nuttx/arch/arm/src/stm32/stm32_spi.c
Anthony Merlino 7f10234468 Merged in antmerlino/nuttx/spi-initialize (pull request #746)
This change is needed specifically for the case where a bootloader sets the SPE bit before starting NuttX.  In that case, the test in the SPI driver is bogus.  This change fixes that by assuring that NuttX has booted and initialized at least once (whether or not SPE is set) before the driver starts refusing to initialize.

arch/arm/stm32*: Don't rely on SPI_CR1_SPE to determine if peripheral has been initialized yet.

Approved-by: GregoryN <gnutt@nuttx.org>
2018-11-01 16:00:27 +00:00

1997 lines
59 KiB
C

/************************************************************************************
* arch/arm/src/stm32/stm32_spi.c
*
* Copyright (C) 2009-2013, 2016-2018 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
************************************************************************************/
/************************************************************************************
* The external functions, stm32_spi1/2/3select and stm32_spi1/2/3status must be
* provided by board-specific logic. They are implementations of the select
* and status methods of the SPI interface defined by struct spi_ops_s (see
* include/nuttx/spi/spi.h). All other methods (including stm32_spibus_initialize())
* are provided by common STM32 logic. To use this common SPI logic on your
* board:
*
* 1. Provide logic in stm32_boardinitialize() to configure SPI chip select
* pins.
* 2. Provide stm32_spi1/2/3select() and stm32_spi1/2/3status() functions in your
* board-specific logic. These functions will perform chip selection and
* status operations using GPIOs in the way your board is configured.
* 3. Add a calls to stm32_spibus_initialize() in your low level application
* initialization logic
* 4. The handle returned by stm32_spibus_initialize() may then be used to bind the
* SPI driver to higher level logic (e.g., calling
* mmcsd_spislotinitialize(), for example, will bind the SPI driver to
* the SPI MMC/SD driver).
*
****************************************************c********************************/
/************************************************************************************
* Included Files
************************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <semaphore.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/irq.h>
#include <nuttx/arch.h>
#include <nuttx/semaphore.h>
#include <nuttx/spi/spi.h>
#include <arch/board/board.h>
#include "up_internal.h"
#include "up_arch.h"
#include "chip.h"
#include "stm32.h"
#include "stm32_gpio.h"
#include "stm32_dma.h"
#include "stm32_spi.h"
#if defined(CONFIG_STM32_SPI1) || defined(CONFIG_STM32_SPI2) || defined(CONFIG_STM32_SPI3) || \
defined(CONFIG_STM32_SPI4) || defined(CONFIG_STM32_SPI5) || defined(CONFIG_STM32_SPI6)
/************************************************************************************
* Pre-processor Definitions
************************************************************************************/
/* Configuration ********************************************************************/
/* SPI interrupts */
#ifdef CONFIG_STM32_SPI_INTERRUPTS
# error "Interrupt driven SPI not yet supported"
#endif
/* Can't have both interrupt driven SPI and SPI DMA */
#if defined(CONFIG_STM32_SPI_INTERRUPTS) && defined(CONFIG_STM32_SPI_DMA)
# error "Cannot enable both interrupt mode and DMA mode for SPI"
#endif
/* SPI DMA priority */
#ifdef CONFIG_STM32_SPI_DMA
# if defined(CONFIG_SPI_DMAPRIO)
# define SPI_DMA_PRIO CONFIG_SPI_DMAPRIO
# elif defined(CONFIG_STM32_STM32F10XX) || defined(CONFIG_STM32_STM32L15XX) || \
defined(CONFIG_STM32_STM32F30XX)
# define SPI_DMA_PRIO DMA_CCR_PRIMED
# elif defined(CONFIG_STM32_STM32F20XX) || defined(CONFIG_STM32_STM32F4XXX)
# define SPI_DMA_PRIO DMA_SCR_PRIMED
# else
# error "Unknown STM32 DMA"
# endif
# if defined(CONFIG_STM32_STM32F10XX) || defined(CONFIG_STM32_STM32L15XX) || \
defined(CONFIG_STM32_STM32F30XX)
# if (SPI_DMA_PRIO & ~DMA_CCR_PL_MASK) != 0
# error "Illegal value for CONFIG_SPI_DMAPRIO"
# endif
# elif defined(CONFIG_STM32_STM32F20XX) || defined(CONFIG_STM32_STM32F4XXX)
# if (SPI_DMA_PRIO & ~DMA_SCR_PL_MASK) != 0
# error "Illegal value for CONFIG_SPI_DMAPRIO"
# endif
# else
# error "Unknown STM32 DMA"
# endif
#endif
/* DMA channel configuration */
#if defined(CONFIG_STM32_STM32F10XX) || defined(CONFIG_STM32_STM32L15XX) || \
defined(CONFIG_STM32_STM32F30XX) || defined(CONFIG_STM32_STM32F37XX)
# define SPI_RXDMA16_CONFIG (SPI_DMA_PRIO|DMA_CCR_MSIZE_16BITS|DMA_CCR_PSIZE_16BITS|DMA_CCR_MINC )
# define SPI_RXDMA8_CONFIG (SPI_DMA_PRIO|DMA_CCR_MSIZE_8BITS |DMA_CCR_PSIZE_8BITS |DMA_CCR_MINC )
# define SPI_RXDMA16NULL_CONFIG (SPI_DMA_PRIO|DMA_CCR_MSIZE_8BITS |DMA_CCR_PSIZE_16BITS )
# define SPI_RXDMA8NULL_CONFIG (SPI_DMA_PRIO|DMA_CCR_MSIZE_8BITS |DMA_CCR_PSIZE_8BITS )
# define SPI_TXDMA16_CONFIG (SPI_DMA_PRIO|DMA_CCR_MSIZE_16BITS|DMA_CCR_PSIZE_16BITS|DMA_CCR_MINC|DMA_CCR_DIR)
# define SPI_TXDMA8_CONFIG (SPI_DMA_PRIO|DMA_CCR_MSIZE_8BITS |DMA_CCR_PSIZE_8BITS |DMA_CCR_MINC|DMA_CCR_DIR)
# define SPI_TXDMA16NULL_CONFIG (SPI_DMA_PRIO|DMA_CCR_MSIZE_8BITS |DMA_CCR_PSIZE_16BITS |DMA_CCR_DIR)
# define SPI_TXDMA8NULL_CONFIG (SPI_DMA_PRIO|DMA_CCR_MSIZE_8BITS |DMA_CCR_PSIZE_8BITS |DMA_CCR_DIR)
#elif defined(CONFIG_STM32_STM32F20XX) || defined(CONFIG_STM32_STM32F4XXX)
# define SPI_RXDMA16_CONFIG (SPI_DMA_PRIO|DMA_SCR_MSIZE_16BITS|DMA_SCR_PSIZE_16BITS|DMA_SCR_MINC|DMA_SCR_DIR_P2M)
# define SPI_RXDMA8_CONFIG (SPI_DMA_PRIO|DMA_SCR_MSIZE_8BITS |DMA_SCR_PSIZE_8BITS |DMA_SCR_MINC|DMA_SCR_DIR_P2M)
# define SPI_RXDMA16NULL_CONFIG (SPI_DMA_PRIO|DMA_SCR_MSIZE_8BITS |DMA_SCR_PSIZE_16BITS |DMA_SCR_DIR_P2M)
# define SPI_RXDMA8NULL_CONFIG (SPI_DMA_PRIO|DMA_SCR_MSIZE_8BITS |DMA_SCR_PSIZE_8BITS |DMA_SCR_DIR_P2M)
# define SPI_TXDMA16_CONFIG (SPI_DMA_PRIO|DMA_SCR_MSIZE_16BITS|DMA_SCR_PSIZE_16BITS|DMA_SCR_MINC|DMA_SCR_DIR_M2P)
# define SPI_TXDMA8_CONFIG (SPI_DMA_PRIO|DMA_SCR_MSIZE_8BITS |DMA_SCR_PSIZE_8BITS |DMA_SCR_MINC|DMA_SCR_DIR_M2P)
# define SPI_TXDMA16NULL_CONFIG (SPI_DMA_PRIO|DMA_SCR_MSIZE_8BITS |DMA_SCR_PSIZE_16BITS |DMA_SCR_DIR_M2P)
# define SPI_TXDMA8NULL_CONFIG (SPI_DMA_PRIO|DMA_SCR_MSIZE_8BITS |DMA_SCR_PSIZE_8BITS |DMA_SCR_DIR_M2P)
#else
