_BIG
static uint32_t kinetis_swap32(uint32_t value)
{
return (uint32_t)kinetis_swap16((uint16_t)((value >> 16) & 0xffff)) |
(uint32_t)kinetis_swap16((uint16_t)(value & 0xffff)) << 16;
}
#endif
/****************************************************************************
* Name: kinetis_printreg
*
* Description:
* Print the contents of a KINETIS EHCI register
*
****************************************************************************/
#ifdef CONFIG_KINETIS_EHCI_REGDEBUG
static void kinetis_printreg(volatile uint32_t *regaddr, uint32_t regval,
bool iswrite)
{
uinfo("%08x%s%08x\n", (uintptr_t)regaddr, iswrite ? "<-" : "->", regval);
}
#endif
/****************************************************************************
* Name: kinetis_checkreg
*
* Description:
* Check if it is time to output debug information for accesses to a
* KINETIS EHCI register
*
****************************************************************************/
#ifdef CONFIG_KINETIS_EHCI_REGDEBUG
static void kinetis_checkreg(volatile uint32_t *regaddr, uint32_t regval,
bool iswrite)
{
static uint32_t *prevaddr = NULL;
static uint32_t preval = 0;
static uint32_t count = 0;
static bool prevwrite = false;
/* Is this the same value that we read from/wrote to the same register last
* time? Are we polling the register? If so, suppress the output.
*/
if (regaddr == prevaddr && regval == preval && prevwrite == iswrite)
{
/* Yes.. Just increment the count */
count++;
}
else
{
/* No this is a new address or value or operation. Were there any
* duplicate accesses before this one?
*/
if (count > 0)
{
/* Yes.. Just one? */
if (count == 1)
{
/* Yes.. Just one */
kinetis_printreg(prevaddr, preval, prevwrite);
}
else
{
/* No.. More than one. */
uinfo("[repeats %d more times]\n", count);
}
}
/* Save the new address, value, count, and operation for next time */
prevaddr = (uint32_t *)regaddr;
preval = regval;
count = 0;
prevwrite = iswrite;
/* Show the new register access */
kinetis_printreg(regaddr, regval, iswrite);
}
}
#endif
/****************************************************************************
* Name: kinetis_getreg
*
* Description:
* Get the contents of an KINETIS register
*
****************************************************************************/
#ifdef CONFIG_KINETIS_EHCI_REGDEBUG
static uint32_t kinetis_getreg(volatile uint32_t *regaddr)
{
/* Read the value from the register */
uint32_t regval = *regaddr;
/* Check if we need to print this value */
kinetis_checkreg(regaddr, regval, false);
return regval;
}
#else
static inline uint32_t kinetis_getreg(volatile uint32_t *regaddr)
{
return *regaddr;
}
#endif
/****************************************************************************
* Name: kinetis_putreg
*
* Description:
* Set the contents of an KINETIS register to a value
*
****************************************************************************/
#ifdef CONFIG_KINETIS_EHCI_REGDEBUG
static void kinetis_putreg(uint32_t regval, volatile uint32_t *regaddr)
{
/* Check if we need to print this value */
kinetis_checkreg(regaddr, regval, true);
/* Write the value */
*regaddr = regval;
}
#else
static inline void kinetis_putreg(uint32_t regval,
volatile uint32_t *regaddr)
{
*regaddr = regval;
}
#endif
/****************************************************************************
* Name: ehci_wait_usbsts
*
* Description:
* Wait for either (1) a field in the USBSTS register to take a specific
* value, (2) for a timeout to occur, or (3) a error to occur. Return
* a value to indicate which terminated the wait.
*
****************************************************************************/
static int ehci_wait_usbsts(uint32_t maskbits, uint32_t donebits,
unsigned int delay)
{
uint32_t regval;
unsigned int timeout;
timeout = 0;
do
{
/* Wait 5usec before trying again */
up_udelay(5);
timeout += 5;
/* Read the USBSTS register and check for a system error */
regval = kinetis_getreg(&HCOR->usbsts);
if ((regval & EHCI_INT_SYSERROR) != 0)
{
usbhost_trace1(EHCI_TRACE1_SYSTEMERROR, regval);
return -EIO;
}
/* Mask out the bits of interest */
regval &= maskbits;
/* Loop until the masked bits take the specified value or until a
* timeout occurs.
*/
}
while (regval != donebits && timeout < delay);
/* We got here because either the waited for condition or a timeout
* occurred. Return a value to indicate which.
*/
return (regval == donebits) ? OK : -ETIMEDOUT;
}
/****************************************************************************
* Name: kinetis_qh_alloc
*
* Description:
* Allocate a Queue Head (QH) structure by removing it from the free list
*
* Assumption: Caller holds the lock
*
****************************************************************************/
static struct kinetis_qh_s *kinetis_qh_alloc(void)
{
struct kinetis_qh_s *qh;
/* Remove the QH structure from the freelist */
qh = g_ehci.qhfree;
if (qh)
{
g_ehci.qhfree = qh->flink;
memset(qh, 0, sizeof(struct kinetis_qh_s));
}
return qh;
}
/****************************************************************************
* Name: kinetis_qh_aawait
*
* Description:
* Let a Queue Head (QH) structure wait for free by adding it to the
* aawait list
*
* Assumption: Caller holds the lock
*
****************************************************************************/
static void kinetis_qh_aawait(struct kinetis_qh_s *qh)
{
uint32_t regval;
/* Put the QH structure to the aawait list */
qh->flink = g_ehci.qhaawait;
g_ehci.qhaawait = qh;
regval = kinetis_getreg(&HCOR->usbcmd);
kinetis_putreg(regval | EHCI_USBCMD_IAADB, &HCOR->usbcmd);
}
/****************************************************************************
* Name: kinetis_qh_free
*
* Description:
* Free a Queue Head (QH) structure by returning it to the free list
*
* Assumption: Caller holds the lock
*
****************************************************************************/
static void kinetis_qh_free(struct kinetis_qh_s *qh)
{
/* Put the QH structure back into the free list */
qh->flink = g_ehci.qhfree;
g_ehci.qhfree = qh;
}
/****************************************************************************
* Name: kinetis_qtd_alloc
*
* Description:
* Allocate a Queue Element Transfer Descriptor (qTD) by removing it from
* the free list
*
* Assumption: Caller holds the lock
*
****************************************************************************/
static struct kinetis_qtd_s *kinetis_qtd_alloc(void)
{
struct kinetis_qtd_s *qtd;
/* Remove the qTD from the freelist */
qtd = (struct kinetis_qtd_s *)g_ehci.qtdfree;
if (qtd)
{
g_ehci.qtdfree = ((struct kinetis_list_s *)qtd)->flink;
memset(qtd, 0, sizeof(struct kinetis_qtd_s));
}
return qtd;
}
/****************************************************************************
* Name: kinetis_qtd_free
*
* Description:
* Free a Queue Element Transfer Descriptor (qTD) by returning it to the
* free list
*
* Assumption:
* Caller holds the lock
*
****************************************************************************/
static void kinetis_qtd_free(struct kinetis_qtd_s *qtd)
{
struct kinetis_list_s *entry = (struct kinetis_list_s *)qtd;
/* Put the qTD back into the free list */
entry->flink = g_ehci.qtdfree;
g_ehci.qtdfree = entry;
}
/****************************************************************************
* Name: kinetis_qh_foreach
*
* Description:
* Give the first entry in a list of Queue Head (QH) structures, call the
* handler for each QH structure in the list (including the one at the head
* of the list).
*
****************************************************************************/
static int kinetis_qh_foreach(struct kinetis_qh_s *qh, uint32_t **bp,
foreach_qh_t handler, void *arg)
{
struct kinetis_qh_s *next;
uintptr_t physaddr;
int ret;
DEBUGASSERT(qh && handler);
while (qh)
{
/* Is this the end of the list? Check the horizontal link pointer
* (HLP) terminate (T) bit. If T==1, then the HLP address is not
* valid.
*/
physaddr = kinetis_swap32(qh->hw.hlp);
if ((physaddr & QH_HLP_T) != 0)
{
/* Set the next pointer to NULL. This will terminate the loop. */
next = NULL;
}
/* Is the next QH the asynchronous list head which will always be at
* the end of the asynchronous queue?
*/
else if (kinetis_virtramaddr(physaddr & QH_HLP_MASK) ==
(uintptr_t)&g_asynchead)
{
/* That will also terminate the loop */
next = NULL;
}
/* Otherwise, there is a QH structure after this one that describes
* another transaction.
*/
else
{
physaddr = kinetis_swap32(qh->hw.hlp) & QH_HLP_MASK;
next = (struct kinetis_qh_s *)kinetis_virtramaddr(physaddr);
}
/* Perform the user action on this entry. The action might result in
* unlinking the entry! But that is okay because we already have the
* next QH pointer.
*
* Notice that we do not manage the back pointer (bp). If the call-
* out uses it, it must update it as necessary.
*/
ret = handler(qh, bp, arg);
/* If the handler returns any non-zero value, then terminate the
* traversal early.
*/
if (ret != 0)
{
return ret;
}
/* Set up to visit the next entry */
qh = next;
}
return OK;
}
/****************************************************************************
* Name: kinetis_qtd_foreach
*
* Description:
* Give a Queue Head (QH) instance, call the handler for each qTD structure
* in the queue.
*
****************************************************************************/
static int kinetis_qtd_foreach(struct kinetis_qh_s *qh,
foreach_qtd_t handler,
void *arg)
{
struct kinetis_qtd_s *qtd;
struct kinetis_qtd_s *next;
uintptr_t physaddr;
uint32_t *bp;
int ret;
DEBUGASSERT(qh && handler);
/* Handle the special case where the queue is empty */
bp = &qh->fqp; /* Start of qTDs in original list */
physaddr = kinetis_swap32(*bp); /* Physical address of first qTD in CPU order */
if ((physaddr & QTD_NQP_T) != 0)
{
return 0;
}
/* Start with the first qTD in the list */
qtd = (struct kinetis_qtd_s *)kinetis_virtramaddr(physaddr);
next = NULL;
/* And loop until we encounter the end of the qTD list */
while (qtd)
{
/* Is this the end of the list? Check the next qTD pointer (NQP)
* terminate (T) bit. If T==1, then the NQP address is not valid.
*/
if ((kinetis_swap32(qtd->hw.nqp) & QTD_NQP_T) != 0)
{
/* Set the next pointer to NULL. This will terminate the loop. */
next = NULL;
}
else
{
physaddr = kinetis_swap32(qtd->hw.nqp) & QTD_NQP_NTEP_MASK;
next = (struct kinetis_qtd_s *)kinetis_virtramaddr(physaddr);
}
/* Perform the user action on this entry. The action might result in
* unlinking the entry! But that is okay because we already have the
* next qTD pointer.
*
* Notice that we do not manage the back pointer (bp). If the call-out
* uses it, it must update it as necessary.
*/
ret = handler(qtd, &bp, arg);
/* If the handler returns any non-zero value, then terminate the
* traversal early.
*/
if (ret != 0)
{
return ret;
}
/* Set up to visit the next entry */
qtd = next;
}
return OK;
}
/****************************************************************************
* Name: kinetis_qtd_discard
*
* Description:
* This is a kinetis_qtd_foreach callback. It simply unlinks the QTD,
* updates the back pointer, and frees the QTD structure.
*
****************************************************************************/
static int kinetis_qtd_discard(struct kinetis_qtd_s *qtd, uint32_t **bp,
void *arg)
{
DEBUGASSERT(qtd && bp && *bp);
/* Remove the qTD from the list by updating the forward pointer to skip
* around this qTD. We do not change that pointer because are repeatedly
* removing the aTD at the head of the QH list.
*/
**bp = qtd->hw.nqp;
/* Then free the qTD */
kinetis_qtd_free(qtd);
return OK;
}
/****************************************************************************
* Name: kinetis_qh_discard
*
* Description:
* Free the Queue Head (QH) and all qTD's attached to the QH.
*
* Assumptions:
* The QH structure itself has already been unlinked from whatever list it
* may have been in.
*
****************************************************************************/
static int kinetis_qh_discard(struct kinetis_qh_s *qh)
{
int ret;
DEBUGASSERT(qh);
/* Free all of the qTD's attached to the QH */
ret = kinetis_qtd_foreach(qh, kinetis_qtd_discard, NULL);
if (ret < 0)
{
usbhost_trace1(EHCI_TRACE1_QTDFOREACH_FAILED, -ret);
}
/* Then free the QH itself */
kinetis_qh_free(qh);
return ret;
}
/****************************************************************************
* Name: kinetis_qtd_invalidate
*
* Description:
* This is a callback from kinetis_qtd_foreach. It simply invalidates D-
* cache for address range of the qTD entry.
*
****************************************************************************/
#if 0 /* Not used */
static int kinetis_qtd_invalidate(struct kinetis_qtd_s *qtd, uint32_t **bp,
void *arg)
{
/* Invalidate the D-Cache, i.e., force reloading of the D-Cache from memory
* memory over the specified address range.
*/
up_invalidate_dcache((uintptr_t)&qtd->hw,
(uintptr_t)&qtd->hw + sizeof(struct ehci_qtd_s));
return OK;
}
#endif
/****************************************************************************
* Name: kinetis_qh_invalidate
*
* Description:
* Invalidate the Queue Head and all qTD entries in the queue.
*
****************************************************************************/
#if 0 /* Not used */
static int kinetis_qh_invalidate(struct kinetis_qh_s *qh)
{
/* Invalidate the QH first so that we reload the qTD list head */
up_invalidate_dcache((uintptr_t)&qh->hw,
(uintptr_t)&qh->hw + sizeof(struct ehci_qh_s));
/* Then invalidate all of the qTD entries in the queue */
return kinetis_qtd_foreach(qh, kinetis_qtd_invalidate, NULL);
}
#endif
/****************************************************************************
* Name: kinetis_qtd_flush
*
* Description:
* This is a callback from kinetis_qtd_foreach. It simply flushes D-cache
* for address range of the qTD entry.
*
****************************************************************************/
static int kinetis_qtd_flush(struct kinetis_qtd_s *qtd,
uint32_t **bp, void *arg)
{
/* Flush the D-Cache, i.e., make the contents of the memory match the
* contents of the D-Cache in the specified address range and invalidate
* the D-Cache to force re-loading of the data from memory when next
* accessed.
*/
up_flush_dcache((uintptr_t)&qtd->hw,
(uintptr_t)&qtd->hw + sizeof(struct ehci_qtd_s));
return OK;
}
/****************************************************************************
* Name: kinetis_qh_flush
*
* Description:
* Invalidate the Queue Head and all qTD entries in the queue.
*
****************************************************************************/
static int kinetis_qh_flush(struct kinetis_qh_s *qh)
{
/* Flush the QH first. This will write the contents of the D-cache to RAM
* and invalidate the contents of the D-cache so that the next access will
* be reloaded from D-Cache.
*/
up_flush_dcache((uintptr_t)&qh->hw,
(uintptr_t)&qh->hw + sizeof(struct ehci_qh_s));
/* Then flush all of the qTD entries in the queue */
return kinetis_qtd_foreach(qh, kinetis_qtd_flush, NULL);
}
/****************************************************************************
* Name: kinetis_qtd_print
*
* Description:
* Print the context of one qTD
*
****************************************************************************/
#ifdef CONFIG_KINETIS_EHCI_REGDEBUG
static void kinetis_qtd_print(struct kinetis_qtd_s *qtd)
{
uinfo(" QTD[%p]:\n", qtd);
uinfo(" hw:\n");
uinfo(" nqp: %08x alt: %08x token: %08x\n",
qtd->hw.nqp, qtd->hw.alt, qtd->hw.token);
uinfo(" bpl: %08x %08x %08x %08x %08x\n",
qtd->hw.bpl[0], qtd->hw.bpl[1], qtd->hw.bpl[2],
qtd->hw.bpl[3], qtd->hw.bpl[4]);
}
#endif
/****************************************************************************
* Name: kinetis_qh_print
*
* Description:
* Print the context of one QH
*
****************************************************************************/
#ifdef CONFIG_KINETIS_EHCI_REGDEBUG
static void kinetis_qh_print(struct kinetis_qh_s *qh)
{
struct kinetis_epinfo_s *epinfo;
struct ehci_overlay_s *overlay;
uinfo("QH[%p]:\n", qh);
uinfo(" hw:\n");
uinfo(" hlp: %08x epchar: %08x epcaps: %08x cqp: %08x\n",
qh->hw.hlp, qh->hw.epchar, qh->hw.epcaps, qh->hw.cqp);
overlay = &qh->hw.overlay;
uinfo(" overlay:\n");
uinfo(" nqp: %08x alt: %08x token: %08x\n",
overlay->nqp, overlay->alt, overlay->token);
uinfo(" bpl: %08x %08x %08x %08x %08x\n",
overlay->bpl[0], overlay->bpl[1], overlay->bpl[2],
overlay->bpl[3], overlay->bpl[4]);
uinfo(" fqp:\n", qh->fqp);
epinfo = qh->epinfo;
uinfo(" epinfo[%p]:\n", epinfo);
if (epinfo)
{
uinfo(" EP%d DIR=%s FA=%08x TYPE=%d MaxPacket=%d\n",
epinfo->epno, epinfo->dirin ? "IN" : "OUT", epinfo->devaddr,
epinfo->xfrtype, epinfo->maxpacket);
uinfo(" Toggle=%d iocwait=%d speed=%d result=%d\n",
epinfo->toggle, epinfo->iocwait, epinfo->speed, epinfo->result);
}
}
#endif
/****************************************************************************
* Name: kinetis_qtd_dump
*
* Description:
* This is a kinetis_qtd_foreach callout function. It dumps the context
* of one qTD
*
****************************************************************************/
#ifdef CONFIG_KINETIS_EHCI_REGDEBUG
static int kinetis_qtd_dump(struct kinetis_qtd_s *qtd,
uint32_t **bp, void *arg)
{
kinetis_qtd_print(qtd);
return OK;
}
#endif
/****************************************************************************
* Name: kinetis_qh_dump
*
* Description:
* This is a kinetis_qh_foreach call-out function. It dumps a QH structure
* and all of the qTD structures linked to the QH.
