728 lines
28 KiB
Plaintext
728 lines
28 KiB
Plaintext
README
|
|
^^^^^^
|
|
|
|
This README discusses issues unique to NuttX configurations for the Atmel
|
|
SAM3U-EK development board featuring the ATAM3U. This board features the
|
|
ATSAM3U4E MCU running at 96MHz.
|
|
|
|
Contents
|
|
^^^^^^^^
|
|
|
|
- Development Environment
|
|
- GNU Toolchain Options
|
|
- IDEs
|
|
- NuttX EABI "buildroot" Toolchain
|
|
- NuttX OABI "buildroot" Toolchain
|
|
- NXFLAT Toolchain
|
|
- AtmelStudio6.1
|
|
- LEDs
|
|
- SAM3U-EK-specific Configuration Options
|
|
- Configurations
|
|
|
|
Development Environment
|
|
^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Either Linux or Cygwin on Windows can be used for the development environment.
|
|
The source has been built only using the GNU toolchain (see below). Other
|
|
toolchains will likely cause problems. Testing was performed using the Cygwin
|
|
environment.
|
|
|
|
GNU Toolchain Options
|
|
^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
The NuttX make system has been modified to support the following different
|
|
toolchain options.
|
|
|
|
1. The CodeSourcery GNU toolchain,
|
|
2. The devkitARM GNU toolchain, ok
|
|
4. The NuttX buildroot Toolchain (see below).
|
|
|
|
All testing has been conducted using the NuttX buildroot toolchain. However,
|
|
the make system is setup to default to use the devkitARM toolchain. To use
|
|
the CodeSourcery, devkitARM, Atollic, or AtmelStudio GNU toolchain, you simply
|
|
need to add one of the following configuration options to your .config (or
|
|
defconfig) file:
|
|
|
|
CONFIG_ARMV7M_TOOLCHAIN_CODESOURCERYW=y : CodeSourcery under Windows
|
|
CONFIG_ARMV7M_TOOLCHAIN_CODESOURCERYL=y : CodeSourcery under Linux
|
|
CONFIG_ARMV7M_TOOLCHAIN_ATOLLIC=y : Atollic toolchain for Windos
|
|
CONFIG_ARMV7M_TOOLCHAIN_DEVKITARM=y : devkitARM under Windows
|
|
CONFIG_ARMV7M_TOOLCHAIN_BUILDROOT=y : NuttX buildroot under Linux or Cygwin (default)
|
|
CONFIG_ARMV7M_TOOLCHAIN_GNU_EABIL=y : Generic GCC ARM EABI toolchain for Linux
|
|
CONFIG_ARMV7M_TOOLCHAIN_GNU_EABIW=y : Generic GCC ARM EABI toolchain for Windows
|
|
|
|
If you are not using CONFIG_ARMV7M_TOOLCHAIN_BUILDROOT, then you may also have to modify
|
|
the PATH in the setenv.h file if your make cannot find the tools.
|
|
|
|
NOTE about Windows native toolchains
|
|
------------------------------------
|
|
|
|
The CodeSourcery (for Windows), Atollic, and devkitARM toolchains are
|
|
Windows native toolchains. The CodeSourcery (for Linux), NuttX buildroot,
|
|
and, perhaps, the generic GCC toolchains are Cygwin and/or Linux native
|
|
toolchains. There are several limitations to using a Windows based
|
|
toolchain in a Cygwin environment. The three biggest are:
|
|
|
|
1. The Windows toolchain cannot follow Cygwin paths. Path conversions are
|
|
performed automatically in the Cygwin makefiles using the 'cygpath' utility
|
|
but you might easily find some new path problems. If so, check out 'cygpath -w'
|
|
|
|
2. Windows toolchains cannot follow Cygwin symbolic links. Many symbolic links
|
|
are used in Nuttx (e.g., include/arch). The make system works around these
|
|
problems for the Windows tools by copying directories instead of linking them.