# error "Unknown STM32 DMA"
#endif
/************************************************************************************
* Private Types
************************************************************************************/
struct stm32_spidev_s
{
struct spi_dev_s spidev; /* Externally visible part of the SPI interface */
uint32_t spibase; /* SPIn base address */
uint32_t spiclock; /* Clocking for the SPI module */
#ifdef CONFIG_STM32_SPI_INTERRUPTS
uint8_t spiirq; /* SPI IRQ number */
#endif
#ifdef CONFIG_STM32_SPI_DMA
volatile uint8_t rxresult; /* Result of the RX DMA */
volatile uint8_t txresult; /* Result of the RX DMA */
uint8_t rxch; /* The RX DMA channel number */
uint8_t txch; /* The TX DMA channel number */
DMA_HANDLE rxdma; /* DMA channel handle for RX transfers */
DMA_HANDLE txdma; /* DMA channel handle for TX transfers */
sem_t rxsem; /* Wait for RX DMA to complete */
sem_t txsem; /* Wait for TX DMA to complete */
uint32_t txccr; /* DMA control register for TX transfers */
uint32_t rxccr; /* DMA control register for RX transfers */
#endif
bool initialized; /* Has SPI interface been initialized */
sem_t exclsem; /* Held while chip is selected for mutual exclusion */
uint32_t frequency; /* Requested clock frequency */
uint32_t actual; /* Actual clock frequency */
uint8_t nbits; /* Width of word in bits (4 through 16) */
uint8_t mode; /* Mode 0,1,2,3 */
};
/************************************************************************************
* Private Function Prototypes
************************************************************************************/
/* Helpers */
static inline uint16_t spi_getreg(FAR struct stm32_spidev_s *priv, uint8_t offset);
#if defined(CONFIG_STM32_STM32F30XX) || defined(CONFIG_STM32_STM32F37XX)
static inline uint8_t spi_getreg8(FAR struct stm32_spidev_s *priv, uint8_t offset);
#endif
static inline void spi_putreg(FAR struct stm32_spidev_s *priv, uint8_t offset,
uint16_t value);
#if defined(CONFIG_STM32_STM32F30XX) || defined(CONFIG_STM32_STM32F37XX)
static inline void spi_putreg8(FAR struct stm32_spidev_s *priv, uint8_t offset,
uint8_t value);
#endif
static inline uint16_t spi_readword(FAR struct stm32_spidev_s *priv);
static inline void spi_writeword(FAR struct stm32_spidev_s *priv, uint16_t byte);
static inline bool spi_16bitmode(FAR struct stm32_spidev_s *priv);
/* DMA support */
#ifdef CONFIG_STM32_SPI_DMA
static void spi_dmarxwait(FAR struct stm32_spidev_s *priv);
static void spi_dmatxwait(FAR struct stm32_spidev_s *priv);
static inline void spi_dmarxwakeup(FAR struct stm32_spidev_s *priv);
static inline void spi_dmatxwakeup(FAR struct stm32_spidev_s *priv);
static void spi_dmarxcallback(DMA_HANDLE handle, uint8_t isr, void *arg);
static void spi_dmatxcallback(DMA_HANDLE handle, uint8_t isr, void *arg);
static void spi_dmarxsetup(FAR struct stm32_spidev_s *priv,
FAR void *rxbuffer, FAR void *rxdummy, size_t nwords);
static void spi_dmatxsetup(FAR struct stm32_spidev_s *priv,
FAR const void *txbuffer, FAR const void *txdummy, size_t nwords);
static inline void spi_dmarxstart(FAR struct stm32_spidev_s *priv);
static inline void spi_dmatxstart(FAR struct stm32_spidev_s *priv);
#endif
/* SPI methods */
static int spi_lock(FAR struct spi_dev_s *dev, bool lock);
static uint32_t spi_setfrequency(FAR struct spi_dev_s *dev, uint32_t frequency);
static void spi_setmode(FAR struct spi_dev_s *dev, enum spi_mode_e mode);
static void spi_setbits(FAR struct spi_dev_s *dev, int nbits);
#ifdef CONFIG_SPI_HWFEATURES
static int spi_hwfeatures(FAR struct spi_dev_s *dev,
spi_hwfeatures_t features);
#endif
static uint16_t spi_send(FAR struct spi_dev_s *dev, uint16_t wd);
static void spi_exchange(FAR struct spi_dev_s *dev, FAR const void *txbuffer,
FAR void *rxbuffer, size_t nwords);
#ifndef CONFIG_SPI_EXCHANGE
static void spi_sndblock(FAR struct spi_dev_s *dev, FAR const void *txbuffer,
size_t nwords);
static void spi_recvblock(FAR struct spi_dev_s *dev, FAR void *rxbuffer,
size_t nwords);
#endif
/* Initialization */
static void spi_bus_initialize(FAR struct stm32_spidev_s *priv);
/************************************************************************************
* Private Data
************************************************************************************/
#ifdef CONFIG_STM32_SPI1
static const struct spi_ops_s g_sp1iops =
{
.lock = spi_lock,
.select = stm32_spi1select,
.setfrequency = spi_setfrequency,
.setmode = spi_setmode,
.setbits = spi_setbits,
#ifdef CONFIG_SPI_HWFEATURES
.hwfeatures = spi_hwfeatures,
#endif
.status = stm32_spi1status,
#ifdef CONFIG_SPI_CMDDATA
.cmddata = stm32_spi1cmddata,
#endif
.send = spi_send,
#ifdef CONFIG_SPI_EXCHANGE
.exchange = spi_exchange,
#else
.sndblock = spi_sndblock,
.recvblock = spi_recvblock,
#endif
#ifdef CONFIG_SPI_CALLBACK
.registercallback = stm32_spi1register, /* Provided externally */
#else
.registercallback = 0, /* Not implemented */
#endif
};
static struct stm32_spidev_s g_spi1dev =
{
.spidev = { &g_sp1iops },
.spibase = STM32_SPI1_BASE,
.spiclock = STM32_PCLK2_FREQUENCY,
#ifdef CONFIG_STM32_SPI_INTERRUPTS
.spiirq = STM32_IRQ_SPI1,
#endif
#ifdef CONFIG_STM32_SPI_DMA
# ifdef CONFIG_STM32_SPI1_DMA
.rxch = DMACHAN_SPI1_RX,
.txch = DMACHAN_SPI1_TX,
# else
.rxch = 0,
.txch = 0,
# endif
#endif
};
#endif
#ifdef CONFIG_STM32_SPI2
static const struct spi_ops_s g_sp2iops =
{
.lock = spi_lock,
.select = stm32_spi2select,
.setfrequency = spi_setfrequency,
.setmode = spi_setmode,
.setbits = spi_setbits,
#ifdef CONFIG_SPI_HWFEATURES
.hwfeatures = spi_hwfeatures,
#endif
.status = stm32_spi2status,
#ifdef CONFIG_SPI_CMDDATA
.cmddata = stm32_spi2cmddata,
#endif
.send = spi_send,
#ifdef CONFIG_SPI_EXCHANGE
.exchange = spi_exchange,
#else
.sndblock = spi_sndblock,
.recvblock = spi_recvblock,
#endif
#ifdef CONFIG_SPI_CALLBACK
.registercallback = stm32_spi2register, /* provided externally */