*
****************************************************************************/
#ifdef CONFIG_KINETIS_EHCI_REGDEBUG
static int kinetis_qh_dump(struct kinetis_qh_s *qh, uint32_t **bp, void *arg)
{
kinetis_qh_print(qh);
return kinetis_qtd_foreach(qh, kinetis_qtd_dump, NULL);
}
#endif
/****************************************************************************
* Name: kinetis_ehci_speed
*
* Description:
* Map a speed enumeration value per Chapter 9 of the USB specification to
* the speed enumeration required in the EHCI queue head.
*
****************************************************************************/
static inline uint8_t kinetis_ehci_speed(uint8_t usbspeed)
{
DEBUGASSERT(usbspeed >= USB_SPEED_LOW && usbspeed <= USB_SPEED_HIGH);
return g_ehci_speed[usbspeed];
}
/****************************************************************************
* Name: kinetis_ioc_setup
*
* Description:
* Set the request for the IOC event well BEFORE enabling the transfer (as
* soon as we are absolutely committed to the to avoid transfer). We do
* this to minimize race conditions. This logic would have to be expanded
* if we want to have more than one packet in flight at a time!
*
* Assumption: The caller holds the EHCI lock
*
****************************************************************************/
static int kinetis_ioc_setup(struct kinetis_rhport_s *rhport,
struct kinetis_epinfo_s *epinfo)
{
irqstate_t flags;
int ret = -ENODEV;
DEBUGASSERT(rhport && epinfo && !epinfo->iocwait);
#ifdef CONFIG_USBHOST_ASYNCH
DEBUGASSERT(epinfo->callback == NULL);
#endif
/* Is the device still connected? */
flags = enter_critical_section();
if (rhport->connected)
{
/* Then set iocwait to indicate that we expect to be informed when
* either (1) the device is disconnected, or (2) the transfer
* completed.
*/
epinfo->iocwait = true; /* We want to be awakened by IOC interrupt */
epinfo->status = 0; /* No status yet */
epinfo->xfrd = 0; /* Nothing transferred yet */
epinfo->result = -EBUSY; /* Transfer in progress */
#ifdef CONFIG_USBHOST_ASYNCH
epinfo->callback = NULL; /* No asynchronous callback */
epinfo->arg = NULL;
#endif
ret = OK; /* We are good to go */
}
leave_critical_section(flags);
return ret;
}
/****************************************************************************
* Name: kinetis_ioc_wait
*
* Description:
* Wait for the IOC event.
*
* Assumption: The caller does *NOT* hold the EHCI lock. That would
* cause a deadlock when the bottom-half, worker thread needs to take the
* semaphore.
*
****************************************************************************/
static int kinetis_ioc_wait(struct kinetis_epinfo_s *epinfo)
{
int ret = OK;
/* Wait for the IOC event. Loop to handle any false alarm semaphore
* counts. Return an error if the task is canceled.
*/
while (epinfo->iocwait)
{
ret = nxsem_wait_uninterruptible(&epinfo->iocsem);
if (ret < 0)
{
break;
}
}
return ret < 0 ? ret : epinfo->result;
}
/****************************************************************************
* Name: kinetis_qh_enqueue
*
* Description:
* Add a new, ready-to-go QH w/attached qTDs to the asynchronous queue.
*
* Assumptions: The caller holds the EHCI lock
*
****************************************************************************/
static void kinetis_qh_enqueue(struct kinetis_qh_s *qhead,
struct kinetis_qh_s *qh)
{
uintptr_t physaddr;
/* Set the internal fqp field. When we transverse the QH list later,
* we need to know the correct place to start because the overlay may no
* longer point to the first qTD entry.
*/
qh->fqp = qh->hw.overlay.nqp;
kinetis_qh_dump(qh, NULL, NULL);
/* Add the new QH to the head of the asynchronous queue list.
*
* First, attach the old head as the new QH HLP and flush the new QH and
* its attached qTDs to RAM.
*/
qh->hw.hlp = qhead->hw.hlp;
kinetis_qh_flush(qh);
/* Then set the new QH as the first QH in the asynchronous queue and flush
* the modified head to RAM.
*/
physaddr = (uintptr_t)kinetis_physramaddr((uintptr_t)qh);
qhead->hw.hlp = kinetis_swap32(physaddr | QH_HLP_TYP_QH);
up_flush_dcache((uintptr_t)&qhead->hw,
(uintptr_t)&qhead->hw + sizeof(struct ehci_qh_s));
}
/****************************************************************************
* Name: kinetis_qh_create
*
* Description:
* Create a new Queue Head (QH)
*
****************************************************************************/
static struct
kinetis_qh_s *kinetis_qh_create(struct kinetis_rhport_s *rhport,
struct kinetis_epinfo_s *epinfo)
{
struct kinetis_qh_s *qh;
uint32_t rhpndx;
uint32_t regval;
uint8_t hubaddr;
uint8_t hubport;
/* Allocate a new queue head structure */
qh = kinetis_qh_alloc();
if (qh == NULL)
{
usbhost_trace1(EHCI_TRACE1_QHALLOC_FAILED, 0);
return NULL;
}
/* Save the endpoint information with the QH itself */
qh->epinfo = epinfo;
/* Write QH endpoint characteristics:
*
* FIELD DESCRIPTION VALUE/SOURCE
* -------- ------------------------------- --------------------
* DEVADDR Device address Endpoint structure
* I Inactivate on Next Transaction 0
* ENDPT Endpoint number Endpoint structure
* EPS Endpoint speed Endpoint structure
* DTC Data toggle control 1
* MAXPKT Max packet size Endpoint structure
* C Control endpoint Calculated
* RL NAK count reloaded 8
*/
regval = ((uint32_t)epinfo->devaddr << QH_EPCHAR_DEVADDR_SHIFT) |
((uint32_t)epinfo->epno << QH_EPCHAR_ENDPT_SHIFT) |
((uint32_t)kinetis_ehci_speed(epinfo->speed) <<
QH_EPCHAR_EPS_SHIFT) |
QH_EPCHAR_DTC |
((uint32_t)epinfo->maxpacket << QH_EPCHAR_MAXPKT_SHIFT) |
((uint32_t)8 << QH_EPCHAR_RL_SHIFT);
/* Paragraph 3.6.3: "Control Endpoint Flag (C). If the QH.EPS field
* indicates the endpoint is not a high-speed device, and the endpoint
* is an control endpoint, then software must set this bit to a one.
* Otherwise it should always set this bit to a zero."
*/
if (epinfo->speed != USB_SPEED_HIGH &&
epinfo->xfrtype == USB_EP_ATTR_XFER_CONTROL)
{
regval |= QH_EPCHAR_C;
}
/* Save the endpoint characteristics word with the correct byte order */
qh->hw.epchar = kinetis_swap32(regval);
/* Write QH endpoint capabilities
*
* FIELD DESCRIPTION VALUE/SOURCE
* -------- ------------------------------- --------------------
* SSMASK Interrupt Schedule Mask Depends on epinfo->xfrtype
* SCMASK Split Completion Mask 0
* HUBADDR Hub Address Always 0 for now
* PORT Port number RH port index + 1
* MULT High band width multiplier 1
*/
rhpndx = RHPNDX(rhport);
#ifdef CONFIG_USBHOST_HUB
/* REVISIT: Future HUB support will require the HUB port number
* and HUB device address to be included here:
*
* - The HUB device address is the USB device address of the USB 2.0 Hub
* below which a full- or low-speed device is attached.
* - The HUB port number is the port number on the above USB 2.0 Hub
*
* These fields are used in the split-transaction protocol. The kludge
* below should work for hubs connected directly to a root hub port,
* but would not work for devices connected to downstream hubs.
*/
#warning Missing logic
hubaddr = rhport->ep0.devaddr;
hubport = rhpndx + 1;
#else
hubaddr = rhport->ep0.devaddr;
hubport = rhpndx + 1;
#endif
regval = ((uint32_t)hubaddr << QH_EPCAPS_HUBADDR_SHIFT) |
((uint32_t)hubport << QH_EPCAPS_PORT_SHIFT) |
((uint32_t)1 << QH_EPCAPS_MULT_SHIFT);
#ifndef CONFIG_USBHOST_INT_DISABLE
if (epinfo->xfrtype == USB_EP_ATTR_XFER_INT)
{
/* Here, the S-Mask field in the queue head is set to 1, indicating
* that the transaction for the endpoint should be executed on the bus
* during micro-frame 0 of the frame.
*
* REVISIT: The polling interval should be controlled by the which
* entry is the framelist holds the QH pointer for a given micro-frame
* and the QH pointer should be replicated for different polling rates.
* This implementation currently just sets all frame_list entry to
* all the same interrupt queue. That should work but will not give
* any control over polling rates.
*/
#warning REVISIT
regval |= ((uint32_t)1 << QH_EPCAPS_SSMASK_SHIFT);
}
#endif
qh->hw.epcaps = kinetis_swap32(regval);
/* Mark this as the end of this list. This will be overwritten if/when the
* next qTD is added to the queue.
*/
qh->hw.hlp = kinetis_swap32(QH_HLP_T);
qh->hw.overlay.nqp = kinetis_swap32(QH_NQP_T);
qh->hw.overlay.alt = kinetis_swap32(QH_AQP_T);
return qh;
}
/****************************************************************************
* Name: kinetis_qtd_addbpl
*
* Description:
* Add a buffer pointer list to a qTD.
*
****************************************************************************/
static int kinetis_qtd_addbpl(struct kinetis_qtd_s *qtd, const void *buffer,
size_t buflen)
{
uint32_t physaddr;
uint32_t nbytes;
uint32_t next;
int ndx;
/* Flush the contents of the data buffer to RAM so that the correct
* contents will be accessed for an OUT DMA.
*/
up_flush_dcache((uintptr_t)buffer, (uintptr_t)buffer + buflen);
/* Loop, adding the aligned physical addresses of the buffer to the buffer
* page list. Only the first entry need not be aligned (because only the
* first entry has the offset field). The subsequent entries must begin on
* 4KB address boundaries.
*/
physaddr = (uint32_t)kinetis_physramaddr((uintptr_t)buffer);
for (ndx = 0; ndx < 5; ndx++)
{
/* Write the physical address of the buffer into the qTD buffer pointer
* list.
*/
qtd->hw.bpl[ndx] = kinetis_swap32(physaddr);
/* Get the next buffer pointer (in the case where we will have to
* transfer more then one chunk). This buffer must be aligned to a
* 4KB address boundary.
*/
next = (physaddr + 4096) & ~4095;
/* How many bytes were included in the last buffer? Was it the whole
* thing?
*/
nbytes = next - physaddr;
if (nbytes >= buflen)
{
/* Yes... it was the whole thing. Break out of the loop early. */
break;
}
/* Adjust the buffer length and physical address for the next time
* through the loop.
*/
buflen -= nbytes;
physaddr = next;
}
/* Handle the case of a huge buffer > 4*4KB = 16KB */
if (ndx >= 5)
{
usbhost_trace1(EHCI_TRACE1_BUFTOOBIG, buflen);
return -EFBIG;
}
return OK;
}
/****************************************************************************
* Name: kinetis_qtd_setupphase
*
* Description:
* Create a SETUP phase request qTD.
*
****************************************************************************/
static struct kinetis_qtd_s *
kinetis_qtd_setupphase(struct kinetis_epinfo_s *epinfo,
const struct usb_ctrlreq_s *req)
{
struct kinetis_qtd_s *qtd;
uint32_t regval;
int ret;
/* Allocate a new Queue Element Transfer Descriptor (qTD) */
qtd = kinetis_qtd_alloc();
if (qtd == NULL)
{
usbhost_trace1(EHCI_TRACE1_REQQTDALLOC_FAILED, 0);
return NULL;
}
/* Mark this as the end of the list (this will be overwritten if another
* qTD is added after this one).
*/
qtd->hw.nqp = kinetis_swap32(QTD_NQP_T);
qtd->hw.alt = kinetis_swap32(QTD_AQP_T);
/* Write qTD token:
*
* FIELD DESCRIPTION VALUE/SOURCE
* -------- ------------------------------- --------------------
* STATUS Status QTD_TOKEN_ACTIVE
* PID PID Code QTD_TOKEN_PID_SETUP
* CERR Error Counter 3
* CPAGE Current Page 0
* IOC Interrupt on complete 0
* NBYTES Total Bytes to Transfer USB_SIZEOF_CTRLREQ
* TOGGLE Data Toggle 0
*/
regval = QTD_TOKEN_ACTIVE | QTD_TOKEN_PID_SETUP |
((uint32_t)3 << QTD_TOKEN_CERR_SHIFT) |
((uint32_t)USB_SIZEOF_CTRLREQ << QTD_TOKEN_NBYTES_SHIFT);
qtd->hw.token = kinetis_swap32(regval);
/* Add the buffer data */
ret = kinetis_qtd_addbpl(qtd, req, USB_SIZEOF_CTRLREQ);
if (ret < 0)
{
usbhost_trace1(EHCI_TRACE1_ADDBPL_FAILED, -ret);
kinetis_qtd_free(qtd);
return NULL;
}
/* Add the data transfer size to the count in the epinfo structure */
epinfo->xfrd += USB_SIZEOF_CTRLREQ;
return qtd;
}
/****************************************************************************
* Name: kinetis_qtd_dataphase
*
* Description:
* Create a data transfer or SET data phase qTD.
*
****************************************************************************/
static struct
kinetis_qtd_s *kinetis_qtd_dataphase(struct kinetis_epinfo_s *epinfo,
void *buffer, int buflen,
uint32_t tokenbits)
{
struct kinetis_qtd_s *qtd;
uint32_t regval;
int ret;
/* Allocate a new Queue Element Transfer Descriptor (qTD) */
qtd = kinetis_qtd_alloc();
if (qtd == NULL)
{
usbhost_trace1(EHCI_TRACE1_DATAQTDALLOC_FAILED, 0);
return NULL;
}
/* Mark this as the end of the list (this will be overwritten if another
* qTD is added after this one).
*/
qtd->hw.nqp = kinetis_swap32(QTD_NQP_T);
qtd->hw.alt = kinetis_swap32(QTD_AQP_T);
/* Write qTD token:
*
* FIELD DESCRIPTION VALUE/SOURCE
* -------- ------------------------------- --------------------
* STATUS Status QTD_TOKEN_ACTIVE
* PID PID Code Contained in tokenbits
* CERR Error Counter 3
* CPAGE Current Page 0
* IOC Interrupt on complete Contained in tokenbits
* NBYTES Total Bytes to Transfer buflen
* TOGGLE Data Toggle Contained in tokenbits
*/
regval = tokenbits | QTD_TOKEN_ACTIVE |
((uint32_t)3 << QTD_TOKEN_CERR_SHIFT) |
((uint32_t)buflen << QTD_TOKEN_NBYTES_SHIFT);
qtd->hw.token = kinetis_swap32(regval);
/* Add the buffer information to the buffer pointer list */
ret = kinetis_qtd_addbpl(qtd, buffer, buflen);
if (ret < 0)
{
usbhost_trace1(EHCI_TRACE1_ADDBPL_FAILED, -ret);
kinetis_qtd_free(qtd);
return NULL;
}
/* Add the data transfer size to the count in the epinfo structure */
epinfo->xfrd += buflen;
return qtd;
}
/****************************************************************************
* Name: kinetis_qtd_statusphase
*
* Description:
* Create a STATUS phase request qTD.