|
|
But this can also cause some confusion for you: For example, you may edit
|
|
a file in a "linked" directory and find that your changes had no effect.
|
|
That is because you are building the copy of the file in the "fake" symbolic
|
|
directory. If you use a Windows toolchain, you should get in the habit of
|
|
making like this:
|
|
|
|
make clean_context all
|
|
|
|
An alias in your .bashrc file might make that less painful.
|
|
|
|
3. Dependencies are not made when using Windows versions of the GCC. This is
|
|
because the dependencies are generated using Windows pathes which do not
|
|
work with the Cygwin make.
|
|
|
|
MKDEP = $(TOPDIR)/tools/mknulldeps.sh
|
|
|
|
NOTE 1: The CodeSourcery toolchain (2009q1) does not work with default optimization
|
|
level of -Os (See Make.defs). It will work with -O0, -O1, or -O2, but not with
|
|
-Os.
|
|
|
|
NOTE 2: The devkitARM toolchain includes a version of MSYS make. Make sure that
|
|
the paths to Cygwin's /bin and /usr/bin directories appear BEFORE the devkitARM
|
|
path or will get the wrong version of make.
|
|
|
|
IDEs
|
|
^^^^
|
|
|
|
NuttX is built using command-line make. It can be used with an IDE, but some
|
|
effort will be required to create the project (There is a simple RIDE project
|
|
in the RIDE subdirectory).
|
|
|
|
Makefile Build
|
|
--------------
|
|
Under Eclipse, it is pretty easy to set up an "empty makefile project" and
|
|
simply use the NuttX makefile to build the system. That is almost for free
|
|
under Linux. Under Windows, you will need to set up the "Cygwin GCC" empty
|
|
makefile project in order to work with Windows (Google for "Eclipse Cygwin" -
|
|
there is a lot of help on the internet).
|
|
|
|
Native Build
|
|
------------
|
|
Here are a few tips before you start that effort:
|
|
|
|
1) Select the toolchain that you will be using in your .config file
|
|
2) Start the NuttX build at least one time from the Cygwin command line
|
|
before trying to create your project. This is necessary to create
|
|
certain auto-generated files and directories that will be needed.
|
|
3) Set up include pathes: You will need include/, arch/arm/src/sam34,
|
|
arch/arm/src/common, arch/arm/src/armv7-m, and sched/.
|
|
4) All assembly files need to have the definition option -D __ASSEMBLY__
|
|
on the command line.
|
|
|
|
Startup files will probably cause you some headaches. The NuttX startup file
|
|
is arch/arm/src/sam34/sam_vectors.S. You may need to build NuttX
|
|
one time from the Cygwin command line in order to obtain the pre-built
|
|
startup object needed by RIDE.
|
|
|
|
NuttX EABI "buildroot" Toolchain
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
A GNU GCC-based toolchain is assumed. The files */setenv.sh should
|
|
be modified to point to the correct path to the Cortex-M3 GCC toolchain (if
|
|
different from the default in your PATH variable).
|
|
|
|
If you have no Cortex-M3 toolchain, one can be downloaded from the NuttX
|
|
SourceForge download site (https://sourceforge.net/projects/nuttx/files/buildroot/).
|
|
This GNU toolchain builds and executes in the Linux or Cygwin environment.
|
|
|
|
1. You must have already configured Nuttx in <some-dir>/nuttx.
|
|
|
|
cd tools
|
|
./configure.sh sam3u-ek/<sub-dir>
|
|
|
|
2. Download the latest buildroot package into <some-dir>
|
|
|
|
3. unpack the buildroot tarball. The resulting directory may
|
|
have versioning information on it like buildroot-x.y.z. If so,
|
|
rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
|
|
|
|
4. cd <some-dir>/buildroot
|
|
|
|
5. cp configs/cortexm3-eabi-defconfig-4.6.3 .config
|
|
|
|
6. make oldconfig
|
|
|
|
7. make
|
|
|
|
8. Edit setenv.h, if necessary, so that the PATH variable includes
|
|
the path to the newly built binaries.