#else
.registercallback = 0, /* not implemented */
#endif
};
static struct stm32_spidev_s g_spi2dev =
{
.spidev = { &g_sp2iops },
.spibase = STM32_SPI2_BASE,
.spiclock = STM32_PCLK1_FREQUENCY,
#ifdef CONFIG_STM32_SPI_INTERRUPTS
.spiirq = STM32_IRQ_SPI2,
#endif
#ifdef CONFIG_STM32_SPI_DMA
# ifdef CONFIG_STM32_SPI2_DMA
.rxch = DMACHAN_SPI2_RX,
.txch = DMACHAN_SPI2_TX,
# else
.rxch = 0,
.txch = 0,
# endif
#endif
};
#endif
#ifdef CONFIG_STM32_SPI3
static const struct spi_ops_s g_sp3iops =
{
.lock = spi_lock,
.select = stm32_spi3select,
.setfrequency = spi_setfrequency,
.setmode = spi_setmode,
.setbits = spi_setbits,
#ifdef CONFIG_SPI_HWFEATURES
.hwfeatures = spi_hwfeatures,
#endif
.status = stm32_spi3status,
#ifdef CONFIG_SPI_CMDDATA
.cmddata = stm32_spi3cmddata,
#endif
.send = spi_send,
#ifdef CONFIG_SPI_EXCHANGE
.exchange = spi_exchange,
#else
.sndblock = spi_sndblock,
.recvblock = spi_recvblock,
#endif
#ifdef CONFIG_SPI_CALLBACK
.registercallback = stm32_spi3register, /* provided externally */
#else
.registercallback = 0, /* not implemented */
#endif
};
static struct stm32_spidev_s g_spi3dev =
{
.spidev = { &g_sp3iops },
.spibase = STM32_SPI3_BASE,
.spiclock = STM32_PCLK1_FREQUENCY,
#ifdef CONFIG_STM32_SPI_INTERRUPTS
.spiirq = STM32_IRQ_SPI3,
#endif
#ifdef CONFIG_STM32_SPI_DMA
# ifdef CONFIG_STM32_SPI3_DMA
.rxch = DMACHAN_SPI3_RX,
.txch = DMACHAN_SPI3_TX,
# else
.rxch = 0,
.txch = 0,
# endif
#endif
};
#endif
#ifdef CONFIG_STM32_SPI4
static const struct spi_ops_s g_sp4iops =
{
.lock = spi_lock,
.select = stm32_spi4select,
.setfrequency = spi_setfrequency,
.setmode = spi_setmode,
.setbits = spi_setbits,
#ifdef CONFIG_SPI_HWFEATURES
.hwfeatures = spi_hwfeatures,
#endif
.status = stm32_spi4status,
#ifdef CONFIG_SPI_CMDDATA
.cmddata = stm32_spi4cmddata,
#endif
.send = spi_send,
#ifdef CONFIG_SPI_EXCHANGE
.exchange = spi_exchange,
#else
.sndblock = spi_sndblock,
.recvblock = spi_recvblock,
#endif
#ifdef CONFIG_SPI_CALLBACK
.registercallback = stm32_spi4register, /* provided externally */
#else
.registercallback = 0, /* not implemented */
#endif
};
static struct stm32_spidev_s g_spi4dev =
{
.spidev = { &g_sp4iops },
.spibase = STM32_SPI4_BASE,
.spiclock = STM32_PCLK2_FREQUENCY,
#ifdef CONFIG_STM32_SPI_INTERRUPTS
.spiirq = STM32_IRQ_SPI4,
#endif
#ifdef CONFIG_STM32_SPI_DMA
# ifdef CONFIG_STM32_SPI4_DMA
.rxch = DMACHAN_SPI4_RX,
.txch = DMACHAN_SPI4_TX,
# else
.rxch = 0,
.txch = 0,
# endif
#endif
};
#endif
#ifdef CONFIG_STM32_SPI5
static const struct spi_ops_s g_sp5iops =
{
.lock = spi_lock,
.select = stm32_spi5select,
.setfrequency = spi_setfrequency,
.setmode = spi_setmode,
.setbits = spi_setbits,
#ifdef CONFIG_SPI_HWFEATURES
.hwfeatures = spi_hwfeatures,
#endif
.status = stm32_spi5status,
#ifdef CONFIG_SPI_CMDDATA
.cmddata = stm32_spi5cmddata,
#endif
.send = spi_send,
#ifdef CONFIG_SPI_EXCHANGE
.exchange = spi_exchange,
#else
.sndblock = spi_sndblock,
.recvblock = spi_recvblock,
#endif
#ifdef CONFIG_SPI_CALLBACK
.registercallback = stm32_spi5register, /* provided externally */
#else
.registercallback = 0, /* not implemented */
#endif
};
static struct stm32_spidev_s g_spi5dev =
{
.spidev = { &g_sp5iops },
.spibase = STM32_SPI5_BASE,
.spiclock = STM32_PCLK2_FREQUENCY,
#ifdef CONFIG_STM32_SPI_INTERRUPTS
.spiirq = STM32_IRQ_SPI5,
#endif
#ifdef CONFIG_STM32_SPI_DMA
# ifdef CONFIG_STM32_SPI5_DMA
.rxch = DMACHAN_SPI5_RX,
.txch = DMACHAN_SPI5_TX,
# else
.rxch = 0,
.txch = 0,
# endif
#endif
};
#endif
#ifdef CONFIG_STM32_SPI6
static const struct spi_ops_s g_sp6iops =
{
.lock = spi_lock,
.select = stm32_spi6select,
.setfrequency = spi_setfrequency,
.setmode = spi_setmode,
.setbits = spi_setbits,
#ifdef CONFIG_SPI_HWFEATURES
.hwfeatures = spi_hwfeatures,
#endif
.status = stm32_spi6status,
#ifdef CONFIG_SPI_CMDDATA
.cmddata = stm32_spi6cmddata,
#endif
.send = spi_send,
#ifdef CONFIG_SPI_EXCHANGE
.exchange = spi_exchange,
#else
.sndblock = spi_sndblock,
.recvblock = spi_recvblock,
#endif
#ifdef CONFIG_SPI_CALLBACK
.registercallback = stm32_spi6register, /* provided externally */
#else
.registercallback = 0, /* not implemented */
#endif
};
static struct stm32_spidev_s g_spi6dev =
{
.spidev = { &g_sp6iops },
.spibase = STM32_SPI6_BASE,
.spiclock = STM32_PCLK2_FREQUENCY,
#ifdef CONFIG_STM32_SPI_INTERRUPTS
.spiirq = STM32_IRQ_SPI6,
#endif
#ifdef CONFIG_STM32_SPI_DMA
# ifdef CONFIG_STM32_SPI6_DMA
.rxch = DMACHAN_SPI6_RX,
.txch = DMACHAN_SPI6_TX,
# else
.rxch = 0,
.txch = 0,
# endif
#endif
};
#endif
/************************************************************************************
* Private Functions
************************************************************************************/
/************************************************************************************
* Name: spi_getreg
*
* Description:
* Get the contents of the SPI register at offset
*
* Input Parameters:
* priv - private SPI device structure
* offset - offset to the register of interest
*
* Returned Value:
* The contents of the 16-bit register
*
************************************************************************************/
static inline uint16_t spi_getreg(FAR struct stm32_spidev_s *priv, uint8_t offset)
{
return getreg16(priv->spibase + offset);
}
/************************************************************************************
* Name: spi_getreg8
*
* Description:
* Get the contents of the SPI register at offset
*
* Input Parameters:
* priv - private SPI device structure
* offset - offset to the register of interest
*
* Returned Value:
* The contents of the 16-bit register
*
************************************************************************************/
#if defined(CONFIG_STM32_STM32F30XX) || defined(CONFIG_STM32_STM32F37XX)
static inline uint8_t spi_getreg8(FAR struct stm32_spidev_s *priv, uint8_t offset)
{
return getreg8(priv->spibase + offset);
}
#endif
/************************************************************************************
* Name: spi_putreg
*
* Description:
* Write a 16-bit value to the SPI register at offset
*
* Input Parameters:
* priv - private SPI device structure
* offset - offset to the register of interest
* value - the 16-bit value to be written
*
* Returned Value:
* The contents of the 16-bit register
*
************************************************************************************/
static inline void spi_putreg(FAR struct stm32_spidev_s *priv, uint8_t offset, uint16_t value)
{
putreg16(value, priv->spibase + offset);
}
/************************************************************************************
* Name: spi_putreg8
*
* Description:
* Write an 8-bit value to the SPI register at offset
*
* Input Parameters:
* priv - private SPI device structure
* offset - offset to the register of interest
* value - the 16-bit value to be written
*
* Returned Value:
* The contents of the 16-bit register
*
************************************************************************************/
#if defined(CONFIG_STM32_STM32F30XX) || defined(CONFIG_STM32_STM32F37XX)
static inline void spi_putreg8(FAR struct stm32_spidev_s *priv, uint8_t offset,
uint8_t value)
{
putreg8(value, priv->spibase + offset);
}
#endif
/************************************************************************************
* Name: spi_readword
*
* Description:
* Read one byte from SPI
*
* Input Parameters:
* priv - Device-specific state data
*
* Returned Value:
* Byte as read
*
************************************************************************************/
static inline uint16_t spi_readword(FAR struct stm32_spidev_s *priv)
{
/* Wait until the receive buffer is not empty */
while ((spi_getreg(priv, STM32_SPI_SR_OFFSET) & SPI_SR_RXNE) == 0)
{
}
/* Then return the received byte */
#if defined(CONFIG_STM32_STM32F30XX) || defined(CONFIG_STM32_STM32F37XX)
/* "When the data frame size fits into one byte (less than or equal to 8 bits),
* data packing is used automatically when any read or write 16-bit access is
* performed on the SPIx_DR register. The double data frame pattern is handled
* in parallel in this case. At first, the SPI operates using the pattern
* stored in the LSB of the accessed word, then with the other half stored in
* the MSB.... The receiver then has to access both data frames by a single
* 16-bit read of SPIx_DR as a response to this single RXNE event. The RxFIFO
* threshold setting and the following read access must be always kept aligned
* at the receiver side, as data can be lost if it is not in line."
*/
if (priv->nbits < 9)
{
return (uint16_t)spi_getreg8(priv, STM32_SPI_DR_OFFSET);
}
else
#endif
{
return spi_getreg(priv, STM32_SPI_DR_OFFSET);
}
}
/************************************************************************************
* Name: spi_writeword
*
* Description:
* Write one byte to SPI
*
* Input Parameters:
* priv - Device-specific state data
* byte - Byte to send
*
* Returned Value:
* None
*
************************************************************************************/
static inline void spi_writeword(FAR struct stm32_spidev_s *priv, uint16_t word)
{
/* Wait until the transmit buffer is empty */
while ((spi_getreg(priv, STM32_SPI_SR_OFFSET) & SPI_SR_TXE) == 0)
{
}
/* Then send the word */
#if defined(CONFIG_STM32_STM32F30XX) || defined(CONFIG_STM32_STM32F37XX)
/* "When the data frame size fits into one byte (less than or equal to 8 bits),
* data packing is used automatically when any read or write 16-bit access is
* performed on the SPIx_DR register. The double data frame pattern is handled
* in parallel in this case. At first, the SPI operates using the pattern
* stored in the LSB of the accessed word, then with the other half stored in
* the MSB...
*
* "A specific problem appears if an odd number of such "fit into one byte"
* data frames must be handled. On the transmitter side, writing the last
* data frame of any odd sequence with an 8-bit access to SPIx_DR is enough.
* ..."
*
* REVISIT: "...The receiver has to change the Rx_FIFO threshold level for the
* last data frame received in the odd sequence of frames in order to generate
* the RXNE event."
*/
if (priv->nbits < 9)
{
spi_putreg8(priv, STM32_SPI_DR_OFFSET, (uint8_t)word);
}
else
#endif
{
spi_putreg(priv, STM32_SPI_DR_OFFSET, word);
}
}
/************************************************************************************
* Name: spi_16bitmode
*
* Description:
* Check if the SPI is operating in 16-bit mode
*
* Input Parameters:
* priv - Device-specific state data
*
* Returned Value:
* true: 16-bit mode, false: 8-bit mode
*
************************************************************************************/
static inline bool spi_16bitmode(FAR struct stm32_spidev_s *priv)
{
#if defined(CONFIG_STM32_STM32F30XX) || defined(CONFIG_STM32_STM32F37XX)
return (priv->nbits > 8);
#else
return ((spi_getreg(priv, STM32_SPI_CR1_OFFSET) & SPI_CR1_DFF) != 0);
#endif
}
/************************************************************************************
* Name: spi_dmarxwait
*
* Description:
* Wait for DMA to complete.
*
************************************************************************************/
#ifdef CONFIG_STM32_SPI_DMA
static void spi_dmarxwait(FAR struct stm32_spidev_s *priv)
{
int ret;
/* Take the semaphore (perhaps waiting). If the result is zero, then the DMA
* must not really have completed???
*/
do
{
ret = nxsem_wait(&priv->rxsem);
/* The only case that an error should occur here is if the wait was
* awakened by a signal.
*/
DEBUGASSERT(ret == OK || ret == -EINTR);
}
while (ret == -EINTR || priv->rxresult == 0);
}
#endif
/************************************************************************************
* Name: spi_dmatxwait
*
* Description:
* Wait for DMA to complete.
*
************************************************************************************/
#ifdef CONFIG_STM32_SPI_DMA
static void spi_dmatxwait(FAR struct stm32_spidev_s *priv)
{
int ret;
/* Take the semaphore (perhaps waiting). If the result is zero, then the DMA
* must not really have completed???
*/
do
{
ret = nxsem_wait(&priv->txsem);
/* The only case that an error should occur here is if the wait was
* awakened by a signal.