*
****************************************************************************/
static struct kinetis_qtd_s *kinetis_qtd_statusphase(uint32_t tokenbits)
{
struct kinetis_qtd_s *qtd;
uint32_t regval;
/* Allocate a new Queue Element Transfer Descriptor (qTD) */
qtd = kinetis_qtd_alloc();
if (qtd == NULL)
{
usbhost_trace1(EHCI_TRACE1_REQQTDALLOC_FAILED, 0);
return NULL;
}
/* Mark this as the end of the list (this will be overwritten if another
* qTD is added after this one).
*/
qtd->hw.nqp = kinetis_swap32(QTD_NQP_T);
qtd->hw.alt = kinetis_swap32(QTD_AQP_T);
/* Write qTD token:
*
* FIELD DESCRIPTION VALUE/SOURCE
* -------- ------------------------------- --------------------
* STATUS Status QTD_TOKEN_ACTIVE
* PID PID Code Contained in tokenbits
* CERR Error Counter 3
* CPAGE Current Page 0
* IOC Interrupt on complete QTD_TOKEN_IOC
* NBYTES Total Bytes to Transfer 0
* TOGGLE Data Toggle Contained in tokenbits
*/
regval = tokenbits | QTD_TOKEN_ACTIVE | QTD_TOKEN_IOC |
((uint32_t)3 << QTD_TOKEN_CERR_SHIFT);
qtd->hw.token = kinetis_swap32(regval);
return qtd;
}
/****************************************************************************
* Name: kinetis_async_setup
*
* Description:
* Process a IN or OUT request on any asynchronous endpoint (bulk or
* control). This function will enqueue the request and wait for it to
* complete. Bulk data transfers differ in that req == NULL and there are
* not SETUP or STATUS phases.
*
* This is a blocking function; it will not return until the control
* transfer has completed.
*
* Assumption: The caller holds the EHCI lock.
*
* Returned Value:
* Zero (OK) is returned on success; a negated errno value is return on
* any failure.
*
****************************************************************************/
static int kinetis_async_setup(struct kinetis_rhport_s *rhport,
struct kinetis_epinfo_s *epinfo,
const struct usb_ctrlreq_s *req,
uint8_t *buffer, size_t buflen)
{
struct kinetis_qh_s *qh;
struct kinetis_qtd_s *qtd;
uintptr_t physaddr;
uint32_t *flink;
uint32_t *alt;
uint32_t toggle;
bool dirin = false;
int ret;
/* Terse output only if we are tracing */
#ifdef CONFIG_USBHOST_TRACE
usbhost_vtrace2(EHCI_VTRACE2_ASYNCXFR, epinfo->epno, buflen);
#else
uinfo("RHport%d EP%d: buffer=%p, buflen=%d, req=%p\n",
RHPORT(rhport), epinfo->epno, buffer, buflen, req);
#endif
DEBUGASSERT(rhport && epinfo);
/* A buffer may or may be supplied with an EP0 SETUP transfer. A buffer
* will always be present for normal endpoint data transfers.
*/
DEBUGASSERT(req || (buffer && buflen > 0));
/* Create and initialize a Queue Head (QH) structure for this transfer */
qh = kinetis_qh_create(rhport, epinfo);
if (qh == NULL)
{
usbhost_trace1(EHCI_TRACE1_QHCREATE_FAILED, 0);
return -ENOMEM;
}
/* Initialize the QH link and get the next data toggle (not used for SETUP
* transfers)
*/
flink = &qh->hw.overlay.nqp;
toggle = (uint32_t)epinfo->toggle << QTD_TOKEN_TOGGLE_SHIFT;
ret = -EIO;
/* Is there an EP0 SETUP request? If so, req will be non-NULL and we will
* queue two or three qTDs:
*
* 1) One for the SETUP phase,
* 2) One for the DATA phase (if there is data), and
* 3) One for the STATUS phase.
*
* If this is not an EP0 SETUP request, then only a data transfer will be
* enqueued.
*/
if (req != NULL)
{
/* Allocate a new Queue Element Transfer Descriptor (qTD) for the SETUP
* phase of the request sequence.
*/
qtd = kinetis_qtd_setupphase(epinfo, req);
if (qtd == NULL)
{
usbhost_trace1(EHCI_TRACE1_QTDSETUP_FAILED, 0);
goto errout_with_qh;
}
/* Link the new qTD to the QH head. */
physaddr = kinetis_physramaddr((uintptr_t)qtd);
*flink = kinetis_swap32(physaddr);
/* Get the new forward link pointer and data toggle */
flink = &qtd->hw.nqp;
toggle = QTD_TOKEN_TOGGLE;
}
/* A buffer may or may be supplied with an EP0 SETUP transfer. A buffer
* will always be present for normal endpoint data transfers.
*/
alt = NULL;
if (buffer != NULL && buflen > 0)
{
uint32_t tokenbits;
/* Extra TOKEN bits include the data toggle, the data PID, and if
* there is no request, an indication to interrupt at the end of this
* transfer.
*/
tokenbits = toggle;
/* Get the data token direction.
*
* If this is a SETUP request, use the direction contained in the
* request. The IOC bit is not set.
*/
if (req)
{
if ((req->type & USB_REQ_DIR_MASK) == USB_REQ_DIR_IN)
{
tokenbits |= QTD_TOKEN_PID_IN;
dirin = true;
}
else
{
tokenbits |= QTD_TOKEN_PID_OUT;
dirin = false;
}
}
/* Otherwise, the endpoint is uni-directional. Get the direction from
* the epinfo structure. Since this is not an EP0 SETUP request,
* nothing follows the data and we want the IOC interrupt when the
* data transfer completes.
*/
else if (epinfo->dirin)
{
tokenbits |= (QTD_TOKEN_PID_IN | QTD_TOKEN_IOC);
dirin = true;
}
else
{
tokenbits |= (QTD_TOKEN_PID_OUT | QTD_TOKEN_IOC);
dirin = false;
}
/* Allocate a new Queue Element Transfer Descriptor (qTD) for the data
* buffer.
*/
qtd = kinetis_qtd_dataphase(epinfo, buffer, buflen, tokenbits);
if (qtd == NULL)
{
usbhost_trace1(EHCI_TRACE1_QTDDATA_FAILED, 0);
goto errout_with_qh;
}
/* Link the new qTD to either QH head of the SETUP qTD. */
physaddr = kinetis_physramaddr((uintptr_t)qtd);
*flink = kinetis_swap32(physaddr);
/* Set the forward link pointer to this new qTD */
flink = &qtd->hw.nqp;
/* If this was an IN transfer, then setup a pointer alternate link.
* The EHCI hardware will use this link if a short packet is received.
*/
if (dirin)
{
alt = &qtd->hw.alt;
}
}
/* If this is an EP0 SETUP request, then enqueue one more qTD for the
* STATUS phase transfer.
*/
if (req != NULL)
{
/* Extra TOKEN bits include the data toggle and the correct data PID. */
uint32_t tokenbits = toggle;
/* The status phase direction is the opposite of the data phase. If
* this is an IN request, then we received the buffer and we will send
* the zero length packet handshake.
*/
if ((req->type & USB_REQ_DIR_MASK) == USB_REQ_DIR_IN)
{
tokenbits |= QTD_TOKEN_PID_OUT;
}
/* Otherwise, this in an OUT request. We send the buffer and we expect
* to receive the NULL packet handshake.
*/
else
{
tokenbits |= QTD_TOKEN_PID_IN;
}
/* Allocate a new Queue Element Transfer Descriptor (qTD) for the
* status
*/
qtd = kinetis_qtd_statusphase(tokenbits);
if (qtd == NULL)
{
usbhost_trace1(EHCI_TRACE1_QTDSTATUS_FAILED, 0);
goto errout_with_qh;
}
/* Link the new qTD to either the SETUP or data qTD. */
physaddr = kinetis_physramaddr((uintptr_t)qtd);
*flink = kinetis_swap32(physaddr);
/* In an IN data qTD was also enqueued, then linked the data qTD's
* alternate pointer to this STATUS phase qTD in order to handle short
* transfers.
*/
if (alt)
{
*alt = kinetis_swap32(physaddr);
}
}
/* Add the new QH to the head of the asynchronous queue list */
kinetis_qh_enqueue(&g_asynchead, qh);
return OK;
/* Clean-up after an error */
errout_with_qh:
kinetis_qh_discard(qh);
return ret;
}
/****************************************************************************
* Name: kinetis_intr_setup
*
* Description:
* Process a IN or OUT request on any interrupt endpoint by inserting a qTD
* into the periodic frame list.
*
* Paragraph 4.10.7 "Adding Interrupt Queue Heads to the Periodic Schedule"
* "The link path(s) from the periodic frame list to a queue head
* establishes in which frames a transaction can be executed for the
* queue head. Queue heads are linked into the periodic schedule so they
* are polled at the appropriate rate. System software sets a bit in a
* queue head's S-Mask to indicate which micro-frame with-in a 1
* millisecond period a transaction should be executed for the queue
* head. Software must ensure that all queue heads in the periodic
* schedule have S-Mask set to a non-zero value. An S-mask with a zero
* value in the context of the periodic schedule yields undefined
* results.
*
* "If the desired poll rate is greater than one frame, system software
* can use a combination of queue head linking and S-Mask values to
* spread interrupts of equal poll rates through the schedule so that the
* periodic bandwidth is allocated and managed in the most efficient
* manner possible."
*
* Paragraph 4.6 "Periodic Schedule"
*
* "The periodic schedule is used to manage all isochronous and interrupt
* transfer streams. The base of the periodic schedule is the periodic
* frame list. Software links schedule data structures to the periodic
* frame list to produce a graph of scheduled data structures. The graph
* represents an appropriate sequence of transactions on the USB. ...
* isochronous transfers (using iTDs and siTDs) with a period of one are
* linked directly to the periodic frame list. Interrupt transfers (are
* managed with queue heads) and isochronous streams with periods other
* than one are linked following the period-one iTD/siTDs. Interrupt
* queue heads are linked into the frame list ordered by poll rate.
* Longer poll rates are linked first (e.g. closest to the periodic
* frame list), followed by shorter poll rates, with queue heads with a
* poll rate of one, on the very end."
*
* Assumption: The caller holds the EHCI lock.
*
* Returned Value:
* Zero (OK) is returned on success; a negated errno value is return on
* any failure.
*
****************************************************************************/
#ifndef CONFIG_USBHOST_INT_DISABLE
static int kinetis_intr_setup(struct kinetis_rhport_s *rhport,
struct kinetis_epinfo_s *epinfo,
uint8_t *buffer, size_t buflen)
{
struct kinetis_qh_s *qh;
struct kinetis_qtd_s *qtd;
uintptr_t physaddr;
uint32_t tokenbits;
uint32_t regval;
int ret;
/* Terse output only if we are tracing */
#ifdef CONFIG_USBHOST_TRACE
usbhost_vtrace2(EHCI_VTRACE2_INTRXFR, epinfo->epno, buflen);
#else
uinfo("RHport%d EP%d: buffer=%p, buflen=%d\n",
RHPORT(rhport), epinfo->epno, buffer, buflen);
#endif
DEBUGASSERT(rhport && epinfo && buffer && buflen > 0);
/* Create and initialize a Queue Head (QH) structure for this transfer */
qh = kinetis_qh_create(rhport, epinfo);
if (qh == NULL)
{
usbhost_trace1(EHCI_TRACE1_QHCREATE_FAILED, 0);
return -ENOMEM;
}
/* Extra TOKEN bits include the data toggle, the data PID, and an
* indication to interrupt at the end of this transfer.
*/
tokenbits = (uint32_t)epinfo->toggle << QTD_TOKEN_TOGGLE_SHIFT;
/* Get the data token direction. */
if (epinfo->dirin)
{
tokenbits |= (QTD_TOKEN_PID_IN | QTD_TOKEN_IOC);
}
else
{
tokenbits |= (QTD_TOKEN_PID_OUT | QTD_TOKEN_IOC);
}
/* Allocate a new Queue Element Transfer Descriptor (qTD) for the data
* buffer.
*/
qtd = kinetis_qtd_dataphase(epinfo, buffer, buflen, tokenbits);
if (qtd == NULL)
{
usbhost_trace1(EHCI_TRACE1_QTDDATA_FAILED, 0);
ret = -ENOMEM;
goto errout_with_qh;
}
/* Link the new qTD to the QH. */
physaddr = kinetis_physramaddr((uintptr_t)qtd);
qh->hw.overlay.nqp = kinetis_swap32(physaddr);
/* Disable the periodic schedule */
regval = kinetis_getreg(&HCOR->usbcmd);
regval &= ~EHCI_USBCMD_PSEN;
kinetis_putreg(regval, &HCOR->usbcmd);
/* Add the new QH to the head of the interrupt transfer list */
kinetis_qh_enqueue(&g_intrhead, qh);
/* Re-enable the periodic schedule */
regval |= EHCI_USBCMD_PSEN;
kinetis_putreg(regval, &HCOR->usbcmd);
return OK;
/* Clean-up after an error */
errout_with_qh:
kinetis_qh_discard(qh);
return ret;
}
#endif /* CONFIG_USBHOST_INT_DISABLE */
/****************************************************************************
* Name: kinetis_transfer_wait
*
* Description:
* Wait for an IN or OUT transfer to complete.
*
* Assumption: The caller holds the EHCI lock. The caller must be aware
* that the EHCI lock will released while waiting for the transfer to
* complete, but will be re-acquired when before returning. The state of
* EHCI resources could be very different upon return.
*
* Returned Value:
* On success, this function returns the number of bytes actually
* transferred. For control transfers, this size includes the size of the
* control request plus the size of the data (which could be short); for
* bulk transfers, this will be the number of data bytes transfers (which
* could be short).
*
****************************************************************************/
static ssize_t kinetis_transfer_wait(struct kinetis_epinfo_s *epinfo)
{
int ret;
int ret2;
/* Release the EHCI mutex while we wait. Other threads need the
* opportunity to access the EHCI resources while we wait.
*
* REVISIT: Is this safe? NO. This is a bug and needs rethinking.
* We need to lock all of the port-resources (not EHCI common) until
* the transfer is complete. But we can't use the common EHCI lock
* or we will deadlock while waiting (because the working thread that
* wakes this thread up needs the lock).
*/
/* REVISIT */
nxmutex_unlock(&g_ehci.lock);
/* Wait for the IOC completion event */
ret = kinetis_ioc_wait(epinfo);
/* Re-acquire the EHCI mutex. The caller expects to be holding
* this upon return.
*/
ret2 = nxmutex_lock(&g_ehci.lock);
if (ret >= 0 && ret2 < 0)
{
ret = ret2;
}
#if 0 /* Does not seem to be needed */
/* Was there a data buffer? Was this an OUT transfer? */
if (buffer != NULL && buflen > 0 && !dirin)
{
/* We have received data from the host -- unless there was an error.
* in any event, we will invalidate the data buffer so that we will
* reload any new data freshly DMAed into the user buffer.
*
* NOTE: This might be un-necessary. We cleaned and invalidated the
* D-Cache prior to starting the DMA so the D-Cache should still be
* invalid in this memory region.
*/
up_invalidate_dcache((uintptr_t)buffer, (uintptr_t)buffer + buflen);
}
#endif
/* Did kinetis_ioc_wait() or nxmutex_lock() report an error? */
if (ret < 0)
{
usbhost_trace1(EHCI_TRACE1_TRANSFER_FAILED, -ret);
epinfo->iocwait = false;
return (ssize_t)ret;
}
/* Transfer completed successfully. Return the number of bytes
* transferred.
*/
return epinfo->xfrd;
}
/****************************************************************************
* Name: kinetis_ioc_async_setup
*
* Description:
* Setup to receive an asynchronous notification when a transfer completes.
*
* Input Parameters:
* epinfo - The IN or OUT endpoint descriptor for the device endpoint on
* which the transfer will be performed.
* callback - The function to be called when the completes
* arg - An arbitrary argument that will be provided with the callback.
*
* Returned Value:
* None
*
* Assumptions:
* - Called from the interrupt level
*
****************************************************************************/
#ifdef CONFIG_USBHOST_ASYNCH
static inline int kinetis_ioc_async_setup(struct kinetis_rhport_s *rhport,
struct kinetis_epinfo_s *epinfo,
usbhost_asynch_t callback,
void *arg)
{
irqstate_t flags;
int ret = -ENODEV;
DEBUGASSERT(rhport && epinfo && !epinfo->iocwait &&
callback != NULL && epinfo->callback == NULL);
/* Is the device still connected? */
flags = enter_critical_section();
if (rhport->connected)
{
/* Then save callback information to used when either (1) the
* device is disconnected, or (2) the transfer completes.