|
|
|
|
See the file configs/README.txt in the buildroot source tree. That has more
|
|
details PLUS some special instructions that you will need to follow if you are
|
|
building a Cortex-M3 toolchain for Cygwin under Windows.
|
|
|
|
NOTE: Unfortunately, the 4.6.3 EABI toolchain is not compatible with the
|
|
the NXFLAT tools. See the top-level TODO file (under "Binary loaders") for
|
|
more information about this problem. If you plan to use NXFLAT, please do not
|
|
use the GCC 4.6.3 EABI toochain; instead use the GCC 4.3.3 OABI toolchain.
|
|
See instructions below.
|
|
|
|
NuttX OABI "buildroot" Toolchain
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
The older, OABI buildroot toolchain is also available. To use the OABI
|
|
toolchain:
|
|
|
|
1. When building the buildroot toolchain, either (1) modify the cortexm3-eabi-defconfig-4.6.3
|
|
configuration to use EABI (using 'make menuconfig'), or (2) use an exising OABI
|
|
configuration such as cortexm3-defconfig-4.3.3
|
|
|
|
2. Modify the Make.defs file to use the OABI conventions:
|
|
|
|
+CROSSDEV = arm-nuttx-elf-
|
|
+ARCHCPUFLAGS = -mtune=cortex-m3 -march=armv7-m -mfloat-abi=soft
|
|
+NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-gotoff.ld -no-check-sections
|
|
-CROSSDEV = arm-nuttx-eabi-
|
|
-ARCHCPUFLAGS = -mcpu=cortex-m3 -mthumb -mfloat-abi=soft
|
|
-NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-pcrel.ld -no-check-sections
|
|
|
|
NXFLAT Toolchain
|
|
^^^^^^^^^^^^^^^^
|
|
|
|
If you are *not* using the NuttX buildroot toolchain and you want to use
|
|
the NXFLAT tools, then you will still have to build a portion of the buildroot
|
|
tools -- just the NXFLAT tools. The buildroot with the NXFLAT tools can
|
|
be downloaded from the NuttX SourceForge download site
|
|
(https://sourceforge.net/projects/nuttx/files/).
|
|
|
|
This GNU toolchain builds and executes in the Linux or Cygwin environment.
|
|
|
|
1. You must have already configured Nuttx in <some-dir>/nuttx.
|
|
|
|
cd tools
|
|
./configure.sh lpcxpresso-lpc1768/<sub-dir>
|
|
|
|
2. Download the latest buildroot package into <some-dir>
|
|
|
|
3. unpack the buildroot tarball. The resulting directory may
|
|
have versioning information on it like buildroot-x.y.z. If so,
|
|
rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
|
|
|
|
4. cd <some-dir>/buildroot
|
|
|
|
5. cp configs/cortexm3-defconfig-nxflat .config
|
|
|
|
6. make oldconfig
|
|
|
|
7. make
|
|
|
|
8. Edit setenv.h, if necessary, so that the PATH variable includes
|
|
the path to the newly builtNXFLAT binaries.
|
|
|
|
AtmelStudio6.1
|
|
^^^^^^^^^^^^^^
|
|
|
|
You can use AtmelStudio6.1 to load and debug code.
|
|
|
|
- To load code:
|
|
|
|
Tools -> Device Programming
|
|
|
|
Configure the debugger and chip and you are in business.
|
|
|
|
- To Debug Code:
|
|
|
|
File -> Open -> Open Object File for Debugging
|
|
|
|
Select the project name, the full path to the NuttX object (called
|
|
just nuttx with no extension), and chip. Take the time to resolve
|
|
all of the source file linkages or else you will not have source
|
|
level debug!