*/
DEBUGASSERT(ret == OK || ret == -EINTR);
}
while (ret == -EINTR || priv->txresult == 0);
}
#endif
/************************************************************************************
* Name: spi_dmarxwakeup
*
* Description:
* Signal that DMA is complete
*
************************************************************************************/
#ifdef CONFIG_STM32_SPI_DMA
static inline void spi_dmarxwakeup(FAR struct stm32_spidev_s *priv)
{
(void)nxsem_post(&priv->rxsem);
}
#endif
/************************************************************************************
* Name: spi_dmatxwakeup
*
* Description:
* Signal that DMA is complete
*
************************************************************************************/
#ifdef CONFIG_STM32_SPI_DMA
static inline void spi_dmatxwakeup(FAR struct stm32_spidev_s *priv)
{
(void)nxsem_post(&priv->txsem);
}
#endif
/************************************************************************************
* Name: spi_dmarxcallback
*
* Description:
* Called when the RX DMA completes
*
************************************************************************************/
#ifdef CONFIG_STM32_SPI_DMA
static void spi_dmarxcallback(DMA_HANDLE handle, uint8_t isr, void *arg)
{
FAR struct stm32_spidev_s *priv = (FAR struct stm32_spidev_s *)arg;
/* Wake-up the SPI driver */
priv->rxresult = isr | 0x080; /* OR'ed with 0x80 to assure non-zero */
spi_dmarxwakeup(priv);
}
#endif
/************************************************************************************
* Name: spi_dmatxcallback
*
* Description:
* Called when the RX DMA completes
*
************************************************************************************/
#ifdef CONFIG_STM32_SPI_DMA
static void spi_dmatxcallback(DMA_HANDLE handle, uint8_t isr, void *arg)
{
FAR struct stm32_spidev_s *priv = (FAR struct stm32_spidev_s *)arg;
/* Wake-up the SPI driver */
priv->txresult = isr | 0x080; /* OR'ed with 0x80 to assure non-zero */
spi_dmatxwakeup(priv);
}
#endif
/************************************************************************************
* Name: spi_dmarxsetup
*
* Description:
* Setup to perform RX DMA
*
************************************************************************************/
#ifdef CONFIG_STM32_SPI_DMA
static void spi_dmarxsetup(FAR struct stm32_spidev_s *priv, FAR void *rxbuffer,
FAR void *rxdummy, size_t nwords)
{
/* 8- or 16-bit mode? */
if (spi_16bitmode(priv))
{
/* 16-bit mode -- is there a buffer to receive data in? */
if (rxbuffer)
{
priv->rxccr = SPI_RXDMA16_CONFIG;
}
else
{
rxbuffer = rxdummy;
priv->rxccr = SPI_RXDMA16NULL_CONFIG;
}
}
else
{
/* 8-bit mode -- is there a buffer to receive data in? */
if (rxbuffer)
{
priv->rxccr = SPI_RXDMA8_CONFIG;
}
else
{
rxbuffer = rxdummy;
priv->rxccr = SPI_RXDMA8NULL_CONFIG;
}
}
/* Configure the RX DMA */
stm32_dmasetup(priv->rxdma, priv->spibase + STM32_SPI_DR_OFFSET,
(uint32_t)rxbuffer, nwords, priv->rxccr);
}
#endif
/************************************************************************************
* Name: spi_dmatxsetup
*
* Description:
* Setup to perform TX DMA
*
************************************************************************************/
#ifdef CONFIG_STM32_SPI_DMA
static void spi_dmatxsetup(FAR struct stm32_spidev_s *priv, FAR const void *txbuffer,
FAR const void *txdummy, size_t nwords)
{
/* 8- or 16-bit mode? */
if (spi_16bitmode(priv))
{
/* 16-bit mode -- is there a buffer to transfer data from? */
if (txbuffer)
{
priv->txccr = SPI_TXDMA16_CONFIG;
}
else
{
txbuffer = txdummy;
priv->txccr = SPI_TXDMA16NULL_CONFIG;
}
}
else
{
/* 8-bit mode -- is there a buffer to transfer data from? */
if (txbuffer)
{
priv->txccr = SPI_TXDMA8_CONFIG;
}
else
{
txbuffer = txdummy;
priv->txccr = SPI_TXDMA8NULL_CONFIG;
}
}
/* Setup the TX DMA */
stm32_dmasetup(priv->txdma, priv->spibase + STM32_SPI_DR_OFFSET,
(uint32_t)txbuffer, nwords, priv->txccr);
}
#endif
/************************************************************************************
* Name: spi_dmarxstart
*
* Description:
* Start RX DMA
*
************************************************************************************/
#ifdef CONFIG_STM32_SPI_DMA
static inline void spi_dmarxstart(FAR struct stm32_spidev_s *priv)
{
priv->rxresult = 0;
stm32_dmastart(priv->rxdma, spi_dmarxcallback, priv, false);
}
#endif
/************************************************************************************
* Name: spi_dmatxstart
*
* Description:
* Start TX DMA
*
************************************************************************************/
#ifdef CONFIG_STM32_SPI_DMA
static inline void spi_dmatxstart(FAR struct stm32_spidev_s *priv)
{
priv->txresult = 0;
stm32_dmastart(priv->txdma, spi_dmatxcallback, priv, false);
}
#endif
/************************************************************************************
* Name: spi_modifycr1
*
* Description:
* Clear and set bits in the CR1 register
*
* Input Parameters:
* priv - Device-specific state data
* clrbits - The bits to clear
* setbits - The bits to set
*
* Returned Value:
* None
*
************************************************************************************/
static void spi_modifycr1(FAR struct stm32_spidev_s *priv, uint16_t setbits,
uint16_t clrbits)
{
uint16_t cr1;
cr1 = spi_getreg(priv, STM32_SPI_CR1_OFFSET);
cr1 &= ~clrbits;
cr1 |= setbits;
spi_putreg(priv, STM32_SPI_CR1_OFFSET, cr1);
}
/************************************************************************************
* Name: spi_modifycr2
*
* Description:
* Clear and set bits in the CR2 register
*
* Input Parameters:
* priv - Device-specific state data
* clrbits - The bits to clear
* setbits - The bits to set
*
* Returned Value:
* None
*
************************************************************************************/
#if defined(CONFIG_STM32_STM32F30XX) || defined(CONFIG_STM32_STM32F37XX) || \
defined(CONFIG_STM32_SPI_DMA)
static void spi_modifycr2(FAR struct stm32_spidev_s *priv, uint16_t setbits,
uint16_t clrbits)
{
uint16_t cr2;
cr2 = spi_getreg(priv, STM32_SPI_CR2_OFFSET);
cr2 &= ~clrbits;
cr2 |= setbits;
spi_putreg(priv, STM32_SPI_CR2_OFFSET, cr2);
}
#endif
/************************************************************************************
* Name: spi_lock
*
* Description:
* On SPI busses where there are multiple devices, it will be necessary to
* lock SPI to have exclusive access to the busses for a sequence of
* transfers. The bus should be locked before the chip is selected. After
* locking the SPI bus, the caller should then also call the setfrequency,
* setbits, and setmode methods to make sure that the SPI is properly
* configured for the device. If the SPI buss is being shared, then it
* may have been left in an incompatible state.
*
* Input Parameters:
* dev - Device-specific state data
* lock - true: Lock spi bus, false: unlock SPI bus
*
* Returned Value:
* None
*
************************************************************************************/
static int spi_lock(FAR struct spi_dev_s *dev, bool lock)
{
FAR struct stm32_spidev_s *priv = (FAR struct stm32_spidev_s *)dev;
int ret;
if (lock)
{
/* Take the semaphore (perhaps waiting) */
do
{
ret = nxsem_wait(&priv->exclsem);
/* The only case that an error should occur here is if the wait
* was awakened by a signal.
*/
DEBUGASSERT(ret == OK || ret == -EINTR);
}
while (ret == -EINTR);
}
else
{
(void)nxsem_post(&priv->exclsem);
ret = OK;
}
return ret;
}
/************************************************************************************
* Name: spi_setfrequency
*
* Description:
* Set the SPI frequency.
*
* Input Parameters:
* dev - Device-specific state data
* frequency - The SPI frequency requested
*
* Returned Value:
* Returns the actual frequency selected
*
************************************************************************************/
static uint32_t spi_setfrequency(FAR struct spi_dev_s *dev, uint32_t frequency)
{
FAR struct stm32_spidev_s *priv = (FAR struct stm32_spidev_s *)dev;
uint16_t setbits;
uint32_t actual;
/* Has the frequency changed? */
if (frequency != priv->frequency)
{
/* Choices are limited by PCLK frequency with a set of divisors */
if (frequency >= priv->spiclock >> 1)
{
/* More than fPCLK/2. This is as fast as we can go */
setbits = SPI_CR1_FPCLCKd2; /* 000: fPCLK/2 */
actual = priv->spiclock >> 1;
}
else if (frequency >= priv->spiclock >> 2)
{
/* Between fPCLCK/2 and fPCLCK/4, pick the slower */
setbits = SPI_CR1_FPCLCKd4; /* 001: fPCLK/4 */
actual = priv->spiclock >> 2;
}
else if (frequency >= priv->spiclock >> 3)
{
/* Between fPCLCK/4 and fPCLCK/8, pick the slower */
setbits = SPI_CR1_FPCLCKd8; /* 010: fPCLK/8 */
actual = priv->spiclock >> 3;
}
else if (frequency >= priv->spiclock >> 4)
{
/* Between fPCLCK/8 and fPCLCK/16, pick the slower */
setbits = SPI_CR1_FPCLCKd16; /* 011: fPCLK/16 */
actual = priv->spiclock >> 4;
}
else if (frequency >= priv->spiclock >> 5)
{
/* Between fPCLCK/16 and fPCLCK/32, pick the slower */
setbits = SPI_CR1_FPCLCKd32; /* 100: fPCLK/32 */
actual = priv->spiclock >> 5;
}
else if (frequency >= priv->spiclock >> 6)
{
/* Between fPCLCK/32 and fPCLCK/64, pick the slower */
setbits = SPI_CR1_FPCLCKd64; /* 101: fPCLK/64 */
actual = priv->spiclock >> 6;
}
else if (frequency >= priv->spiclock >> 7)
{
/* Between fPCLCK/64 and fPCLCK/128, pick the slower */
setbits = SPI_CR1_FPCLCKd128; /* 110: fPCLK/128 */
actual = priv->spiclock >> 7;
}
else
{
/* Less than fPCLK/128. This is as slow as we can go */
setbits = SPI_CR1_FPCLCKd256; /* 111: fPCLK/256 */
actual = priv->spiclock >> 8;
}
spi_modifycr1(priv, 0, SPI_CR1_SPE);
spi_modifycr1(priv, setbits, SPI_CR1_BR_MASK);
spi_modifycr1(priv, SPI_CR1_SPE, 0);
/* Save the frequency selection so that subsequent reconfigurations will be
* faster.