*/
epinfo->iocwait = false; /* No synchronous wakeup */
epinfo->status = 0; /* No status yet */
epinfo->xfrd = 0; /* Nothing transferred yet */
epinfo->result = -EBUSY; /* Transfer in progress */
epinfo->callback = callback; /* Asynchronous callback */
epinfo->arg = arg; /* Argument that accompanies the callback */
ret = OK; /* We are good to go */
}
leave_critical_section(flags);
return ret;
}
#endif
/****************************************************************************
* Name: kinetis_asynch_completion
*
* Description:
* This function is called at the interrupt level when an asynchronous
* transfer completes. It performs the pending callback.
*
* Input Parameters:
* epinfo - The IN or OUT endpoint descriptor for the device endpoint on
* which the transfer was performed.
*
* Returned Value:
* None
*
* Assumptions:
* - Called from the interrupt level
*
****************************************************************************/
#ifdef CONFIG_USBHOST_ASYNCH
static void kinetis_asynch_completion(struct kinetis_epinfo_s *epinfo)
{
usbhost_asynch_t callback;
ssize_t nbytes;
void *arg;
int result;
DEBUGASSERT(epinfo != NULL && epinfo->iocwait == false &&
epinfo->callback != NULL);
/* Extract and reset the callback info */
callback = epinfo->callback;
arg = epinfo->arg;
result = epinfo->result;
nbytes = epinfo->xfrd;
epinfo->callback = NULL;
epinfo->arg = NULL;
epinfo->result = OK;
epinfo->iocwait = false;
/* Then perform the callback. Provide the number of bytes successfully
* transferred or the negated errno value in the event of a failure.
*/
if (result < 0)
{
nbytes = (ssize_t)result;
}
callback(arg, nbytes);
}
#endif
/****************************************************************************
* Name: kinetis_qtd_ioccheck
*
* Description:
* This function is a kinetis_qtd_foreach() callback function. It services
* one qTD in the asynchronous queue. It removes all of the qTD
* structures that are no longer active.
*
****************************************************************************/
static int kinetis_qtd_ioccheck(struct kinetis_qtd_s *qtd, uint32_t **bp,
void *arg)
{
struct kinetis_epinfo_s *epinfo = (struct kinetis_epinfo_s *)arg;
DEBUGASSERT(qtd && epinfo);
/* Make sure we reload the QH from memory */
up_invalidate_dcache((uintptr_t)&qtd->hw,
(uintptr_t)&qtd->hw + sizeof(struct ehci_qtd_s));
kinetis_qtd_print(qtd);
/* Remove the qTD from the list
*
* NOTE that we don't check if the qTD is active nor do we check if there
* are any errors reported in the qTD. If the transfer halted due to
* an error, then qTDs in the list after the error qTD will still appear
* to be active.
*/
**bp = qtd->hw.nqp;
/* Subtract the number of bytes left un-transferred. The epinfo->xfrd
* field is initialized to the total number of bytes to be transferred
* (all qTDs in the list). We subtract out the number of un-transferred
* bytes on each transfer and the final result will be the number of bytes
* actually transferred.
*/
epinfo->xfrd -= (kinetis_swap32(qtd->hw.token) & QTD_TOKEN_NBYTES_MASK) >>
QTD_TOKEN_NBYTES_SHIFT;
/* Release this QH by returning it to the free list */
kinetis_qtd_free(qtd);
return OK;
}
/****************************************************************************
* Name: kinetis_qh_ioccheck
*
* Description:
* This function is a kinetis_qh_foreach() callback function. It services
* one QH in the asynchronous queue. It check all attached qTD structures
* and remove all of the structures that are no longer active. if all of
* the qTD structures are removed, then QH itself will also be removed.
*
****************************************************************************/
static int kinetis_qh_ioccheck(struct kinetis_qh_s *qh,
uint32_t **bp, void *arg)
{
struct kinetis_epinfo_s *epinfo;
uint32_t token;
int ret;
DEBUGASSERT(qh && bp);
/* Make sure we reload the QH from memory */
up_invalidate_dcache((uintptr_t)&qh->hw,
(uintptr_t)&qh->hw + sizeof(struct ehci_qh_s));
kinetis_qh_print(qh);
/* Get the endpoint info pointer from the extended QH data. Only the
* g_asynchead QH can have a NULL epinfo field.
*/
epinfo = qh->epinfo;
DEBUGASSERT(epinfo);
/* Paragraph 3.6.3: "The nine DWords in [the Transfer Overlay] area
* represent a transaction working space for the host controller. The
* general operational model is that the host controller can detect
* whether the overlay area contains a description of an active transfer.
* If it does not contain an active transfer, then it follows the Queue
* Head Horizontal Link Pointer to the next queue head. The host
* controller will never follow the Next Transfer Queue Element or
* Alternate Queue Element pointers unless it is actively attempting to
* advance the queue ..."
*/
/* Is the qTD still active? */
token = kinetis_swap32(qh->hw.overlay.token);
usbhost_vtrace2(EHCI_VTRACE2_IOCCHECK, epinfo->epno, token);
if ((token & QH_TOKEN_ACTIVE) != 0)
{
/* Yes... we cannot process the QH while it is still active. Return
* zero to visit the next QH in the list.
*/
*bp = &qh->hw.hlp;
return OK;
}
/* Remove all active, attached qTD structures from the inactive QH */
ret = kinetis_qtd_foreach(qh, kinetis_qtd_ioccheck, (void *)qh->epinfo);
if (ret < 0)
{
usbhost_trace1(EHCI_TRACE1_QTDFOREACH_FAILED, -ret);
}
/* If there is no longer anything attached to the QH, then remove it from
* the asynchronous queue.
*/
if ((kinetis_swap32(qh->fqp) & QTD_NQP_T) != 0)
{
/* Set the forward link of the previous QH to point to the next
* QH in the list.
*/
**bp = qh->hw.hlp;
up_flush_dcache((uintptr_t)*bp, (uintptr_t)*bp + sizeof(uint32_t));
/* Check for errors, update the data toggle */
if ((token & QH_TOKEN_ERRORS) == 0)
{
/* No errors.. Save the last data toggle value */
epinfo->toggle = (token >> QTD_TOKEN_TOGGLE_SHIFT) & 1;
/* Report success */
epinfo->status = 0;
epinfo->result = OK;
}
else
{
/* An error occurred */
epinfo->status = (token & QH_TOKEN_STATUS_MASK) >>
QH_TOKEN_STATUS_SHIFT;
/* The HALT condition is set on a variety of conditions: babble,
* error counter countdown to zero, or a STALL. If we can rule
* out babble (babble bit not set) and if the error counter is
* non-zero, then we can assume a STALL. In this case, we return
* -PERM to inform the class driver of the stall condition.
*/
if ((token & (QH_TOKEN_BABBLE | QH_TOKEN_HALTED)) ==
QH_TOKEN_HALTED &&
(token & QH_TOKEN_CERR_MASK) != 0)
{
/* It is a stall, Note that the data toggle is reset
* after the stall.
*/
usbhost_trace2(EHCI_TRACE2_EPSTALLED, epinfo->epno, token);
epinfo->result = -EPERM;
epinfo->toggle = 0;
}
else
{
/* Otherwise, it is some kind of data transfer error */
usbhost_trace2(EHCI_TRACE2_EPIOERROR, epinfo->epno, token);
epinfo->result = -EIO;
}
}
/* Is there a thread waiting for this transfer to complete? */
if (epinfo->iocwait)
{
/* Yes... wake it up */
epinfo->iocwait = false;
nxsem_post(&epinfo->iocsem);
}
#ifdef CONFIG_USBHOST_ASYNCH
/* No.. Is there a pending asynchronous transfer? */
else if (epinfo->callback != NULL)
{
/* Yes.. perform the callback */
kinetis_asynch_completion(epinfo);
}
#endif
/* Then start async advance doorbell process */
kinetis_qh_aawait(qh);
}
else
{
/* Otherwise, the horizontal link pointer of this QH will become the
* next back pointer.
*/
*bp = &qh->hw.hlp;
}
return OK;
}
/****************************************************************************
* Name: kinetis_qtd_cancel
*
* Description:
* This function is a kinetis_qtd_foreach() callback function. It removes
* each qTD attached to a QH.
*
****************************************************************************/
#ifdef CONFIG_USBHOST_ASYNCH
static int kinetis_qtd_cancel(struct kinetis_qtd_s *qtd, uint32_t **bp,
void *arg)
{
DEBUGASSERT(qtd != NULL && bp != NULL);
/* Make sure we reload the QH from memory */
up_invalidate_dcache((uintptr_t)&qtd->hw,
(uintptr_t)&qtd->hw + sizeof(struct ehci_qtd_s));
kinetis_qtd_print(qtd);
/* Remove the qTD from the list
*
* NOTE that we don't check if the qTD is active nor do we check if there
* are any errors reported in the qTD. If the transfer halted due to
* an error, then qTDs in the list after the error qTD will still appear
* to be active.
*
* REVISIT: There is a race condition here that needs to be resolved.
*/
**bp = qtd->hw.nqp;
/* Release this QH by returning it to the free list */
kinetis_qtd_free(qtd);
return OK;
}
#endif /* CONFIG_USBHOST_ASYNCH */
/****************************************************************************
* Name: kinetis_qh_cancel
*
* Description:
* This function is a kinetis_qh_foreach() callback function. It cancels
* one QH in the asynchronous queue. It will remove all attached qTD
* structures and remove all of the structures that are no longer active.
* Then QH itself will also be removed.
*
****************************************************************************/
#ifdef CONFIG_USBHOST_ASYNCH
static int kinetis_qh_cancel(struct kinetis_qh_s *qh,
uint32_t **bp, void *arg)
{
struct kinetis_epinfo_s *epinfo = (struct kinetis_epinfo_s *)arg;
uint32_t regval;
int ret;
DEBUGASSERT(qh != NULL && bp != NULL && epinfo != NULL);
/* Make sure we reload the QH from memory */
up_invalidate_dcache((uintptr_t)&qh->hw,
(uintptr_t)&qh->hw + sizeof(struct ehci_qh_s));
kinetis_qh_print(qh);
/* Check if this is the QH that we are looking for */
if (qh->epinfo == epinfo)
{
/* No... keep looking */
return OK;
}
/* Disable both the asynchronous and period schedules */
regval = kinetis_getreg(&HCOR->usbcmd);
kinetis_putreg(regval & ~(EHCI_USBCMD_ASEN | EHCI_USBCMD_PSEN),
&HCOR->usbcmd);
/* Remove the QH from the list
*
* NOTE that we don't check if the qTD is active nor do we check if there
* are any errors reported in the qTD. If the transfer halted due to
* an error, then qTDs in the list after the error qTD will still appear
* to be active.
*
* REVISIT: There is a race condition here that needs to be resolved.
*/
**bp = qh->hw.hlp;
up_flush_dcache((uintptr_t)*bp, (uintptr_t)*bp + sizeof(uint32_t));
/* Re-enable the schedules (if they were enabled before. */
kinetis_putreg(regval, &HCOR->usbcmd);
/* Remove all active, attached qTD structures from the removed QH */
ret = kinetis_qtd_foreach(qh, kinetis_qtd_cancel, NULL);
if (ret < 0)
{
usbhost_trace1(EHCI_TRACE1_QTDFOREACH_FAILED, -ret);
}
/* Then start async advance doorbell process */
kinetis_qh_aawait(qh);
/* Return 1 to stop the traverse without an error. */
return 1;
}
#endif /* CONFIG_USBHOST_ASYNCH */
/****************************************************************************
* Name: kinetis_ioc_bottomhalf
*
* Description:
* EHCI USB Interrupt (USBINT) "Bottom Half" interrupt handler
*
* "The Host Controller sets this bit to 1 on the completion of a USB
* transaction, which results in the retirement of a Transfer Descriptor
* that had its IOC bit set.
*
* "The Host Controller also sets this bit to 1 when a short packet is
* detected (actual number of bytes received was less than the expected
* number of bytes)."
*
* Assumptions: The caller holds the EHCI lock
*
****************************************************************************/
static inline void kinetis_ioc_bottomhalf(void)
{
struct kinetis_qh_s *qh;
uint32_t *bp;
int ret;
/* Check the Asynchronous Queue
* Make sure that the head of the asynchronous queue is invalidated.
*/
up_invalidate_dcache((uintptr_t)&g_asynchead.hw,
(uintptr_t)&g_asynchead.hw +
sizeof(struct ehci_qh_s));
/* Set the back pointer to the forward QH pointer of the asynchronous
* queue head.
*/
bp = (uint32_t *)&g_asynchead.hw.hlp;
qh = (struct kinetis_qh_s *)
kinetis_virtramaddr(kinetis_swap32(*bp) & QH_HLP_MASK);
/* If the asynchronous queue is empty, then the forward point in the
* asynchronous queue head will point back to the queue head.
*/
if (qh && qh != &g_asynchead)
{
/* Then traverse and operate on every QH and qTD in the asynchronous
* queue
*/
ret = kinetis_qh_foreach(qh, &bp, kinetis_qh_ioccheck, NULL);
if (ret < 0)
{
usbhost_trace1(EHCI_TRACE1_QHFOREACH_FAILED, -ret);
}
}
#ifndef CONFIG_USBHOST_INT_DISABLE
/* Check the Interrupt Queue
* Make sure that the head of the interrupt queue is invalidated.
*/
up_invalidate_dcache((uintptr_t)&g_intrhead.hw,
(uintptr_t)&g_intrhead.hw + sizeof(struct ehci_qh_s));
/* Set the back pointer to the forward qTD pointer of the asynchronous
* queue head.
*/
bp = (uint32_t *)&g_intrhead.hw.hlp;
qh = (struct kinetis_qh_s *)
kinetis_virtramaddr(kinetis_swap32(*bp) & QH_HLP_MASK);
if (qh)
{
/* Then traverse and operate on every QH and qTD in the asynchronous
* queue.
*/
ret = kinetis_qh_foreach(qh, &bp, kinetis_qh_ioccheck, NULL);
if (ret < 0)
{
usbhost_trace1(EHCI_TRACE1_QHFOREACH_FAILED, -ret);
}
}
#endif
}
/****************************************************************************
* Name: kinetis_portsc_bottomhalf
*
* Description:
* EHCI Port Change Detect "Bottom Half" interrupt handler
*
* "The Host Controller sets this bit to a one when any port for which the
* Port Owner bit is set to zero ... has a change bit transition from a
* zero to a one or a Force Port Resume bit transition from a zero to a
* one as a result of a J-K transition detected on a suspended port.
* This bit will also be set as a result of the Connect Status Change
* being set to a one after system software has relinquished ownership of
* a connected port by writing a one to a port's Port Owner bit...
*
* "This bit is allowed to be maintained in the Auxiliary power well.
* Alternatively, it is also acceptable that on a D3 to D0 transition of
* the EHCI HC device, this bit is loaded with the OR of all of the PORTSC
* change bits (including: Force port resume, over-current change,
* enable/disable change and connect status change)."
*
****************************************************************************/
static inline void kinetis_portsc_bottomhalf(void)
{
struct kinetis_rhport_s *rhport;
struct usbhost_hubport_s *hport;
uint32_t portsc;
int rhpndx;
/* Handle root hub status change on each root port */
for (rhpndx = 0; rhpndx < KINETIS_EHCI_NRHPORT; rhpndx++)
{
rhport = &g_ehci.rhport[rhpndx];
portsc = kinetis_getreg(&HCOR->portsc[rhpndx]);
usbhost_vtrace2(EHCI_VTRACE2_PORTSC, rhpndx + 1, portsc);
/* Handle port connection status change (CSC) events */
if ((portsc & EHCI_PORTSC_CSC) != 0)
{
usbhost_vtrace1(EHCI_VTRACE1_PORTSC_CSC, portsc);
/* Check current connect status */
if ((portsc & EHCI_PORTSC_CCS) != 0)
{
/* Connected ... Did we just become connected? */
if (!rhport->connected)
{
/* Yes.. connected. */
rhport->connected = true;
usbhost_vtrace2(EHCI_VTRACE2_PORTSC_CONNECTED,
rhpndx + 1, g_ehci.pscwait);
/* Notify any waiters */
if (g_ehci.pscwait)
{
nxsem_post(&g_ehci.pscsem);
g_ehci.pscwait = false;
}
}
else
{
usbhost_vtrace1(EHCI_VTRACE1_PORTSC_CONNALREADY, portsc);
}
}
else
{
/* Disconnected... Did we just become disconnected? */
if (rhport->connected)
{
/* Yes.. disconnect the device */
usbhost_vtrace2(EHCI_VTRACE2_PORTSC_DISCONND,
rhpndx + 1, g_ehci.pscwait);
rhport->connected = false;
rhport->lowspeed = false;
/* Are we bound to a class instance? */
hport = &rhport->hport.hport;
#ifdef USBPHY_CTRLN_ENHOSTDISCONDETECT
/* Highspeed needs special handling */
if (hport->speed == USB_SPEED_HIGH)
{
uint32_t regval = getreg32(KINETIS_USBHSPHY_CTRL);
regval &= ~(USBPHY_CTRLN_ENHOSTDISCONDETECT);
putreg32(regval, KINETIS_USBHSPHY_CTRL);
}
#endif
if (hport->devclass)
{
/* Yes.. Disconnect the class */
CLASS_DISCONNECTED(hport->devclass);
hport->devclass = NULL;
}
/* Notify any waiters for the Root Hub Status change
* event.
