b3222bbc8a
Provide a user defined callback context for irq's, such that when registering a callback users can provide a pointer that will get passed back when the isr is called. |
||
---|---|---|
.. | ||
include | ||
nsh | ||
ostest | ||
pashello | ||
scripts | ||
src | ||
Kconfig | ||
README.txt |
z80sim README ^^^^^^^^^^^^^ This port uses a primitive, emulated Z80 and the SDCC toolchain. This port uses an instruction set simulator called z80sim. The SDCC toolchain is available from http://sdcc.sourceforge.net/. All testing has been performed using version 2.6.0 of the SDCC toolchain. Contents ^^^^^^^^ o Configuring NuttX o Reconfiguring NuttX o Reconfiguring for Linux, OSX, or Cygwin o SDCC o Building the SDCC toolchain Configuring NuttX ^^^^^^^^^^^^^^^^^ ostest This configuration performs a simple, minimal OS test using examples/ostest. This can be configurated as follows: 1) From a POSIX window: cd tools ./configure.sh z80sim/ostest 2) From a CMD.exe window setenv.bat NOTES: 1. This configuration uses the mconf-based configuration tool. See the "Reconfiguring" section below for information about changing this configuration. 2. The default setup for this configuration uses a windows native build. See the section entitled "Reconfiguring for Linux, OSX, or Cygwin" which will give you the steps you would need to do to convert this configuration to build in other, Unix-like environments. 3. This configuration was last verified sucessfully prior to the the configure to Kconfig/mconf tool using SDCC 2.6.0 built to run natively under Cygwin. The current build requires ca. 3.2.1 SDCC. nsh This configuration file builds NSH (examples/nsh). This configuration is not functional due to issues with use of the simulated serial driver (see the TODO list). This configuration can be selected by: 1) From a POSIX window: cd tools ./configure.sh z80sim/nsh 2) From a CMD.exe window setenv.bat NOTES: 1. This configuration uses the mconf-based configuration tool. See the "Reconfiguring" section below for information about changing this configuration. 2. The default setup for this configuration uses a windows native build. See the section entitled "Reconfiguring for Linux, OSX, or Cygwin" which will give you the steps you would need to do to convert this configuration to build in other, Unix-like environments. 3. This configuration was last verified sucessfully prior to the the configure to Kconfig/mconf tool using SDCC 2.6.0 built to run natively under Cygwin.nsh/defconfig:CONFIG_BOARD_LOOPSPERMSEC pashello Configures to use examples/pashello for execution from FLASH See examples/README.txt for information about pashello. This configuration is not usable because the resulting binary is too large for the z80 address space. This configuration can be selected by: 1) From a POSIX window: cd tools ./configure.sh z80sim/pashello 2) From a CMD.exe window setenv.bat NOTES: 1. This configuration uses the mconf-based configuration tool. See the "Reconfiguring" section below for information about changing this configuration. 2. The default setup for this configuration uses a windows native build. See the section entitled "Reconfiguring for Linux, OSX, or Cygwin" which will give you the steps you would need to do to convert this configuration to build in other, Unix-like environments. 3. This configuration was last verified sucessfully prior to the the configure to Kconfig/mconf tool using SDCC 2.6.0 built to run natively under Cygwin.nsh/defconfig:CONFIG_BOARD_LOOPSPERMSEC Reconfiguring NuttX ^^^^^^^^^^^^^^^^^^^ These configurations all use the kconfig-frontends, mconf-based configuration tool. To change this configuration using that tool, you should: a. Build and install the kconfig-mconf tool. See nuttx/README.txt and additional README.txt files in the NuttX tools repository. b. Execute 'make menuconfig' in nuttx/ in order to start the reconfiguration process. Reconfiguring for Linux, OSX, or Cygwin ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ All of the z80 configurations in this this directory are set up to build in a Windows CMD.exe shell. This configuration requires the MinGW host compiler and severl GNUWin32 tools (see discussion in the top-level NuttX/README.txt file). These configurations can be converted to run under Linux (or Cygwin or OSX), by modifying the configuration file as follows: -CONFIG_HOST_WINDOWS=y -CONFIG_WINDOWS_NATIVE=y +CONFIG_HOST_LINUX=y -CONFIG_Z80_TOOLCHAIN_SDCCW=y +CONFIG_Z80_TOOLCHAIN_SDCCL=y You may need to first manually change the CONFIG_APPS_DIR="..\apps" definition in the .config file because the backslash may upset some Unix-based tools. This configuration will require a recent version of SDCC (ca. 3.2.1) for Linux or custom built for Cygwin (see below). You cannot use the default setenv.bat in these Unix-like enviroments because that is a Windows batch file. Use configs/z80sim/script/setenv.sh instead. setenv.sh must include the path to the installation location of SDCC (probably /usr/local/bin). SDCC ^^^^ These z80 configurations all use the SDCC toolchain (http://sdcc.sourceforge.net/). Source and pre-built SDCC binaries can be downloaded from the SDCC SourceForge site: http://sourceforge.net/projects/sdcc/files/ . Pre-built binaries are available for Linux, MAC OSX, and for Win32. Various SDCC options can be selected with: CONFIG_Z80_TOOLCHAIN_SDCCL=y : SDCC for Linux, MAC OSX or Cygwin (see below) CONFIG_Z80_TOOLCHAIN_SDCCW=y : SDCC for Win32 SDCC versions 3.2.0 or higher are recommended. Building the SDCC toolchain ^^^^^^^^^^^^^^^^^^^^^^^^^^^ You may also want to build your own SDCC toolchain. You might want to do this, for example, if you are running under Cygwin and want a Cygwin compatible SDCC toolchain. The SDCC toolchain is built with the standard configure/make/make install sequence. However, some special actions are required to generate libraries compatible with this build. First start with the usual steps download unpack cd sdcc ./configure Then make the SDCC binaries cd sdcc make and install SDCC: sudo make install