*/
spiinfo("Frequency %d->%d\n", frequency, actual);
priv->frequency = frequency;
priv->actual = actual;
}
return priv->actual;
}
/************************************************************************************
* Name: spi_setmode
*
* Description:
* Set the SPI mode. see enum spi_mode_e for mode definitions
*
* Input Parameters:
* dev - Device-specific state data
* mode - The SPI mode requested
*
* Returned Value:
* Returns the actual frequency selected
*
************************************************************************************/
static void spi_setmode(FAR struct spi_dev_s *dev, enum spi_mode_e mode)
{
FAR struct stm32_spidev_s *priv = (FAR struct stm32_spidev_s *)dev;
uint16_t setbits;
uint16_t clrbits;
spiinfo("mode=%d\n", mode);
/* Has the mode changed? */
if (mode != priv->mode)
{
/* Yes... Set CR1 appropriately */
switch (mode)
{
case SPIDEV_MODE0: /* CPOL=0; CPHA=0 */
setbits = 0;
clrbits = SPI_CR1_CPOL | SPI_CR1_CPHA;
break;
case SPIDEV_MODE1: /* CPOL=0; CPHA=1 */
setbits = SPI_CR1_CPHA;
clrbits = SPI_CR1_CPOL;
break;
case SPIDEV_MODE2: /* CPOL=1; CPHA=0 */
setbits = SPI_CR1_CPOL;
clrbits = SPI_CR1_CPHA;
break;
case SPIDEV_MODE3: /* CPOL=1; CPHA=1 */
setbits = SPI_CR1_CPOL | SPI_CR1_CPHA;
clrbits = 0;
break;
default:
return;
}
spi_modifycr1(priv, 0, SPI_CR1_SPE);
spi_modifycr1(priv, setbits, clrbits);
spi_modifycr1(priv, SPI_CR1_SPE, 0);
/* Save the mode so that subsequent re-configurations will be faster */
priv->mode = mode;
}
}
/************************************************************************************
* Name: spi_setbits
*
* Description:
* Set the number of bits per word.
*
* Input Parameters:
* dev - Device-specific state data
* nbits - The number of bits requested
*
* Returned Value:
* None
*
************************************************************************************/
static void spi_setbits(FAR struct spi_dev_s *dev, int nbits)
{
FAR struct stm32_spidev_s *priv = (FAR struct stm32_spidev_s *)dev;
uint16_t setbits;
uint16_t clrbits;
spiinfo("nbits=%d\n", nbits);
/* Has the number of bits changed? */
if (nbits != priv->nbits)
{
#if defined(CONFIG_STM32_STM32F30XX) || defined(CONFIG_STM32_STM32F37XX)
/* Yes... Set CR2 appropriately */
/* Set the number of bits (valid range 4-16) */
if (nbits < 4 || nbits > 16)
{
spierr("ERROR: nbits out of range: %d\n", nbits);
return;
}
clrbits = SPI_CR2_DS_MASK;
setbits = SPI_CR2_DS(nbits);
/* If nbits is <=8, then we are in byte mode and FRXTH must be set
* (else, transaction will not complete).
*/
if (nbits < 9)
{
setbits |= SPI_CR2_FRXTH; /* RX FIFO Threshold = 1 byte */
}
else
{
clrbits |= SPI_CR2_FRXTH; /* RX FIFO Threshold = 2 bytes */
}
spi_modifycr1(priv, 0, SPI_CR1_SPE);
spi_modifycr2(priv, setbits, clrbits);
spi_modifycr1(priv, SPI_CR1_SPE, 0);
#else
/* Yes... Set CR1 appropriately */
switch (nbits)
{
case 8:
setbits = 0;
clrbits = SPI_CR1_DFF;
break;
case 16:
setbits = SPI_CR1_DFF;
clrbits = 0;
break;
default:
return;
}
spi_modifycr1(priv, 0, SPI_CR1_SPE);
spi_modifycr1(priv, setbits, clrbits);
spi_modifycr1(priv, SPI_CR1_SPE, 0);
#endif
/* Save the selection so the subsequence re-configurations will be faster */
priv->nbits = nbits;
}
}
/****************************************************************************
* Name: spi_hwfeatures
*
* Description:
* Set hardware-specific feature flags.
*
* Input Parameters:
* dev - Device-specific state data
* features - H/W feature flags
*
* Returned Value:
* Zero (OK) if the selected H/W features are enabled; A negated errno
* value if any H/W feature is not supportable.
*
****************************************************************************/
#ifdef CONFIG_SPI_HWFEATURES
static int spi_hwfeatures(FAR struct spi_dev_s *dev, spi_hwfeatures_t features)
{
#ifdef CONFIG_SPI_BITORDER
FAR struct stm32_spidev_s *priv = (FAR struct stm32_spidev_s *)dev;
uint16_t setbits;
uint16_t clrbits;
spiinfo("features=%08x\n", features);
/* Transfer data LSB first? */
if ((features & HWFEAT_LSBFIRST) != 0)
{
setbits = SPI_CR1_LSBFIRST;
clrbits = 0;
}
else
{
setbits = 0;
clrbits = SPI_CR1_LSBFIRST;
}
spi_modifycr1(priv, 0, SPI_CR1_SPE);
spi_modifycr1(priv, setbits, clrbits);
spi_modifycr1(priv, SPI_CR1_SPE, 0);
/* Other H/W features are not supported */
return ((features & ~HWFEAT_LSBFIRST) == 0) ? OK : -ENOSYS;
#else
return -ENOSYS;
#endif
}
#endif
/************************************************************************************
* Name: spi_send
*
* Description:
* Exchange one word on SPI
*
* Input Parameters:
* dev - Device-specific state data
* wd - The word to send. the size of the data is determined by the
* number of bits selected for the SPI interface.
*
* Returned Value:
* response
*
************************************************************************************/
static uint16_t spi_send(FAR struct spi_dev_s *dev, uint16_t wd)
{
FAR struct stm32_spidev_s *priv = (FAR struct stm32_spidev_s *)dev;
uint32_t regval;
uint16_t ret;
DEBUGASSERT(priv && priv->spibase);
spi_writeword(priv, wd);
ret = spi_readword(priv);
/* Check and clear any error flags (Reading from the SR clears the error flags) */
regval = spi_getreg(priv, STM32_SPI_SR_OFFSET);
spiinfo("Sent: %04x Return: %04x Status: %02x\n", wd, ret, regval);
UNUSED(regval);
return ret;
}
/************************************************************************************
* Name: spi_exchange (no DMA). aka spi_exchange_nodma
*
* Description:
* Exchange a block of data on SPI without using DMA
*
* REVISIT: This function could be much more efficient by exploiting (1) RX and TX
* FIFOs and (2) the STM32 F3 data packing.