*/
if (g_ehci.pscwait)
{
nxsem_post(&g_ehci.pscsem);
g_ehci.pscwait = false;
}
}
else
{
usbhost_vtrace1(EHCI_VTRACE1_PORTSC_DISCALREADY, portsc);
}
}
}
/* Clear all pending port interrupt sources by writing a '1' to the
* corresponding bit in the PORTSC register. In addition, we need
* to preserve the values of all R/W bits (RO bits don't matter)
*/
kinetis_putreg(portsc, &HCOR->portsc[rhpndx]);
}
}
/****************************************************************************
* Name: kinetis_syserr_bottomhalf
*
* Description:
* EHCI Host System Error "Bottom Half" interrupt handler
*
* "The Host Controller sets this bit to 1 when a serious error occurs
* during a host system access involving the Host Controller module. ...
* When this error occurs, the Host Controller clears the Run/Stop bit in
* the Command register to prevent further execution of the scheduled TDs."
*
****************************************************************************/
static inline void kinetis_syserr_bottomhalf(void)
{
usbhost_trace1(EHCI_TRACE1_SYSERR_INTR, 0);
DEBUGPANIC();
}
/****************************************************************************
* Name: kinetis_async_advance_bottomhalf
*
* Description:
* EHCI Async Advance "Bottom Half" interrupt handler
*
* "System software can force the host controller to issue an interrupt the
* next time the host controller advances the asynchronous schedule by
* writing a one to the Interrupt on Async Advance Doorbell bit in the
* USBCMD register. This status bit indicates the assertion of that
* interrupt source."
*
****************************************************************************/
static inline void kinetis_async_advance_bottomhalf(void)
{
struct kinetis_qh_s *qh;
usbhost_vtrace1(EHCI_VTRACE1_AAINTR, 0);
while (g_ehci.qhaawait != NULL)
{
qh = g_ehci.qhaawait;
g_ehci.qhaawait = qh->flink;
kinetis_qh_free(qh);
}
}
/****************************************************************************
* Name: kinetis_ehci_bottomhalf
*
* Description:
* EHCI "Bottom Half" interrupt handler. Runs on a work queue thread.
*
****************************************************************************/
static void kinetis_ehci_bottomhalf(void *arg)
{
uint32_t pending = (uint32_t)arg;
/* We need to have exclusive access to the EHCI data structures. Waiting
* here is not a good thing to do on the worker thread, but there is no
* real option (other than to reschedule and delay).
*/
nxmutex_lock(&g_ehci.lock);
/* Handle all unmasked interrupt sources
* Interrupt on Async Advance
*
* "System software can force the host controller to issue an interrupt
* the next time the host controller advances the asynchronous schedule
* by writing a one to the Interrupt on Async Advance Doorbell bit in
* the USBCMD register. This status bit indicates the assertion of that
* interrupt source."
*
* Must be first because later more QH can become unlinked.
*/
if ((pending & EHCI_INT_AAINT) != 0)
{
kinetis_async_advance_bottomhalf();
kinetis_putreg(EHCI_INT_AAINT, &HCOR->usbsts);
}
/* USB Interrupt (USBINT)
*
* "The Host Controller sets this bit to 1 on the completion of a USB
* transaction, which results in the retirement of a Transfer Descriptor
* that had its IOC bit set.
*
* "The Host Controller also sets this bit to 1 when a short packet is
* detected (actual number of bytes received was less than the expected
* number of bytes)."
*
* USB Error Interrupt (USBERRINT)
*
* "The Host Controller sets this bit to 1 when completion of a USB
* transaction results in an error condition (e.g., error counter
* underflow). If the TD on which the error interrupt occurred also
* had its IOC bit set, both this bit and USBINT bit are set. ..."
*
* We do the same thing in either case: Traverse the asynchronous queue
* and remove all of the transfers that are no longer active.
*/
if ((pending & (EHCI_INT_USBINT | EHCI_INT_USBERRINT)) != 0)
{
if ((pending & EHCI_INT_USBERRINT) != 0)
{
usbhost_trace1(EHCI_TRACE1_USBERR_INTR, pending);
}
else
{
usbhost_vtrace1(EHCI_VTRACE1_USBINTR, pending);
}
kinetis_ioc_bottomhalf();
kinetis_putreg(EHCI_INT_USBINT | EHCI_INT_USBERRINT, &HCOR->usbsts);
}
/* Port Change Detect
*
* "The Host Controller sets this bit to a one when any port for which
* the Port Owner bit is set to zero ... has a change bit transition
* from a zero to a one or a Force Port Resume bit transition from a zero
* to a one as a result of a J-K transition detected on a suspended port.
* This bit will also be set as a result of the Connect Status Change
* being set to a one after system software has relinquished ownership
* of a connected port by writing a one to a port's Port Owner bit...
*
* "This bit is allowed to be maintained in the Auxiliary power well.
* Alternatively, it is also acceptable that on a D3 to D0 transition
* of the EHCI HC device, this bit is loaded with the OR of all of the
* PORTSC change bits (including: Force port resume, over-current change,
* enable/disable change and connect status change)."
*/
if ((pending & EHCI_INT_PORTSC) != 0)
{
kinetis_portsc_bottomhalf();
kinetis_putreg(EHCI_INT_PORTSC, &HCOR->usbsts);
}
/* Frame List Rollover
*
* "The Host Controller sets this bit to a one when the Frame List Index
* ... rolls over from its maximum value to zero. The exact value at
* which the rollover occurs depends on the frame list size. For example,
* if the frame list size (as programmed in the Frame List Size field of
* the USBCMD register) is 1024, the Frame Index Register rolls over
* every time FRINDEX[13] toggles. Similarly, if the size is 512, the
* Host Controller sets this bit to a one every time FRINDEX[12]
* toggles."
*/
#if 0 /* Not used */
if ((pending & EHCI_INT_FLROLL) != 0)
{
kinetis_flroll_bottomhalf();
kinetis_putreg(EHCI_INT_FLROLL, &HCOR->usbsts);
}
#endif
/* Host System Error
*
* "The Host Controller sets this bit to 1 when a serious error occurs
* during a host system access involving the Host Controller module. ...
* When this error occurs, the Host Controller clears the Run/Stop bit
* in the Command register to prevent further execution of the scheduled
* TDs."
*/
if ((pending & EHCI_INT_SYSERROR) != 0)
{
uerr("Syserror\n");
kinetis_syserr_bottomhalf();
kinetis_putreg(EHCI_INT_SYSERROR, &HCOR->usbsts);
}
/* We are done with the EHCI structures */
nxmutex_unlock(&g_ehci.lock);
/* Re-enable relevant EHCI interrupts. Interrupts should still be enabled
* at the level of the interrupt controller.
*/
kinetis_putreg(EHCI_HANDLED_INTS, &HCOR->usbintr);
}
/****************************************************************************
* Name: kinetis_ehci_interrupt
*
* Description:
* EHCI "Top Half" interrupt handler
*
****************************************************************************/
static int kinetis_ehci_interrupt(int irq, void *context, void *arg)
{
uint32_t usbsts;
uint32_t pending;
uint32_t regval;
/* Read Interrupt Status and mask out interrupts that are not enabled. */
usbsts = kinetis_getreg(&HCOR->usbsts);
regval = kinetis_getreg(&HCOR->usbintr);
#ifdef CONFIG_USBHOST_TRACE
usbhost_vtrace1(EHCI_VTRACE1_TOPHALF, usbsts & regval);
#else
uinfo("USBSTS: %08x USBINTR: %08x\n", usbsts, regval);
#endif
/* Handle all unmasked interrupt sources */
pending = usbsts & regval;
if (pending != 0)
{
/* Schedule interrupt handling work for the high priority worker
* thread so that we are not pressed for time and so that we can
* interrupt with other USB threads gracefully.
*
* The worker should be available now because we implement a handshake
* by controlling the EHCI interrupts.
*/
DEBUGASSERT(work_available(&g_ehci.work));
DEBUGVERIFY(work_queue(HPWORK, &g_ehci.work, kinetis_ehci_bottomhalf,
(void *)pending, 0));
/* Disable further EHCI interrupts so that we do not overrun the work
* queue. We acknowledge the interrupts after servicing.
*/
kinetis_putreg(0, &HCOR->usbintr);
}
return OK;
}
/****************************************************************************
* Name: kinetis_wait
*
* Description:
* Wait for a device to be connected or disconnected to/from a hub port.
*
* Input Parameters:
* conn - The USB host connection instance obtained as a parameter from the
* call to the USB driver initialization logic.
* hport - The location to return the hub port descriptor that detected the
* connection related event.
*
* Returned Value:
* Zero (OK) is returned on success when a device is connected or
* disconnected. This function will not return until either (1) a device is
* connected or disconnect to/from any hub port or until (2) some failure
* occurs. On a failure, a negated errno value is returned indicating the
* nature of the failure
*
* Assumptions:
* - Called from a single thread so no mutual exclusion is required.
* - Never called from an interrupt handler.
*
****************************************************************************/
static int kinetis_wait(struct usbhost_connection_s *conn,
struct usbhost_hubport_s **hport)
{
irqstate_t flags;
int rhpndx;
int ret;
/* Loop until the connection state changes on one of the root hub ports or
* until an error occurs.
*/
flags = enter_critical_section();
for (; ; )
{
/* Check for a change in the connection state on any root hub port */
for (rhpndx = 0; rhpndx < KINETIS_EHCI_NRHPORT; rhpndx++)
{
struct kinetis_rhport_s *rhport;
struct usbhost_hubport_s *connport;
/* Has the connection state changed on the RH port? */
rhport = &g_ehci.rhport[rhpndx];
connport = &rhport->hport.hport;
if (rhport->connected != connport->connected)
{
/* Yes.. Return the RH port to inform the caller which
* port has the connection change.
*/
connport->connected = rhport->connected;
*hport = connport;
leave_critical_section(flags);
usbhost_vtrace2(EHCI_VTRACE2_MONWAKEUP,
rhpndx + 1, rhport->connected);
return OK;
}
}
#ifdef CONFIG_USBHOST_HUB
/* Is a device connected to an external hub? */
if (g_ehci.hport)
{
volatile struct usbhost_hubport_s *connport;
/* Yes.. return the external hub port */
connport = g_ehci.hport;
g_ehci.hport = NULL;
*hport = (struct usbhost_hubport_s *)connport;
leave_critical_section(flags);
usbhost_vtrace2(EHCI_VTRACE2_MONWAKEUP,
connport->port + 1, connport->connected);
return OK;
}
#endif
/* No changes on any port. Wait for a connection/disconnection event
* and check again
*/
g_ehci.pscwait = true;
ret = nxsem_wait_uninterruptible(&g_ehci.pscsem);
if (ret < 0)
{
return ret;
}
}
}
/****************************************************************************
* Name: kinetis_enumerate
*
* Description:
* Enumerate the connected device. As part of this enumeration process,
* the driver will (1) get the device's configuration descriptor, (2)
* extract the class ID info from the configuration descriptor, (3) call
* usbhost_findclass() to find the class that supports this device, (4)
* call the create() method on the struct usbhost_registry_s interface
* to get a class instance, and finally (5) call the connect() method
* of the struct usbhost_class_s interface. After that, the class is in
* charge of the sequence of operations.
*
* Input Parameters:
* conn - The USB host connection instance obtained as a parameter from
* the call to the USB driver initialization logic.
* hport - The descriptor of the hub port that has the newly connected
* device.
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure
*
* Assumptions:
* This function will *not* be called from an interrupt handler.
*
****************************************************************************/
static int kinetis_rh_enumerate(struct usbhost_connection_s *conn,
struct usbhost_hubport_s *hport)
{
struct kinetis_rhport_s *rhport;
volatile uint32_t *regaddr;
uint32_t regval;
int rhpndx;
DEBUGASSERT(conn != NULL && hport != NULL);
rhpndx = hport->port;
DEBUGASSERT(rhpndx >= 0 && rhpndx < KINETIS_EHCI_NRHPORT);
rhport = &g_ehci.rhport[rhpndx];
/* Are we connected to a device? The caller should have called the wait()
* method first to be assured that a device is connected.
*/
while (!rhport->connected)
{
/* No, return an error */
usbhost_vtrace1(EHCI_VTRACE1_ENUM_DISCONN, 0);
return -ENODEV;
}
/* USB 2.0 spec says at least 50ms delay before port reset.
* REVISIT: I think this is wrong. It needs to hold the port in
* reset for 50Msec, not wait 50Msec before resetting.
*/
nxsig_usleep(100 * 1000);
/* Paragraph 2.3.9:
*
* "Line Status ... These bits reflect the current logical levels of the
* D+ (bit 11) and D- (bit 10) signal lines. These bits are used for
* detection of low-speed USB devices prior to the port reset and enable
* sequence. This field is valid only when the port enable bit is zero
* and the current connect status bit is set to a one."
*
* Bits[11:10] USB State Interpretation
* ----------- --------- --------------
* 00b SE0 Not Low-speed device, perform EHCI reset
* 10b J-state Not Low-speed device, perform EHCI reset
* 01b K-state Low-speed device, release ownership of port
*
* NOTE: Low-speed devices could be detected by examining the PORTSC PSPD
* field after resetting the device. The more conventional way here,
* however, also appears to work.
*/
regval = kinetis_getreg(&HCOR->portsc[rhpndx]);
if ((regval & EHCI_PORTSC_LSTATUS_MASK) == EHCI_PORTSC_LSTATUS_KSTATE)
{
/* EHCI Paragraph 2.3.9:
*
* "Port Owner ... This bit unconditionally goes to a 0b when the
* Configured bit in the CONFIGFLAG register makes a 0b to 1b
* transition. This bit unconditionally goes to 1b whenever the
* Configured bit is zero.
*
* "System software uses this field to release ownership of the
* port to a selected host controller (in the event that the
* attached device is not a high-speed device). Software writes
* a one to this bit when the attached device is not a high-speed
* device. A one in this bit means that a companion host
* controller owns and controls the port. ....
*
* EHCI Paragraph 4.2:
*
* "When a port is routed to a companion HC, it remains under the
* control of the companion HC until the device is disconnected
* from the root por ... When a disconnect occurs, the disconnect
* event is detected by both the companion HC port control and the
* EHCI port ownership control. On the event, the port ownership
* is returned immediately to the EHCI controller. The companion
* HC stack detects the disconnect and acknowledges as it would
* in an ordinary standalone implementation. Subsequent connects
* will be detected by the EHCI port register and the process will
* repeat."
*/
hport->speed = USB_SPEED_LOW;
}
else
{
/* Assume full-speed for now */
hport->speed = USB_SPEED_FULL;
}
/* Put the root hub port in reset.
*
* EHCI Paragraph 2.3.9:
*
* "The HCHalted bit in the USBSTS register should be a zero before
* software attempts to use [the Port Reset] bit. The host controller
* may hold Port Reset asserted to a one when the HCHalted bit is a one.
*/
DEBUGASSERT((kinetis_getreg(&HCOR->usbsts) & EHCI_USBSTS_HALTED) == 0);
/* EHCI paragraph 2.3.9:
*
* "When software writes a one to [the Port Reset] bit (from a zero), the
* bus reset sequence as defined in the USB Specification Revision 2.0
* is started. Software writes a zero to this bit to terminate the bus
* reset sequence. Software must keep this bit at a one long enough to
* ensure the reset sequence, as specified in the USB Specification
* Revision 2.0, completes. Note: when software writes this bit to a
* one, it must also write a zero to the Port Enable bit."
*/
regaddr = &HCOR->portsc[RHPNDX(rhport)];
regval = kinetis_getreg(regaddr);
regval |= EHCI_PORTSC_RESET;
kinetis_putreg(regval, regaddr);
/* Wait for the port reset to complete,
* Kinetis EHCI clears Reset pin automatically
*
* EHCI Paragraph 2.3.9:
*
* "Note that when software writes a zero to this bit there may be a
* delay before the bit status changes to a zero. The bit status will
* not read as a zero until after the reset has completed. If the port
* is in high-speed mode after reset is complete, the host controller
* will automatically enable this port (e.g. set the Port Enable bit
* to a one). A host controller must terminate the reset and stabilize
* the state of the port within 2 milliseconds of software transitioning
* this bit from a one to a zero ..."
