nuttx/arch/arm/src/stm32l5/stm32l5_start.c
Xiang Xiao 3f67c67aaf arch: Fix the stack boundary calculation and check
All supported arch uses a push-down stack:
The stack grows toward lower addresses in memory. The stack pointer
register points to the lowest, valid working address (the "top" of
the stack). Items on the stack are referenced as positive(include zero)
word offsets from sp.
Which means that for stack in the [begin, begin + size):
1.The initial SP point to begin + size
2.push equals sub and then store
3.pop equals load and then add

Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
2021-04-10 08:39:54 -07:00

369 lines
12 KiB
C

/****************************************************************************
* arch/arm/src/stm32l5/stm32l5_start.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <stdint.h>
#include <assert.h>
#include <debug.h>
#include <nuttx/init.h>
#include <arch/board/board.h>
#include "arm_arch.h"
#include "arm_internal.h"
#include "nvic.h"
#include "stm32l5.h"
#include "stm32l5_gpio.h"
#include "stm32l5_userspace.h"
#include "stm32l5_start.h"
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Memory Map ***************************************************************/
/* 0x0800:0000 - Beginning of the internal FLASH. Address of vectors.
* Mapped as boot memory address 0x0000:0000 at reset.
* 0x080f:ffff - End of flash region (assuming the max of 2MiB of FLASH).
* 0x2000:0000 - Start of internal SRAM1 and start of .data (_sdata)
* - End of .data (_edata) and start of .bss (_sbss)
* - End of .bss (_ebss) and bottom of idle stack
* - _ebss + CONFIG_IDLETHREAD_STACKSIZE = end of idle stack,
* start of heap. NOTE that the ARM uses a decrement before
* store stack so that the correct initial value is the end of
* the stack + 4;
* 0x2002:ffff - End of internal SRAM1
* 0x2003:0000 - Start of internal SRAM2
* 0x2003:ffff - End of internal SRAM2
*/
#define SRAM2_START STM32L5_SRAM2_BASE
#define SRAM2_END (SRAM2_START + STM32L5_SRAM2_SIZE)
#define HEAP_BASE ((uintptr_t)&_ebss + CONFIG_IDLETHREAD_STACKSIZE)
/* g_idle_topstack: _sbss is the start of the BSS region as defined by the
* linker script. _ebss lies at the end of the BSS region. The idle task
* stack starts at the end of BSS and is of size CONFIG_IDLETHREAD_STACKSIZE.
* The IDLE thread is the thread that the system boots on and, eventually,
* becomes the IDLE, do nothing task that runs only when there is nothing
* else to run. The heap continues from there until the end of memory.
* g_idle_topstack is a read-only variable the provides this computed
* address.
*/
const uintptr_t g_idle_topstack = HEAP_BASE;
/****************************************************************************
* Private Function prototypes
****************************************************************************/
#ifdef CONFIG_ARCH_FPU
static inline void stm32l5_fpuconfig(void);
#endif
#ifdef CONFIG_STACK_COLORATION
static void go_nx_start(void *pv, unsigned int nbytes)
__attribute__ ((naked, no_instrument_function, noreturn));
#endif
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: showprogress
*
* Description:
* Print a character on the UART to show boot status.
*
****************************************************************************/
#ifdef CONFIG_DEBUG_FEATURES
# define showprogress(c) arm_lowputc(c)
#else
# define showprogress(c)
#endif
/****************************************************************************
* Public Functions
****************************************************************************/
#ifdef CONFIG_ARMV8M_STACKCHECK
/* we need to get r10 set before we can allow instrumentation calls */
void __start(void) __attribute__ ((no_instrument_function));
#endif
/****************************************************************************
* Name: stm32l5_fpuconfig
*
* Description:
* Configure the FPU. Relative bit settings:
*
* CPACR: Enables access to CP10 and CP11
* CONTROL.FPCA: Determines whether the FP extension is active in the
* current context:
* FPCCR.ASPEN: Enables automatic FP state preservation, then the
* processor sets this bit to 1 on successful completion of any FP
* instruction.
* FPCCR.LSPEN: Enables lazy context save of FP state. When this is
* done, the processor reserves space on the stack for the FP state,
* but does not save that state information to the stack.
*
* Software must not change the value of the ASPEN bit or LSPEN bit while
* either:
* - the CPACR permits access to CP10 and CP11, that give access to the FP
* extension, or
* - the CONTROL.FPCA bit is set to 1
*
****************************************************************************/
#ifdef CONFIG_ARCH_FPU
#ifndef CONFIG_ARMV8M_LAZYFPU
static inline void stm32l5_fpuconfig(void)
{
uint32_t regval;
/* Set CONTROL.FPCA so that we always get the extended context frame
* with the volatile FP registers stacked above the basic context.
*/
regval = getcontrol();
regval |= (1 << 2);
setcontrol(regval);
/* Ensure that FPCCR.LSPEN is disabled, so that we don't have to contend
* with the lazy FP context save behaviour. Clear FPCCR.ASPEN since we