*
* Input Parameters:
* dev - Device-specific state data
* txbuffer - A pointer to the buffer of data to be sent
* rxbuffer - A pointer to a buffer in which to receive data
* nwords - the length of data to be exchaned in units of words.
* The wordsize is determined by the number of bits-per-word
* selected for the SPI interface. If nbits <= 8, the data is
* packed into uint8_t's; if nbits >8, the data is packed into uint16_t's
*
* Returned Value:
* None
*
************************************************************************************/
#if !defined(CONFIG_STM32_SPI_DMA) || defined(CONFIG_STM32_DMACAPABLE)
#if !defined(CONFIG_STM32_SPI_DMA)
static void spi_exchange(FAR struct spi_dev_s *dev, FAR const void *txbuffer,
FAR void *rxbuffer, size_t nwords)
#else
static void spi_exchange_nodma(FAR struct spi_dev_s *dev, FAR const void *txbuffer,
FAR void *rxbuffer, size_t nwords)
#endif
{
FAR struct stm32_spidev_s *priv = (FAR struct stm32_spidev_s *)dev;
DEBUGASSERT(priv && priv->spibase);
spiinfo("txbuffer=%p rxbuffer=%p nwords=%d\n", txbuffer, rxbuffer, nwords);
/* 8- or 16-bit mode? */
if (spi_16bitmode(priv))
{
/* 16-bit mode */
const uint16_t *src = (const uint16_t *)txbuffer;
uint16_t *dest = (uint16_t *)rxbuffer;
uint16_t word;
while (nwords-- > 0)
{
/* Get the next word to write. Is there a source buffer? */
if (src)
{
word = *src++;
}
else
{
word = 0xffff;
}
/* Exchange one word */
word = spi_send(dev, word);
/* Is there a buffer to receive the return value? */
if (dest)
{
*dest++ = word;
}
}
}
else
{
/* 8-bit mode */
const uint8_t *src = (const uint8_t *)txbuffer;
uint8_t *dest = (uint8_t *)rxbuffer;
uint8_t word;
while (nwords-- > 0)
{
/* Get the next word to write. Is there a source buffer? */
if (src)
{
word = *src++;
}
else
{
word = 0xff;
}
/* Exchange one word */
word = (uint8_t)spi_send(dev, (uint16_t)word);
/* Is there a buffer to receive the return value? */
if (dest)
{
*dest++ = word;
}
}
}
}
#endif /* !CONFIG_STM32_SPI_DMA || CONFIG_STM32_DMACAPABLE */
/****************************************************************************
* Name: spi_exchange (with DMA capability)
*
* Description:
* Exchange a block of data on SPI using DMA
*
* Input Parameters:
* dev - Device-specific state data
* txbuffer - A pointer to the buffer of data to be sent
* rxbuffer - A pointer to a buffer in which to receive data
* nwords - the length of data to be exchanged in units of words.
* The wordsize is determined by the number of bits-per-word
* selected for the SPI interface. If nbits <= 8, the data is
* packed into uint8_t's; if nbits >8, the data is packed into uint16_t's
*
* Returned Value:
* None
*
************************************************************************************/
#ifdef CONFIG_STM32_SPI_DMA
static void spi_exchange(FAR struct spi_dev_s *dev, FAR const void *txbuffer,
FAR void *rxbuffer, size_t nwords)
{
FAR struct stm32_spidev_s *priv = (FAR struct stm32_spidev_s *)dev;
#ifdef CONFIG_STM32_DMACAPABLE
if ((priv->rxdma == NULL) || (priv->txdma == NULL) ||
(txbuffer && !stm32_dmacapable((uint32_t)txbuffer, nwords, priv->txccr)) ||
(rxbuffer && !stm32_dmacapable((uint32_t)rxbuffer, nwords, priv->rxccr)) ||
up_interrupt_context())
{
/* Invalid DMA channels, unsupported memory region, or interrupt context, fall
* back to non-DMA method.
*/
spi_exchange_nodma(dev, txbuffer, rxbuffer, nwords);
}
else
#endif
{
static uint16_t rxdummy = 0xffff;
static const uint16_t txdummy = 0xffff;
spiinfo("txbuffer=%p rxbuffer=%p nwords=%d\n", txbuffer, rxbuffer, nwords);
DEBUGASSERT(priv && priv->spibase);
/* Setup DMAs */
spi_dmarxsetup(priv, rxbuffer, &rxdummy, nwords);
spi_dmatxsetup(priv, txbuffer, &txdummy, nwords);
/* Start the DMAs */
spi_dmarxstart(priv);
spi_dmatxstart(priv);
/* Then wait for each to complete */
spi_dmarxwait(priv);
spi_dmatxwait(priv);
}
}
#endif /* CONFIG_STM32_SPI_DMA */
/****************************************************************************
* Name: spi_sndblock
*
* Description:
* Send a block of data on SPI
*
* Input Parameters:
* dev - Device-specific state data
* txbuffer - A pointer to the buffer of data to be sent
* nwords - the length of data to send from the buffer in number of words.
* The wordsize is determined by the number of bits-per-word
* selected for the SPI interface. If nbits <= 8, the data is
* packed into uint8_t's; if nbits >8, the data is packed into uint16_t's
*
* Returned Value:
* None
*
************************************************************************************/
#ifndef CONFIG_SPI_EXCHANGE
static void spi_sndblock(FAR struct spi_dev_s *dev, FAR const void *txbuffer, size_t nwords)
{
spiinfo("txbuffer=%p nwords=%d\n", txbuffer, nwords);
return spi_exchange(dev, txbuffer, NULL, nwords);
}
#endif
/************************************************************************************
* Name: spi_recvblock
*
* Description:
* Receive a block of data from SPI
*
* Input Parameters:
* dev - Device-specific state data
* rxbuffer - A pointer to the buffer in which to recieve data
* nwords - the length of data that can be received in the buffer in number
* of words. The wordsize is determined by the number of bits-per-word
* selected for the SPI interface. If nbits <= 8, the data is
* packed into uint8_t's; if nbits >8, the data is packed into uint16_t's
*
* Returned Value:
* None
*
************************************************************************************/
#ifndef CONFIG_SPI_EXCHANGE
static void spi_recvblock(FAR struct spi_dev_s *dev, FAR void *rxbuffer, size_t nwords)
{
spiinfo("rxbuffer=%p nwords=%d\n", rxbuffer, nwords);
return spi_exchange(dev, NULL, rxbuffer, nwords);
}
#endif
/************************************************************************************
* Name: spi_bus_initialize
*
* Description:
* Initialize the selected SPI bus in its default state (Master, 8-bit, mode 0, etc.)