*/
while ((kinetis_getreg(regaddr) & EHCI_PORTSC_RESET) != 0);
nxsig_usleep(200 * 1000);
/* EHCI Paragraph 4.2.2:
*
* "... The reset process is actually complete when software reads a zero
* in the PortReset bit. The EHCI Driver checks the PortEnable bit in
* the PORTSC register. If set to a one, the connected device is a high-
* speed device and EHCI Driver (root hub emulator) issues a change
* report to the hub driver and the hub driver continues to enumerate
* the attached device."
*
* "At the time the EHCI Driver receives the port reset and enable request
* the LineStatus bits might indicate a low-speed device. Additionally,
* when the port reset process is complete, the PortEnable field may
* indicate that a full-speed device is attached. In either case the EHCI
* driver sets the PortOwner bit in the PORTSC register to a one to
* release port ownership to a companion host controller."
*
* LPC31xx User Manual Paragraph 6.1.3:
*
* "In a standard EHCI controller design, the EHCI host controller driver
* detects a Full speed (FS) or Low speed (LS) device by noting if the
* port enable bit is set after the port reset operation. The port enable
* will only be set in a standard EHCI controller implementation after
* the port reset operation and when the host and device negotiate a
* High-Speed connection (i.e. Chirp completes successfully). Since this
* controller has an embedded Transaction Translator, the port enable
* will always be set after the port reset operation regardless of the
* result of the host device chirp result and the resulting port speed
* will be indicated by the PSPD field in PORTSC1.
*/
regval = kinetis_getreg(&HCOR->portsc[rhpndx]);
if ((regval & USBHS_PORTSC1_PSPD_MASK) == USBHS_PORTSC1_PSPD_HS)
{
/* High speed device */
hport->speed = USB_SPEED_HIGH;
#ifdef USBPHY_CTRLN_ENHOSTDISCONDETECT
/* Highspeed needs special handling */
regval = getreg32(KINETIS_USBHSPHY_CTRL);
regval |= USBPHY_CTRLN_ENHOSTDISCONDETECT;
putreg32(regval, KINETIS_USBHSPHY_CTRL);
#endif
}
else if ((regval & USBHS_PORTSC1_PSPD_MASK) == USBHS_PORTSC1_PSPD_FS)
{
/* Low- or Full- speed device. Set the port ownership bit.
*
* EHCI Paragraph 4.2:
*
* "When a port is routed to a companion HC, it remains under the
* control of the companion HC until the device is disconnected
* from the root por ... When a disconnect occurs, the disconnect
* event is detected by both the companion HC port control and the
* EHCI port ownership control. On the event, the port ownership
* is returned immediately to the EHCI controller. The companion
* HC stack detects the disconnect and acknowledges as it would
* in an ordinary standalone implementation. Subsequent connects
* will be detected by the EHCI port register and the process will
* repeat."
*/
DEBUGASSERT(hport->speed == USB_SPEED_FULL);
}
/* Otherwise it must be a low speed device */
else
{
DEBUGASSERT(hport->speed == USB_SPEED_LOW);
DEBUGASSERT((regval & USBHS_PORTSC1_PSPD_MASK) ==
USBHS_PORTSC1_PSPD_LS);
}
return OK;
}
static int kinetis_enumerate(struct usbhost_connection_s *conn,
struct usbhost_hubport_s *hport)
{
int ret;
/* If this is a connection on the root hub, then we need to go to
* little more effort to get the device speed. If it is a connection
* on an external hub, then we already have that information.
*/
DEBUGASSERT(hport);
#ifdef CONFIG_USBHOST_HUB
if (ROOTHUB(hport))
#endif
{
ret = kinetis_rh_enumerate(conn, hport);
if (ret < 0)
{
return ret;
}
}
/* Then let the common usbhost_enumerate do the real enumeration. */
usbhost_vtrace1(EHCI_VTRACE1_CLASSENUM, hport->port);
ret = usbhost_enumerate(hport, &hport->devclass);
if (ret < 0)
{
/* Failed to enumerate */
usbhost_trace2(EHCI_TRACE2_CLASSENUM_FAILED, hport->port + 1, -ret);
/* If this is a root hub port, then marking the hub port not connected
* will cause kinetis_wait() to return and we will try the connection
* again.
*/
hport->connected = false;
}
return ret;
}
/****************************************************************************
* Name: kinetis_ep0configure
*
* Description:
* Configure endpoint 0. This method is normally used internally by the
* enumerate() method but is made available at the interface to support
* an external implementation of the enumeration logic.
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* funcaddr - The USB address of the function containing the endpoint that
* EP0 controls. A funcaddr of zero will be received if no address is
* yet assigned to the device.
* speed - The speed of the port USB_SPEED_LOW, _FULL, or _HIGH
* maxpacketsize - The maximum number of bytes that can be sent to or
* received from the endpoint in a single data packet
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure.
*
* Assumptions:
* This function will *not* be called from an interrupt handler.
*
****************************************************************************/
static int kinetis_ep0configure(struct usbhost_driver_s *drvr,
usbhost_ep_t ep0, uint8_t funcaddr,
uint8_t speed, uint16_t maxpacketsize)
{
struct kinetis_epinfo_s *epinfo = (struct kinetis_epinfo_s *)ep0;
int ret;
DEBUGASSERT(drvr != NULL && epinfo != NULL && maxpacketsize < 2048);
/* We must have exclusive access to the EHCI data structures. */
ret = nxmutex_lock(&g_ehci.lock);
if (ret >= 0)
{
/* Remember the new device address and max packet size */
epinfo->devaddr = funcaddr;
epinfo->speed = speed;
epinfo->maxpacket = maxpacketsize;
nxmutex_unlock(&g_ehci.lock);
}
return ret;
}
/****************************************************************************
* Name: kinetis_epalloc
*
* Description:
* Allocate and configure one endpoint.
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* epdesc - Describes the endpoint to be allocated.
* ep - A memory location provided by the caller in which to receive the
* allocated endpoint descriptor.
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure.
*
* Assumptions:
* This function will *not* be called from an interrupt handler.
*
****************************************************************************/
static int kinetis_epalloc(struct usbhost_driver_s *drvr,
const struct usbhost_epdesc_s *epdesc,
usbhost_ep_t *ep)
{
struct kinetis_epinfo_s *epinfo;
struct usbhost_hubport_s *hport;
/* Sanity check. NOTE that this method should only be called if a device
* is connected (because we need a valid low speed indication).
*/
DEBUGASSERT(drvr != 0 && epdesc != NULL && epdesc->hport != NULL &&
ep != NULL);
hport = epdesc->hport;
/* Terse output only if we are tracing */
#ifdef CONFIG_USBHOST_TRACE
usbhost_vtrace2(EHCI_VTRACE2_EPALLOC, epdesc->addr, epdesc->xfrtype);
#else
uinfo("EP%d DIR=%s FA=%08x TYPE=%d Interval=%d MaxPacket=%d\n",
epdesc->addr, epdesc->in ? "IN" : "OUT", hport->funcaddr,
epdesc->xfrtype, epdesc->interval, epdesc->mxpacketsize);
#endif
/* Allocate a endpoint information structure */
epinfo = (struct kinetis_epinfo_s *)
kmm_zalloc(sizeof(struct kinetis_epinfo_s));
if (!epinfo)
{
usbhost_trace1(EHCI_TRACE1_EPALLOC_FAILED, 0);
return -ENOMEM;
}
/* Initialize the endpoint container (which is really just another form of
* 'struct usbhost_epdesc_s', packed differently and with additional
* information. A cleaner design might just embed struct usbhost_epdesc_s
* inside of struct kinetis_epinfo_s and just memcpy() here.
*/
epinfo->epno = epdesc->addr;
epinfo->dirin = epdesc->in;
epinfo->devaddr = hport->funcaddr;
#ifndef CONFIG_USBHOST_INT_DISABLE
epinfo->interval = epdesc->interval;
#endif
epinfo->maxpacket = epdesc->mxpacketsize;
epinfo->xfrtype = epdesc->xfrtype;
epinfo->speed = hport->speed;
/* The iocsem semaphore is used for signaling and, hence, should not have
* priority inheritance enabled.
*/
nxsem_init(&epinfo->iocsem, 0, 0);
/* Success.. return an opaque reference to the endpoint information
* structure instance
*/
*ep = (usbhost_ep_t)epinfo;
return OK;
}
/****************************************************************************
* Name: kinetis_epfree
*
* Description:
* Free and endpoint previously allocated by DRVR_EPALLOC.
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* ep - The endpint to be freed.
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure
*
* Assumptions:
* This function will *not* be called from an interrupt handler.
*
****************************************************************************/
static int kinetis_epfree(struct usbhost_driver_s *drvr, usbhost_ep_t ep)
{
struct kinetis_epinfo_s *epinfo = (struct kinetis_epinfo_s *)ep;
/* There should not be any pending, transfers */
DEBUGASSERT(drvr && epinfo && epinfo->iocwait == 0);
/* Free the container */
kmm_free(epinfo);
return OK;
}
/****************************************************************************
* Name: kinetis_alloc
*
* Description:
* Some hardware supports special memory in which request and descriptor
* data can be accessed more efficiently. This method provides a
* mechanism to allocate the request/descriptor memory. If the underlying
* hardware does not support such "special" memory, this functions may
* simply map to kmm_malloc().
*
* This interface was optimized under a particular assumption. It was
* assumed that the driver maintains a pool of small, pre-allocated buffers
* for descriptor traffic. NOTE that size is not an input, but an output:
* The size of the pre-allocated buffer is returned.
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* buffer - The address of a memory location provided by the caller in
* which to return the allocated buffer memory address.
* maxlen - The address of a memory location provided by the caller in
* which to return the maximum size of the allocated buffer memory.
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure
*
* Assumptions:
* - Called from a single thread so no mutual exclusion is required.
* - Never called from an interrupt handler.
*
****************************************************************************/
static int kinetis_alloc(struct usbhost_driver_s *drvr,
uint8_t **buffer, size_t *maxlen)
{
int ret = -ENOMEM;
DEBUGASSERT(drvr && buffer && maxlen);
/* The only special requirements for transfer/descriptor buffers are that
* (1) they be aligned to a cache line boundary and (2) they are a
* multiple of the cache line size in length.
*/
*buffer = (uint8_t *)kmm_memalign(ARMV7M_DCACHE_LINESIZE,
KINETIS_EHCI_BUFSIZE);
if (*buffer)
{
*maxlen = KINETIS_EHCI_BUFSIZE;
ret = OK;
}
return ret;
}
/****************************************************************************
* Name: kinetis_free
*
* Description:
* Some hardware supports special memory in which request and descriptor
* data can be accessed more efficiently. This method provides a
* mechanism to free that request/descriptor memory. If the underlying
* hardware does not support such "special" memory, this functions may
* simply map to kmm_free().
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* buffer - The address of the allocated buffer memory to be freed.
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure
*
* Assumptions:
* - Never called from an interrupt handler.
*
****************************************************************************/
static int kinetis_free(struct usbhost_driver_s *drvr,
uint8_t *buffer)
{
DEBUGASSERT(drvr && buffer);
/* No special action is require to free the transfer/descriptor buffer
* memory
*/
kmm_free(buffer);
return OK;
}
/****************************************************************************
* Name: kinetis_ioalloc
*
* Description:
* Some hardware supports special memory in which larger IO buffers can
* be accessed more efficiently. This method provides a mechanism to
* allocate the request/descriptor memory. If the underlying hardware
* does not support such "special" memory, this functions may simply map
* to kumm_malloc.
*
* This interface differs from DRVR_ALLOC in that the buffers are variable-
* sized.
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* buffer - The address of a memory location provided by the caller in
* which to return the allocated buffer memory address.
* buflen - The size of the buffer required.
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure
*
* Assumptions:
* This function will *not* be called from an interrupt handler.
*
****************************************************************************/
static int kinetis_ioalloc(struct usbhost_driver_s *drvr,
uint8_t **buffer, size_t buflen)
{
DEBUGASSERT(drvr && buffer && buflen > 0);
/* The only special requirements for I/O buffers are that (1) they be
* aligned to a cache line boundary, (2) they are a multiple of the cache
* line size in length, and (3) they might need to be user accessible
* (depending on how the class driver implements its buffering).
*/
buflen = (buflen + DCACHE_LINEMASK) & ~DCACHE_LINEMASK;
*buffer = (uint8_t *)kumm_memalign(ARMV7M_DCACHE_LINESIZE, buflen);
return *buffer ? OK : -ENOMEM;
}
/****************************************************************************
* Name: kinetis_iofree
*
* Description:
* Some hardware supports special memory in which IO data can be accessed
* more efficiently. This method provides a mechanism to free that IO
* buffer memory. If the underlying hardware does not support such
* "special" memory, this functions may simply map to kumm_free().
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* buffer - The address of the allocated buffer memory to be freed.
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure
*
* Assumptions:
* This function will *not* be called from an interrupt handler.
*
****************************************************************************/
static int kinetis_iofree(struct usbhost_driver_s *drvr,
uint8_t *buffer)
{
DEBUGASSERT(drvr && buffer);
/* No special action is require to free the I/O buffer memory */
kumm_free(buffer);
return OK;
}
/****************************************************************************
* Name: kinetis_ctrlin and kinetis_ctrlout
*
* Description:
* Process a IN or OUT request on the control endpoint. These methods
* will enqueue the request and wait for it to complete. Only one
* transfer may be queued; Neither these methods nor the transfer() method
* can be called again until the control transfer functions returns.
*
* These are blocking methods; these functions will not return until the
* control transfer has completed.
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* ep0 - The control endpoint to send/receive the control request.
* req - Describes the request to be sent. This request must lie in
* memory created by DRVR_ALLOC.
* buffer - A buffer used for sending the request and for returning any
* responses. This buffer must be large enough to hold the
* length value in the request description. buffer must have been
* allocated using DRVR_ALLOC.
*
* NOTE: On an IN transaction, req and buffer may refer to the same
* allocated memory.
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure
*
* Assumptions:
* - Called from a single thread so no mutual exclusion is required.
* - Never called from an interrupt handler.
*
****************************************************************************/
static int kinetis_ctrlin(struct usbhost_driver_s *drvr,
usbhost_ep_t ep0,
const struct usb_ctrlreq_s *req,
uint8_t *buffer)
{
struct kinetis_rhport_s *rhport = (struct kinetis_rhport_s *)drvr;
struct kinetis_epinfo_s *ep0info = (struct kinetis_epinfo_s *)ep0;
uint16_t len;
ssize_t nbytes;
int ret;
DEBUGASSERT(rhport != NULL && ep0info != NULL && req != NULL);
len = kinetis_read16(req->len);
/* Terse output only if we are tracing */
#ifdef CONFIG_USBHOST_TRACE
usbhost_vtrace2(EHCI_VTRACE2_CTRLINOUT, RHPORT(rhport), req->req);
#else
uinfo("RHPort%d type: %02x req: %02x value: %02x%02x index: %02x%02x "
"len: %04x\n",
RHPORT(rhport), req->type, req->req, req->value[1], req->value[0],
req->index[1], req->index[0], len);
#endif
/* We must have exclusive access to the EHCI hardware and data
* structures.
*/
ret = nxmutex_lock(&g_ehci.lock);
if (ret < 0)
{
return ret;
}
/* Set the request for the IOC event well BEFORE initiating the transfer. */
ret = kinetis_ioc_setup(rhport, ep0info);
if (ret != OK)
{
usbhost_trace1(EHCI_TRACE1_DEVDISCONNECTED, -ret);
goto errout_with_lock;
}
/* Now initiate the transfer */
ret = kinetis_async_setup(rhport, ep0info, req, buffer, len);
if (ret < 0)
{
uerr("ERROR: kinetis_async_setup failed: %d\n", ret);
goto errout_with_iocwait;
}
/* And wait for the transfer to complete */
nbytes = kinetis_transfer_wait(ep0info);
nxmutex_unlock(&g_ehci.lock);
return nbytes >= 0 ? OK : (int)nbytes;
errout_with_iocwait:
ep0info->iocwait = false;
errout_with_lock:
nxmutex_unlock(&g_ehci.lock);
return ret;
}
static int kinetis_ctrlout(struct usbhost_driver_s *drvr,
usbhost_ep_t ep0,
const struct usb_ctrlreq_s *req,
const uint8_t *buffer)
{
/* kinetis_ctrlin can handle both directions. We just need to work around
* the differences in the function signatures.
*/
return kinetis_ctrlin(drvr, ep0, req, (uint8_t *)buffer);
}
/****************************************************************************
* Name: kinetis_transfer
*
* Description:
* Process a request to handle a transfer descriptor. This method will
* enqueue the transfer request, blocking until the transfer completes.