* are going to turn on CONTROL.FPCA for all contexts.
*/
regval = getreg32(NVIC_FPCCR);
regval &= ~((1 << 31) | (1 << 30));
putreg32(regval, NVIC_FPCCR);
/* Enable full access to CP10 and CP11 */
regval = getreg32(NVIC_CPACR);
regval |= ((3 << (2 * 10)) | (3 << (2 * 11)));
putreg32(regval, NVIC_CPACR);
}
#else
static inline void stm32l5_fpuconfig(void)
{
uint32_t regval;
/* Clear CONTROL.FPCA so that we do not get the extended context frame
* with the volatile FP registers stacked in the saved context.
*/
regval = getcontrol();
regval &= ~(1 << 2);
setcontrol(regval);
/* Ensure that FPCCR.LSPEN is disabled, so that we don't have to contend
* with the lazy FP context save behaviour. Clear FPCCR.ASPEN since we
* are going to keep CONTROL.FPCA off for all contexts.
*/
regval = getreg32(NVIC_FPCCR);
regval &= ~((1 << 31) | (1 << 30));
putreg32(regval, NVIC_FPCCR);
/* Enable full access to CP10 and CP11 */
regval = getreg32(NVIC_CPACR);
regval |= ((3 << (2 * 10)) | (3 << (2 * 11)));
putreg32(regval, NVIC_CPACR);
}
#endif
#else
# define stm32l5_fpuconfig()
#endif
/****************************************************************************
* Name: go_nx_start
*
* Description:
* Set the IDLE stack to the coloration value and jump into nx_start()
*
****************************************************************************/
#ifdef CONFIG_STACK_COLORATION
static void go_nx_start(void *pv, unsigned int nbytes)
{
/* Set the IDLE stack to the stack coloration value then jump to
* nx_start(). We take extreme care here because were currently
* executing on this stack.
*
* We want to avoid sneak stack access generated by the compiler.
*/
__asm__ __volatile__
(
"\tmovs r1, r1, lsr #2\n" /* R1 = nwords = nbytes >> 2 */
"\tcmp r1, #0\n" /* Check (nwords == 0) */
"\tbeq 2f\n" /* (should not happen) */
"\tbic r0, r0, #3\n" /* R0 = Aligned stackptr */
"\tmovw r2, #0xbeef\n" /* R2 = STACK_COLOR = 0xdeadbeef */
"\tmovt r2, #0xdead\n"
"1:\n" /* Top of the loop */
"\tsub r1, r1, #1\n" /* R1 nwords-- */
"\tcmp r1, #0\n" /* Check (nwords == 0) */
"\tstr r2, [r0], #4\n" /* Save stack color word, increment stackptr */
"\tbne 1b\n" /* Bottom of the loop */
"2:\n"
"\tmov r14, #0\n" /* LR = return address (none) */
"\tb nx_start\n" /* Branch to nx_start */
);
}
#endif
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: _start
*
* Description:
* This is the reset entry point.
*
****************************************************************************/
void __start(void)
{
const uint32_t *src;
uint32_t *dest;
#ifdef CONFIG_ARMV8M_STACKCHECK
/* Set the stack limit before we attempt to call any functions */
__asm__ volatile
("sub r10, sp, %0" : : "r" (CONFIG_IDLETHREAD_STACKSIZE - 64) :);
#endif
#ifdef CONFIG_STM32L5_SRAM2_INIT
/* The SRAM2 region is parity checked, but upon power up, it will be in
* a random state and probably invalid with respect to parity, potentially
* generating faults if accessed. If elected, we will write zeros to the
* memory, forcing the parity to be set to a valid state.
* NOTE: this is optional because this may be inappropriate, especially
* if the memory is being used for it's battery backed purpose. In that
* case, the first-time initialization needs to be performed by the board
* under application-specific circumstances. On the other hand, if we're
* using this memory for, say, additional heap space, then this is handy.
*/
for (dest = (uint32_t *)SRAM2_START; dest < (uint32_t *)SRAM2_END; )
{
*dest++ = 0;
}
#endif
/* Configure the UART so that we can get debug output as soon as possible */
stm32l5_clockconfig();
stm32l5_fpuconfig();
stm32l5_lowsetup();
stm32l5_gpioinit();
showprogress('A');
/* Clear .bss. We'll do this inline (vs. calling memset) just to be
* certain that there are no issues with the state of global variables.
*/
for (dest = &_sbss; dest < &_ebss; )
{
*dest++ = 0;
}
showprogress('B');
/* Move the initialized data section from his temporary holding spot in
* FLASH into the correct place in SRAM. The correct place in SRAM is
* give by _sdata and _edata. The temporary location is in FLASH at the
* end of all of the other read-only data (.text, .rodata) at _eronly.
*/
for (src = &_eronly, dest = &_sdata; dest < &_edata; )
{
*dest++ = *src++;
}
showprogress('C');
/* Perform early serial initialization */
#ifdef USE_EARLYSERIALINIT
arm_earlyserialinit();
#endif
showprogress('D');
/* For the case of the separate user-/kernel-space build, perform whatever
* platform specific initialization of the user memory is required.
* Normally this just means initializing the user space .data and .bss
* segments.
*/
#ifdef CONFIG_BUILD_PROTECTED
stm32l5_userspace();
showprogress('E');
#endif
/* Initialize onboard resources */
stm32l5_board_initialize();
showprogress('F');
/* Then start NuttX */
showprogress('\r');
showprogress('\n');
#ifdef CONFIG_STACK_COLORATION
/* Set the IDLE stack to the coloration value and jump into nx_start() */
go_nx_start((FAR void *)&_ebss, CONFIG_IDLETHREAD_STACKSIZE);
#else
/* Call nx_start() */
nx_start();
/* Shoulnd't get here */
for (; ; );
#endif
}