*
* Input Parameters:
* priv - private SPI device structure
*
* Returned Value:
* None
*
************************************************************************************/
static void spi_bus_initialize(FAR struct stm32_spidev_s *priv)
{
uint16_t setbits;
uint16_t clrbits;
#if defined(CONFIG_STM32_STM32F30XX) || defined(CONFIG_STM32_STM32F37XX)
/* Configure CR1 and CR2. Default configuration:
* Mode 0: CR1.CPHA=0 and CR1.CPOL=0
* Master: CR1.MSTR=1
* 8-bit: CR2.DS=7
* MSB transmitted first: CR1.LSBFIRST=0
* Replace NSS with SSI & SSI=1: CR1.SSI=1 CR1.SSM=1 (prevents MODF error)
* Two lines full duplex: CR1.BIDIMODE=0 CR1.BIDIOIE=(Don't care) and CR1.RXONLY=0
*/
clrbits = SPI_CR1_CPHA | SPI_CR1_CPOL | SPI_CR1_BR_MASK | SPI_CR1_LSBFIRST |
SPI_CR1_RXONLY | SPI_CR1_CRCL | SPI_CR1_BIDIOE | SPI_CR1_BIDIMODE;
setbits = SPI_CR1_MSTR | SPI_CR1_SSI | SPI_CR1_SSM;
spi_modifycr1(priv, setbits, clrbits);
clrbits = SPI_CR2_DS_MASK;
setbits = SPI_CR2_DS_8BIT | SPI_CR2_FRXTH; /* FRXTH must be high in 8-bit mode */
spi_modifycr2(priv, setbits, clrbits);
#else
/* Configure CR1. Default configuration:
* Mode 0: CPHA=0 and CPOL=0
* Master: MSTR=1
* 8-bit: DFF=0
* MSB transmitted first: LSBFIRST=0
* Replace NSS with SSI & SSI=1: SSI=1 SSM=1 (prevents MODF error)
* Two lines full duplex: BIDIMODE=0 BIDIOIE=(Don't care) and RXONLY=0
*/
clrbits = SPI_CR1_CPHA | SPI_CR1_CPOL | SPI_CR1_BR_MASK | SPI_CR1_LSBFIRST |
SPI_CR1_RXONLY | SPI_CR1_DFF | SPI_CR1_BIDIOE | SPI_CR1_BIDIMODE;
setbits = SPI_CR1_MSTR | SPI_CR1_SSI | SPI_CR1_SSM;
spi_modifycr1(priv, setbits, clrbits);
#endif
priv->frequency = 0;
priv->nbits = 8;
priv->mode = SPIDEV_MODE0;
/* Select a default frequency of approx. 400KHz */
spi_setfrequency((FAR struct spi_dev_s *)priv, 400000);
/* CRCPOLY configuration */
spi_putreg(priv, STM32_SPI_CRCPR_OFFSET, 7);
/* Initialize the SPI semaphore that enforces mutually exclusive access */
nxsem_init(&priv->exclsem, 0, 1);
#ifdef CONFIG_STM32_SPI_DMA
/* Initialize the SPI semaphores that is used to wait for DMA completion.
* This semaphore is used for signaling and, hence, should not have
* priority inheritance enabled.
*/
if (priv->rxch && priv->txch)
{
nxsem_init(&priv->rxsem, 0, 0);
nxsem_init(&priv->txsem, 0, 0);
nxsem_setprotocol(&priv->rxsem, SEM_PRIO_NONE);
nxsem_setprotocol(&priv->txsem, SEM_PRIO_NONE);
/* Get DMA channels. NOTE: stm32_dmachannel() will always assign the DMA
* channel. If the channel is not available, then stm32_dmachannel() will
* block and wait until the channel becomes available. WARNING: If you have
* another device sharing a DMA channel with SPI and the code never releases
* that channel, then the call to stm32_dmachannel() will hang forever in
* this function! Don't let your design do that!
*/
priv->rxdma = stm32_dmachannel(priv->rxch);
priv->txdma = stm32_dmachannel(priv->txch);
DEBUGASSERT(priv->rxdma && priv->txdma);
spi_modifycr2(priv, SPI_CR2_RXDMAEN | SPI_CR2_TXDMAEN, 0);
}
else
{
priv->rxdma = NULL;
priv->txdma = NULL;
}
#endif
/* Enable SPI */
spi_modifycr1(priv, SPI_CR1_SPE, 0);
}
/************************************************************************************
* Public Functions
************************************************************************************/
/************************************************************************************
* Name: stm32_spibus_initialize
*
* Description:
* Initialize the selected SPI bus
*
* Input Parameters:
* Port number (for hardware that has mutiple SPI interfaces)
*
* Returned Value:
* Valid SPI device structure reference on succcess; a NULL on failure
*
************************************************************************************/
FAR struct spi_dev_s *stm32_spibus_initialize(int bus)
{
FAR struct stm32_spidev_s *priv = NULL;
irqstate_t flags = enter_critical_section();
#ifdef CONFIG_STM32_SPI1
if (bus == 1)
{
/* Select SPI1 */
priv = &g_spi1dev;
/* Only configure if the bus is not already configured */
if (!priv->initialized)
{
/* Configure SPI1 pins: SCK, MISO, and MOSI */
stm32_configgpio(GPIO_SPI1_SCK);
stm32_configgpio(GPIO_SPI1_MISO);
stm32_configgpio(GPIO_SPI1_MOSI);
/* Set up default configuration: Master, 8-bit, etc. */
spi_bus_initialize(priv);
priv->initialized = true;
}
}
else
#endif
#ifdef CONFIG_STM32_SPI2
if (bus == 2)
{
/* Select SPI2 */
priv = &g_spi2dev;
/* Only configure if the bus is not already configured */
if (!priv->initialized)
{
/* Configure SPI2 pins: SCK, MISO, and MOSI */
stm32_configgpio(GPIO_SPI2_SCK);
stm32_configgpio(GPIO_SPI2_MISO);
stm32_configgpio(GPIO_SPI2_MOSI);
/* Set up default configuration: Master, 8-bit, etc. */
spi_bus_initialize(priv);
priv->initialized = true;
}
}
else
#endif
#ifdef CONFIG_STM32_SPI3
if (bus == 3)
{
/* Select SPI3 */
priv = &g_spi3dev;
/* Only configure if the bus is not already configured */
if (!priv->initialized)
{
/* Configure SPI3 pins: SCK, MISO, and MOSI */
stm32_configgpio(GPIO_SPI3_SCK);
stm32_configgpio(GPIO_SPI3_MISO);
stm32_configgpio(GPIO_SPI3_MOSI);
/* Set up default configuration: Master, 8-bit, etc. */
spi_bus_initialize(priv);
priv->initialized = true;
}
}
else
#endif
#ifdef CONFIG_STM32_SPI4
if (bus == 4)
{
/* Select SPI4 */
priv = &g_spi4dev;
/* Only configure if the bus is not already configured */
if (!priv->initialized)
{
/* Configure SPI4 pins: SCK, MISO, and MOSI */
stm32_configgpio(GPIO_SPI4_SCK);
stm32_configgpio(GPIO_SPI4_MISO);
stm32_configgpio(GPIO_SPI4_MOSI);
/* Set up default configuration: Master, 8-bit, etc. */
spi_bus_initialize(priv);
priv->initialized = true;
}
}
else
#endif
#ifdef CONFIG_STM32_SPI5
if (bus == 5)
{
/* Select SPI5 */
priv = &g_spi5dev;
/* Only configure if the bus is not already configured */
if (!priv->initialized)
{
/* Configure SPI5 pins: SCK, MISO, and MOSI */
stm32_configgpio(GPIO_SPI5_SCK);
stm32_configgpio(GPIO_SPI5_MISO);
stm32_configgpio(GPIO_SPI5_MOSI);
/* Set up default configuration: Master, 8-bit, etc. */
spi_bus_initialize(priv);
priv->initialized = true;
}
}
else
#endif
#ifdef CONFIG_STM32_SPI6
if (bus == 6)
{
/* Select SPI6 */
priv = &g_spi6dev;
/* Only configure if the bus is not already configured */
if (!priv->initialized)
{
/* Configure SPI6 pins: SCK, MISO, and MOSI */
stm32_configgpio(GPIO_SPI6_SCK);
stm32_configgpio(GPIO_SPI6_MISO);
stm32_configgpio(GPIO_SPI6_MOSI);
/* Set up default configuration: Master, 8-bit, etc. */
spi_bus_initialize(priv);
priv->initialized = true;
}
}
else
#endif
{
spierr("ERROR: Unsupported SPI bus: %d\n", bus);
return NULL;
}
leave_critical_section(flags);
return (FAR struct spi_dev_s *)priv;
}
#endif /* CONFIG_STM32_SPI1 || CONFIG_STM32_SPI2 || CONFIG_STM32_SPI3 || CONFIG_STM32_SPI4 || CONFIG_STM32_SPI5 || CONFIG_STM32_SPI6 */