* Only one transfer may be queued; Neither this method nor the ctrlin or
* ctrlout methods can be called again until this function returns.
*
* This is a blocking method; this functions will not return until the
* transfer has completed.
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* ep - The IN or OUT endpoint descriptor for the device endpoint on
* which to perform the transfer.
* buffer - A buffer containing the data to be sent (OUT endpoint) or
* received (IN endpoint). buffer must have been allocated using
* DRVR_ALLOC
* buflen - The length of the data to be sent or received.
*
* Returned Value:
* On success, a non-negative value is returned that indicates the number
* of bytes successfully transferred. On a failure, a negated errno value
* is returned that indicates the nature of the failure:
*
* EAGAIN - If devices NAKs the transfer (or NYET or other error where
* it may be appropriate to restart the entire transaction).
* EPERM - If the endpoint stalls
* EIO - On a TX or data toggle error
* EPIPE - Overrun errors
*
* Assumptions:
* - Called from a single thread so no mutual exclusion is required.
* - Never called from an interrupt handler.
*
****************************************************************************/
static ssize_t kinetis_transfer(struct usbhost_driver_s *drvr,
usbhost_ep_t ep, uint8_t *buffer,
size_t buflen)
{
struct kinetis_rhport_s *rhport = (struct kinetis_rhport_s *)drvr;
struct kinetis_epinfo_s *epinfo = (struct kinetis_epinfo_s *)ep;
ssize_t nbytes;
int ret;
DEBUGASSERT(rhport && epinfo && buffer && buflen > 0);
/* We must have exclusive access to the EHCI hardware and data
* structures.
*/
ret = nxmutex_lock(&g_ehci.lock);
if (ret < 0)
{
return (ssize_t)ret;
}
/* Set the request for the IOC event well BEFORE initiating the transfer. */
ret = kinetis_ioc_setup(rhport, epinfo);
if (ret != OK)
{
usbhost_trace1(EHCI_TRACE1_DEVDISCONNECTED, -ret);
goto errout_with_lock;
}
/* Initiate the transfer */
switch (epinfo->xfrtype)
{
case USB_EP_ATTR_XFER_BULK:
ret = kinetis_async_setup(rhport, epinfo, NULL, buffer, buflen);
break;
#ifndef CONFIG_USBHOST_INT_DISABLE
case USB_EP_ATTR_XFER_INT:
ret = kinetis_intr_setup(rhport, epinfo, buffer, buflen);
break;
#endif
#ifndef CONFIG_USBHOST_ISOC_DISABLE
case USB_EP_ATTR_XFER_ISOC:
# warning "Isochronous endpoint support not emplemented"
#endif
case USB_EP_ATTR_XFER_CONTROL:
default:
usbhost_trace1(EHCI_TRACE1_BADXFRTYPE, epinfo->xfrtype);
ret = -ENOSYS;
break;
}
/* Check for errors in the setup of the transfer */
if (ret < 0)
{
goto errout_with_iocwait;
}
/* Then wait for the transfer to complete */
nbytes = kinetis_transfer_wait(epinfo);
nxmutex_unlock(&g_ehci.lock);
return nbytes;
errout_with_iocwait:
epinfo->iocwait = false;
errout_with_lock:
uerr("!!!\n");
nxmutex_unlock(&g_ehci.lock);
return (ssize_t)ret;
}
/****************************************************************************
* Name: kinetis_asynch
*
* Description:
* Process a request to handle a transfer descriptor. This method will
* enqueue the transfer request and return immediately. When the transfer
* completes, the callback will be invoked with the provided transfer.
* This method is useful for receiving interrupt transfers which may come
* infrequently.
*
* Only one transfer may be queued; Neither this method nor the ctrlin or
* ctrlout methods can be called again until the transfer completes.
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from
* the call to the class create() method.
* ep - The IN or OUT endpoint descriptor for the device endpoint on
* which to perform the transfer.
* buffer - A buffer containing the data to be sent (OUT endpoint) or
* received (IN endpoint). buffer must have been allocated
* using DRVR_ALLOC
* buflen - The length of the data to be sent or received.
* callback - This function will be called when the transfer completes.
* arg - The arbitrary parameter that will be passed to the callback
* function when the transfer completes.
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure
*
* Assumptions:
* - Called from a single thread so no mutual exclusion is required.
* - Never called from an interrupt handler.
*
****************************************************************************/
#ifdef CONFIG_USBHOST_ASYNCH
static int kinetis_asynch(struct usbhost_driver_s *drvr, usbhost_ep_t ep,
uint8_t *buffer, size_t buflen,
usbhost_asynch_t callback, void *arg)
{
struct kinetis_rhport_s *rhport = (struct kinetis_rhport_s *)drvr;
struct kinetis_epinfo_s *epinfo = (struct kinetis_epinfo_s *)ep;
int ret;
DEBUGASSERT(rhport && epinfo && buffer && buflen > 0);
/* We must have exclusive access to the EHCI hardware and data
* structures.
*/
ret = nxmutex_lock(&g_ehci.lock);
if (ret < 0)
{
return ret;
}
/* Set the request for the callback well BEFORE initiating the transfer. */
ret = kinetis_ioc_async_setup(rhport, epinfo, callback, arg);
if (ret != OK)
{
usbhost_trace1(EHCI_TRACE1_DEVDISCONNECTED, -ret);
goto errout_with_lock;
}
/* Initiate the transfer */
switch (epinfo->xfrtype)
{
case USB_EP_ATTR_XFER_BULK:
ret = kinetis_async_setup(rhport, epinfo, NULL, buffer, buflen);
break;
#ifndef CONFIG_USBHOST_INT_DISABLE
case USB_EP_ATTR_XFER_INT:
ret = kinetis_intr_setup(rhport, epinfo, buffer, buflen);
break;
#endif
#ifndef CONFIG_USBHOST_ISOC_DISABLE
case USB_EP_ATTR_XFER_ISOC:
# warning "Isochronous endpoint support not emplemented"
#endif
case USB_EP_ATTR_XFER_CONTROL:
default:
usbhost_trace1(EHCI_TRACE1_BADXFRTYPE, epinfo->xfrtype);
ret = -ENOSYS;
break;
}
/* Check for errors in the setup of the transfer */
if (ret < 0)
{
goto errout_with_callback;
}
/* The transfer is in progress */
nxmutex_unlock(&g_ehci.lock);
return OK;
errout_with_callback:
epinfo->callback = NULL;
epinfo->arg = NULL;
errout_with_lock:
nxmutex_unlock(&g_ehci.lock);
return ret;
}
#endif /* CONFIG_USBHOST_ASYNCH */
/****************************************************************************
* Name: kinetis_cancel
*
* Description:
* Cancel a pending transfer on an endpoint. Canceled synchronous or
* asynchronous transfer will complete normally with the error -ESHUTDOWN.
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* ep - The IN or OUT endpoint descriptor for the device endpoint on
* which an asynchronous transfer should be transferred.
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure
*
****************************************************************************/
static int kinetis_cancel(struct usbhost_driver_s *drvr, usbhost_ep_t ep)
{
struct kinetis_epinfo_s *epinfo = (struct kinetis_epinfo_s *)ep;
struct kinetis_qh_s *qh;
#ifdef CONFIG_USBHOST_ASYNCH
usbhost_asynch_t callback;
void *arg;
#endif
uint32_t *bp;
irqstate_t flags;
bool iocwait;
int ret;
DEBUGASSERT(epinfo);
/* We must have exclusive access to the EHCI hardware and data structures.
* This will prevent servicing any transfer completion events while we
* perform the the cancellation, but will not prevent DMA-related race
* conditions.
*
* REVISIT: This won't work. This function must be callable from the
* interrupt level.
*/
ret = nxmutex_lock(&g_ehci.lock);
if (ret < 0)
{
return ret;
}
/* Sample and reset all transfer termination information. This will
* prevent any callbacks from occurring while are performing the
* cancellation. The transfer may still be in progress, however, so this
* does not eliminate other DMA-related race conditions.
*/
flags = enter_critical_section();
#ifdef CONFIG_USBHOST_ASYNCH
callback = epinfo->callback;
arg = epinfo->arg;
#endif
iocwait = epinfo->iocwait;
#ifdef CONFIG_USBHOST_ASYNCH
epinfo->callback = NULL;
epinfo->arg = NULL;
#endif
epinfo->iocwait = false;
/* This will prevent any callbacks from occurring while are performing
* the cancellation. The transfer may still be in progress, however, so
* this does not eliminate other DMA-related race conditions.
*/
epinfo->callback = NULL;
epinfo->arg = NULL;
leave_critical_section(flags);
/* Bail if there is no transfer in progress for this endpoint */
#ifdef CONFIG_USBHOST_ASYNCH
if (callback == NULL && !iocwait)
#else
if (!iocwait)
#endif
{
ret = OK;
goto errout_with_lock;
}
/* Handle the cancellation according to the type of the transfer */
switch (epinfo->xfrtype)
{
case USB_EP_ATTR_XFER_CONTROL:
case USB_EP_ATTR_XFER_BULK:
{
/* Get the horizontal pointer from the head of the asynchronous
* queue.
*/
bp = (uint32_t *)&g_asynchead.hw.hlp;
qh = (struct kinetis_qh_s *)
kinetis_virtramaddr(kinetis_swap32(*bp) & QH_HLP_MASK);
/* If the asynchronous queue is empty, then the forward point in
* the asynchronous queue head will point back to the queue
* head.
*/
if (qh && qh != &g_asynchead)
{
/* Claim that we successfully cancelled the transfer */
ret = OK;
goto exit_terminate;
}
}
break;
#ifndef CONFIG_USBHOST_INT_DISABLE
case USB_EP_ATTR_XFER_INT:
{
/* Get the horizontal pointer from the head of the interrupt
* queue.
*/
bp = (uint32_t *)&g_intrhead.hw.hlp;
qh = (struct kinetis_qh_s *)
kinetis_virtramaddr(kinetis_swap32(*bp) & QH_HLP_MASK);
if (qh)
{
/* if the queue is empty, then just claim that we successfully
* canceled the transfer.
*/
ret = OK;
goto exit_terminate;
}
}
break;
#endif
#ifndef CONFIG_USBHOST_ISOC_DISABLE
case USB_EP_ATTR_XFER_ISOC:
# warning "Isochronous endpoint support not emplemented"
#endif
default:
usbhost_trace1(EHCI_TRACE1_BADXFRTYPE, epinfo->xfrtype);
ret = -ENOSYS;
goto errout_with_lock;
}
/* Find and remove the QH. There are four possibilities:
*
* 1) The transfer has already completed and the QH is no longer in the
* list. In this case, sam_hq_foreach will return zero
* 2a) The transfer is not active and still pending. It was removed from
* the list and sam_hq_foreach will return one.
* 2b) The is active but not yet complete. This is currently handled the
* same as 2a). REVISIT: This needs to be fixed.
* 3) Some bad happened and sam_hq_foreach returned an error code < 0.
*/
ret = kinetis_qh_foreach(qh, &bp, kinetis_qh_cancel, epinfo);
if (ret < 0)
{
usbhost_trace1(EHCI_TRACE1_QTDFOREACH_FAILED, -ret);
}
/* Was there a pending synchronous transfer? */
exit_terminate:
epinfo->result = -ESHUTDOWN;
#ifdef CONFIG_USBHOST_ASYNCH
if (iocwait)
{
/* Yes... wake it up */
DEBUGASSERT(callback == NULL);
nxsem_post(&epinfo->iocsem);
}
/* No.. Is there a pending asynchronous transfer? */
else /* if (callback != NULL) */
{
/* Yes.. perform the callback */
callback(arg, -ESHUTDOWN);
}
#else
/* Wake up the waiting thread */
nxsem_post(&epinfo->iocsem);
#endif
errout_with_lock:
nxmutex_unlock(&g_ehci.lock);
return ret;
}
/****************************************************************************
* Name: kinetis_connect
*
* Description:
* New connections may be detected by an attached hub. This method is the
* mechanism that is used by the hub class to introduce a new connection
* and port description to the system.
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* hport - The descriptor of the hub port that detected the connection
* related event
* connected - True: device connected; false: device disconnected
*
* Returned Value:
* On success, zero (OK) is returned. On a failure, a negated errno value
* is returned indicating the nature of the failure
*
****************************************************************************/
#ifdef CONFIG_USBHOST_HUB
static int kinetis_connect(struct usbhost_driver_s *drvr,
struct usbhost_hubport_s *hport,
bool connected)
{
irqstate_t flags;
/* Set the connected/disconnected flag */
hport->connected = connected;
uinfo("Hub port %d connected: %s\n",
hport->port, connected ? "YES" : "NO");
/* Report the connection event */
flags = enter_critical_section();
DEBUGASSERT(g_ehci.hport == NULL); /* REVISIT */
g_ehci.hport = hport;
if (g_ehci.pscwait)
{
g_ehci.pscwait = false;
nxsem_post(&g_ehci.pscsem);
}
leave_critical_section(flags);
return OK;
}
#endif
/****************************************************************************
* Name: kinetis_disconnect
*
* Description:
* Called by the class when an error occurs and driver has been
* disconnected. The USB host driver should discard the handle to the
* class instance (it is stale) and not attempt any further interaction
* with the class driver instance (until a new instance is received from
* the create() method). The driver should not called the class'
* disconnected() method.
*
* Input Parameters:
* drvr - The USB host driver instance obtained as a parameter from the
* call to the class create() method.
* hport - The port from which the device is being disconnected. Might be
* a port on a hub.
*
* Returned Value:
* None
*
* Assumptions:
* - Only a single class bound to a single device is supported.
* - Never called from an interrupt handler.
*
****************************************************************************/
static void kinetis_disconnect(struct usbhost_driver_s *drvr,
struct usbhost_hubport_s *hport)
{
DEBUGASSERT(hport != NULL);
hport->devclass = NULL;
}
/****************************************************************************
* Name: kinetis_reset
*
* Description:
* Set the HCRESET bit in the USBCMD register to reset the EHCI hardware.
*
* Table 2-9. USBCMD - USB Command Register Bit Definitions
*
* "Host Controller Reset (HCRESET) ... This control bit is used by
* software to reset the host controller. The effects of this on Root
* Hub registers are similar to a Chip Hardware Reset.
*
* "When software writes a one to this bit, the Host Controller resets its
* internal pipelines, timers, counters, state machines, etc. to their
* initial value. Any transaction currently in progress on USB is
* immediately terminated. A USB reset is not driven on downstream
* ports.
*
* "PCI Configuration registers are not affected by this reset. All
* operational registers, including port registers and port state
* machines are set to their initial values. Port ownership reverts
* to the companion host controller(s)... Software must reinitialize
* the host controller ... in order to return the host controller to
* an operational state.
*
* "This bit is set to zero by the Host Controller when the reset process
* is complete. Software cannot terminate the reset process early by
* writing a zero to this register. Software should not set this bit to
* a one when the HCHalted bit in the USBSTS register is a zero.
* Attempting to reset an actively running host controller will result
* in undefined behavior."
*
* Input Parameters:
* None.
*
* Returned Value:
* Zero (OK) is returned on success; A negated errno value is returned
* on failure.
*
* Assumptions:
* - Called during the initialization of the EHCI.
*
****************************************************************************/
static int kinetis_reset(void)
{
uint32_t regval;
unsigned int timeout;
/* Make sure that the EHCI is halted: "When [the Run/Stop] bit is set to
* 0, the Host Controller completes the current transaction on the USB and
* then halts. The HC Halted bit in the status register indicates when the
* Host Controller has finished the transaction and has entered the
* stopped state..."
*/
kinetis_putreg(0, &HCOR->usbcmd);
/* "... Software should not set [HCRESET] to a one when the HCHalted bit in
* the USBSTS register is a zero. Attempting to reset an actively running
* host controller will result in undefined behavior."
*/
timeout = 0;
do
{
/* Wait one microsecond and update the timeout counter */
up_udelay(1);
timeout++;
/* Get the current value of the USBSTS register. This loop will
* terminate when either the timeout exceeds one millisecond or when
* the HCHalted bit is no longer set in the USBSTS register.
*/
regval = kinetis_getreg(&HCOR->usbsts);
}
while (((regval & EHCI_USBSTS_HALTED) == 0) && (timeout < 1000));
/* Is the EHCI still running? Did we timeout? */
if ((regval & EHCI_USBSTS_HALTED) == 0)
{
usbhost_trace1(EHCI_TRACE1_HCHALTED_TIMEOUT, regval);
return -ETIMEDOUT;
}
/* Now we can set the HCReset bit in the USBCMD register to initiate the
* reset
*/
regval = kinetis_getreg(&HCOR->usbcmd);
regval |= EHCI_USBCMD_HCRESET;
kinetis_putreg(regval, &HCOR->usbcmd);
/* Wait for the HCReset bit to become clear */
do
{
/* Wait five microseconds and update the timeout counter */
up_udelay(5);
timeout += 5;
/* Get the current value of the USBCMD register. This loop will
* terminate when either the timeout exceeds one second or when the
* HCReset bit is no longer set in the USBSTS register.
*/
regval = kinetis_getreg(&HCOR->usbcmd);
}
while (((regval & EHCI_USBCMD_HCRESET) != 0) && (timeout < 1000000));
/* Return either success or a timeout */
return (regval & EHCI_USBCMD_HCRESET) != 0 ? -ETIMEDOUT : OK;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: kinetis_ehci_initialize
*
* Description:
* Initialize USB EHCI host controller hardware.
*
* Input Parameters:
* controller -- If the device supports more than one EHCI interface, then
* this identifies which controller is being initialized. Normally, this
* is just zero.
*
* Returned Value:
* And instance of the USB host interface. The controlling task should
* use this interface to (1) call the wait() method to wait for a device
* to be connected, and (2) call the enumerate() method to bind the device
* to a class driver.
*
* Assumptions:
* - This function should called in the initialization sequence in order
* to initialize the USB device functionality.
* - Class drivers should be initialized prior to calling this function.
* Otherwise, there is a race condition if the device is already connected.
*
****************************************************************************/
struct usbhost_connection_s *kinetis_ehci_initialize(int controller)
{
struct usbhost_hubport_s *hport;
uint32_t regval;
# if defined(CONFIG_DEBUG_USB) && defined(CONFIG_DEBUG_INFO)
uint16_t regval16;
unsigned int nports;
# endif
uintptr_t physaddr;
int ret;
int i;
/* Sanity checks */
DEBUGASSERT(controller == 0);
DEBUGASSERT(((uintptr_t) & g_asynchead & 0x1f) == 0);
DEBUGASSERT((sizeof(struct kinetis_qh_s) & 0x1f) == 0);
DEBUGASSERT((sizeof(struct kinetis_qtd_s) & 0x1f) == 0);
# ifdef CONFIG_KINETIS_EHCI_PREALLOCATE
DEBUGASSERT(((uintptr_t) & g_qhpool & 0x1f) == 0);
DEBUGASSERT(((uintptr_t) & g_qtdpool & 0x1f) == 0);
# endif
# ifndef CONFIG_USBHOST_INT_DISABLE
DEBUGASSERT(((uintptr_t) & g_intrhead & 0x1f) == 0);
# ifdef CONFIG_KINETIS_EHCI_PREALLOCATE
DEBUGASSERT(((uintptr_t) g_framelist & 0xfff) == 0);
# endif
# endif /* CONFIG_USBHOST_INT_DISABLE */
/* Software Configuration *************************************************/
usbhost_vtrace1(EHCI_VTRACE1_INITIALIZING, 0);
/* Initialize the root hub port structures */
for (i = 0; i < KINETIS_EHCI_NRHPORT; i++)
{
struct kinetis_rhport_s *rhport = &g_ehci.rhport[i];
/* Initialize the device operations */
rhport->drvr.ep0configure = kinetis_ep0configure;
rhport->drvr.epalloc = kinetis_epalloc;
rhport->drvr.epfree = kinetis_epfree;
rhport->drvr.alloc = kinetis_alloc;
rhport->drvr.free = kinetis_free;
rhport->drvr.ioalloc = kinetis_ioalloc;
rhport->drvr.iofree = kinetis_iofree;
rhport->drvr.ctrlin = kinetis_ctrlin;
rhport->drvr.ctrlout = kinetis_ctrlout;
rhport->drvr.transfer = kinetis_transfer;
# ifdef CONFIG_USBHOST_ASYNCH
rhport->drvr.asynch = kinetis_asynch;
# endif
rhport->drvr.cancel = kinetis_cancel;
# ifdef CONFIG_USBHOST_HUB
rhport->drvr.connect = kinetis_connect;
# endif
rhport->drvr.disconnect = kinetis_disconnect;
/* Initialize EP0 */
rhport->ep0.xfrtype = USB_EP_ATTR_XFER_CONTROL;
rhport->ep0.speed = USB_SPEED_FULL;
rhport->ep0.maxpacket = 8;
nxsem_init(&rhport->ep0.iocsem, 0, 0);
/* Initialize the public port representation */
hport = &rhport->hport.hport;
hport->drvr = &rhport->drvr;
# ifdef CONFIG_USBHOST_HUB
hport->parent = NULL;
# endif
hport->ep0 = &rhport->ep0;
hport->port = i;
hport->speed = USB_SPEED_FULL;
/* Initialize function address generation logic */
usbhost_devaddr_initialize(&rhport->hport);
}
# ifndef CONFIG_KINETIS_EHCI_PREALLOCATE
/* Allocate a pool of free Queue Head (QH) structures */
g_qhpool =
(struct kinetis_qh_s *)kmm_memalign(32,
CONFIG_KINETIS_EHCI_NQHS *
sizeof(struct kinetis_qh_s));
if (!g_qhpool)
{
usbhost_trace1(EHCI_TRACE1_QHPOOLALLOC_FAILED, 0);
return NULL;
}
# endif
/* Initialize the list of free Queue Head (QH) structures */
for (i = 0; i < CONFIG_KINETIS_EHCI_NQHS; i++)
{
/* Put the QH structure in a free list */
kinetis_qh_free(&g_qhpool[i]);
}
# ifndef CONFIG_KINETIS_EHCI_PREALLOCATE
/* Allocate a pool of free Transfer Descriptor (qTD) structures */
g_qtdpool =
(struct kinetis_qtd_s *)kmm_memalign(32,
CONFIG_KINETIS_EHCI_NQTDS *
sizeof(struct kinetis_qtd_s));
if (!g_qtdpool)
{
usbhost_trace1(EHCI_TRACE1_QTDPOOLALLOC_FAILED, 0);
kmm_free(g_qhpool);
return NULL;
}
# endif
# if !defined(CONFIG_KINETIS_EHCI_PREALLOCATE) && !defined(CONFIG_USBHOST_INT_DISABLE)
/* Allocate the periodic framelist */
g_framelist = (uint32_t *)
kmm_memalign(4096, FRAME_LIST_SIZE * sizeof(uint32_t));
if (!g_framelist)
{
usbhost_trace1(EHCI_TRACE1_PERFLALLOC_FAILED, 0);
kmm_free(g_qhpool);
kmm_free(g_qtdpool);
return NULL;
}
# endif
/* Initialize the list of free Transfer Descriptor (qTD) structures */
for (i = 0; i < CONFIG_KINETIS_EHCI_NQTDS; i++)
{
/* Put the TD in a free list */
kinetis_qtd_free(&g_qtdpool[i]);
}
/* Reset the controller from the OTG peripheral */
putreg32(USBHS_USBCMD_RST, KINETIS_USBHS_USBCMD);
while ((getreg32(KINETIS_USBHS_USBCMD) & USBHS_USBCMD_RST) != 0);
/* Program the controller to be the USB host controller Fixed selections:
* CM = Host mode ES = 0, Little endian mode. SLOM Not used in host mode.
* VBPS = 1, off-chip power source Configurable selections: SDIS = 1,
* Stream disable mode. Eliminates overruns/underruns at the expense of
* some performance.
*/
# ifdef CONFIG_KINETIS_EHCI_SDIS
putreg32(USBHS_USBMODE_CM_HOST | USBHS_USBMODE_SDIS,
KINETIS_USBHS_MODE);
# else
putreg32(USBHS_USBMODE_CM_HOST,
KINETIS_USBHS_MODE);
# endif
/* Reset the EHCI hardware */
ret = kinetis_reset();
if (ret < 0)
{
usbhost_trace1(EHCI_TRACE1_RESET_FAILED, -ret);
return NULL;
}
/* Re-program the USB host controller. As implemented, kinetis_reset()
* requires the host mode setup in order to work. However, we lose the
* host configuration in the reset.
*/
# ifdef CONFIG_KINETIS_EHCI_SDIS
putreg32(USBHS_USBMODE_CM_HOST | USBHS_USBMODE_SDIS,
KINETIS_USBHS_MODE);
# else
putreg32(USBHS_USBMODE_CM_HOST,
KINETIS_USBHS_MODE);
# endif
/* Disable all interrupts */
kinetis_putreg(0, &HCOR->usbintr);
/* Clear pending interrupts. Bits in the USBSTS register are cleared by
* writing a '1' to the corresponding bit.
*/
kinetis_putreg(EHCI_INT_ALLINTS, &HCOR->usbsts);
# if defined(CONFIG_DEBUG_USB) && defined(CONFIG_DEBUG_INFO)
/* Show the EHCI version */
regval16 = kinetis_swap16(HCCR->hciversion);
usbhost_vtrace2(EHCI_VTRACE2_HCIVERSION, regval16 >> 8, regval16 & 0xff);
/* Verify that the correct number of ports is reported */
regval = kinetis_getreg(&HCCR->hcsparams);
nports = (regval & EHCI_HCSPARAMS_NPORTS_MASK) >>
EHCI_HCSPARAMS_NPORTS_SHIFT;
usbhost_vtrace2(EHCI_VTRACE2_HCSPARAMS, nports, regval);
DEBUGASSERT(nports == KINETIS_EHCI_NRHPORT);
/* Show the HCCPARAMS register */
regval = kinetis_getreg(&HCCR->hccparams);
usbhost_vtrace1(EHCI_VTRACE1_HCCPARAMS, regval);
# endif
/* Initialize the head of the asynchronous queue/reclamation list. "In
* order to communicate with devices via the asynchronous schedule, system
* software must write the ASYNDLISTADDR register with the address of a
* control or bulk queue head. Software must then enable the asynchronous
* schedule by writing a one to the Asynchronous Schedule Enable bit in
* the USBCMD register. In order to communicate with devices via the
* periodic schedule, system software must enable the periodic schedule by
* writing a one to the Periodic Schedule Enable bit in the USBCMD
* register. Note that the schedules can be turned on before the first
* port is reset (and enabled)."
*/
memset(&g_asynchead, 0, sizeof(struct kinetis_qh_s));
physaddr = kinetis_physramaddr((uintptr_t)&g_asynchead);
g_asynchead.hw.hlp = kinetis_swap32(physaddr | QH_HLP_TYP_QH);
g_asynchead.hw.epchar = kinetis_swap32(QH_EPCHAR_H | QH_EPCHAR_EPS_FULL);
g_asynchead.hw.overlay.nqp = kinetis_swap32(QH_NQP_T);
g_asynchead.hw.overlay.alt = kinetis_swap32(QH_NQP_T);
g_asynchead.hw.overlay.token = kinetis_swap32(QH_TOKEN_HALTED);
g_asynchead.fqp = kinetis_swap32(QTD_NQP_T);
/* Set the Current Asynchronous List Address. */
up_flush_dcache((uintptr_t)&g_asynchead.hw,
(uintptr_t)&g_asynchead.hw + sizeof(struct ehci_qh_s));
kinetis_putreg(kinetis_swap32(physaddr), &HCOR->asynclistaddr);
# ifndef CONFIG_USBHOST_INT_DISABLE
/* Initialize the head of the periodic list. Since Isochronous endpoints
* are not not yet supported, each element of the frame list is initialized
* to point to the Interrupt Queue Head (g_intrhead).
*/
memset(&g_intrhead, 0, sizeof(struct kinetis_qh_s));
g_intrhead.hw.hlp = kinetis_swap32(QH_HLP_T);
g_intrhead.hw.overlay.nqp = kinetis_swap32(QH_NQP_T);
g_intrhead.hw.overlay.alt = kinetis_swap32(QH_NQP_T);
g_intrhead.hw.overlay.token = kinetis_swap32(QH_TOKEN_HALTED);
g_intrhead.hw.epcaps = kinetis_swap32(QH_EPCAPS_SSMASK(1));
/* Attach the periodic QH to Period Frame List */
physaddr = kinetis_physramaddr((uintptr_t) & g_intrhead);
for (i = 0; i < FRAME_LIST_SIZE; i++)
{
g_framelist[i] = kinetis_swap32(physaddr) | PFL_TYP_QH;
}
/* Set the Periodic Frame List Base Address. */
physaddr = kinetis_physramaddr((uintptr_t) g_framelist);
kinetis_putreg(kinetis_swap32(physaddr), &HCOR->periodiclistbase);
# endif
/* Enable the asynchronous schedule and, possibly enable the periodic
* schedule and set the frame list size.
*/
regval = kinetis_getreg(&HCOR->usbcmd);
regval &= ~(EHCI_USBCMD_HCRESET | EHCI_USBCMD_FLSIZE_MASK |
EHCI_USBCMD_FLSIZE_MASK | EHCI_USBCMD_PSEN |
EHCI_USBCMD_IAADB | EHCI_USBCMD_LRESET);
regval |= EHCI_USBCMD_ASEN;
# ifndef CONFIG_USBHOST_INT_DISABLE
regval |= EHCI_USBCMD_PSEN;
# if FRAME_LIST_SIZE == 1024
regval |= EHCI_USBCMD_FLSIZE_1024;
# elif FRAME_LIST_SIZE == 512
regval |= EHCI_USBCMD_FLSIZE_512;
# elif FRAME_LIST_SIZE == 256
regval |= EHCI_USBCMD_FLSIZE_256;
# else
# error Unsupported frame size list size
# endif
# endif
kinetis_putreg(regval, &HCOR->usbcmd);
/* Start the host controller by setting the RUN bit in the
* USBCMD register.
*/
regval = kinetis_getreg(&HCOR->usbcmd);
regval |= EHCI_USBCMD_RUN;
kinetis_putreg(regval, &HCOR->usbcmd);
/* Route all ports to this host controller by setting the CONFIG flag. */
regval = kinetis_getreg(&HCOR->configflag);
regval |= EHCI_CONFIGFLAG;
kinetis_putreg(regval, &HCOR->configflag);
/* Wait for the EHCI to run (i.e., no longer report halted) */
ret = ehci_wait_usbsts(EHCI_USBSTS_HALTED, 0, 100 * 1000);
if (ret < 0)
{
usbhost_trace1(EHCI_TRACE1_RUN_FAILED, kinetis_getreg(&HCOR->usbsts));
return NULL;
}
/* Interrupt Configuration ************************************************/
ret = irq_attach(KINETIS_IRQ_USB1OTG, kinetis_ehci_interrupt, NULL);
if (ret != 0)
{
usbhost_trace1(EHCI_TRACE1_IRQATTACH_FAILED, KINETIS_IRQ_USB1OTG);
return NULL;
}
/* Enable EHCI interrupts. Interrupts are still disabled at the level of
* the interrupt controller.
*/
kinetis_putreg(EHCI_HANDLED_INTS, &HCOR->usbintr);
/* Enable interrupts at the interrupt controller */
up_enable_irq(KINETIS_IRQ_USB1OTG);
/* Drive Vbus +5V (the smoke test) */
for (i = 0; i < KINETIS_EHCI_NRHPORT; i++)
{
/* Enable VBUS power for the port */
kinetis_usbhost_vbusdrive(i, true);
up_mdelay(25);
}
/* If there is a USB device in the slot at power up, then we will not get
* the status change interrupt to signal us that the device is connected.
* We need to set the initial connected state accordingly.
*/
for (i = 0; i < KINETIS_EHCI_NRHPORT; i++)
{
g_ehci.rhport[i].connected =
((kinetis_getreg(&HCOR->portsc[i]) & EHCI_PORTSC_CCS) != 0);
}
usbhost_vtrace1(EHCI_VTRACE1_INIITIALIZED, 0);
/* Initialize and return the connection interface */
g_ehciconn.wait = kinetis_wait;
g_ehciconn.enumerate = kinetis_enumerate;
return &g_ehciconn;
}
/****************************************************************************
* Name: usbhost_trformat1 and usbhost_trformat2
*
* Description:
* This interface must be provided by platform specific logic that knows
* the HCDs encoding of USB trace data.
*
* Given an 9-bit index, return a format string suitable for use with, say,
* printf. The returned format is expected to handle two unsigned integer
* values.
*
****************************************************************************/
#ifdef HAVE_USBHOST_TRACE
const char *usbhost_trformat1(uint16_t id)
{
int ndx = TRACE1_INDEX(id);
if (ndx < TRACE1_NSTRINGS)
{
return g_trace1[ndx].string;
}
return NULL;
}
const char *usbhost_trformat2(uint16_t id)
{
int ndx = TRACE2_INDEX(id);
if (ndx < TRACE2_NSTRINGS)
{
return g_trace2[ndx].string;
}
return NULL;
}
#endif /* HAVE_USBHOST_TRACE */
#endif /* CONFIG_KINETIS_USBOTG && CONFIG_USBHOST */