|
|
|
|
LEDs
|
|
^^^^
|
|
|
|
The SAM3U-EK board has four LEDs labeled LD1, LD2, LD3 and LD4 on the
|
|
the board. Usage of these LEDs is defined in include/board.h and src/up_leds.c.
|
|
They are encoded as follows:
|
|
|
|
SYMBOL Meaning LED0* LED1 LED2
|
|
------------------- ----------------------- ------- ------- -------
|
|
LED_STARTED NuttX has been started OFF OFF OFF
|
|
LED_HEAPALLOCATE Heap has been allocated OFF OFF ON
|
|
LED_IRQSENABLED Interrupts enabled OFF ON OFF
|
|
LED_STACKCREATED Idle stack created OFF ON ON
|
|
LED_INIRQ In an interrupt** N/C FLASH N/C
|
|
LED_SIGNAL In a signal handler*** N/C N/C FLASH
|
|
LED_ASSERTION An assertion failed FLASH N/C N/C
|
|
LED_PANIC The system has crashed FLASH N/C N/C
|
|
|
|
* If LED1 and LED2 are statically on, then NuttX probably failed to boot
|
|
and these LEDs will give you some indication of where the failure was
|
|
** The normal state is LED0=OFF, LED2=ON and LED1 faintly glowing. This faint
|
|
glow is because of timer interupts that result in the LED being illuminated
|
|
on a small proportion of the time.
|
|
*** LED2 may also flicker normally if signals are processed.
|
|
|
|
SAM3U-EK-specific Configuration Options
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
CONFIG_ARCH - Identifies the arch/ subdirectory. This should
|
|
be set to:
|
|
|
|
CONFIG_ARCH=arm
|
|
|
|
CONFIG_ARCH_family - For use in C code:
|
|
|
|
CONFIG_ARCH_ARM=y
|
|
|
|
CONFIG_ARCH_architecture - For use in C code:
|
|
|
|
CONFIG_ARCH_CORTEXM3=y
|
|
|
|
CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory
|
|
|
|
CONFIG_ARCH_CHIP="sam34"
|
|
|
|
CONFIG_ARCH_CHIP_name - For use in C code to identify the exact
|
|
chip:
|
|
|
|
CONFIG_ARCH_CHIP_SAM34
|
|
CONFIG_ARCH_CHIP_SAM3U
|
|
CONFIG_ARCH_CHIP_ATSAM3U4
|
|
|
|
CONFIG_ARCH_BOARD - Identifies the configs subdirectory and
|
|
hence, the board that supports the particular chip or SoC.
|
|
|
|
CONFIG_ARCH_BOARD=sam3u-ek (for the SAM3U-EK development board)
|
|
|
|
CONFIG_ARCH_BOARD_name - For use in C code
|
|
|
|
CONFIG_ARCH_BOARD_SAM3UEK=y
|
|
|
|
CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation
|
|
of delay loops
|
|
|
|
CONFIG_ENDIAN_BIG - define if big endian (default is little
|
|
endian)
|
|
|
|
CONFIG_DRAM_SIZE - Describes the installed DRAM (SRAM in this case):
|
|
|
|
CONFIG_DRAM_SIZE=0x0000c000 (48Kb)
|
|
|
|
CONFIG_DRAM_START - The start address of installed DRAM
|
|
|
|
CONFIG_DRAM_START=0x20000000
|
|
|
|
CONFIG_ARCH_IRQPRIO - The SAM3UF103Z supports interrupt prioritization
|
|
|
|
CONFIG_ARCH_IRQPRIO=y
|
|
|
|
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that
|
|
have LEDs
|
|
|
|
CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt
|
|
stack. If defined, this symbol is the size of the interrupt
|
|
stack in bytes. If not defined, the user task stacks will be
|
|
used during interrupt handling.
|
|
|
|
CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions
|
|
|
|
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to board architecture.
|
|
|
|
CONFIG_ARCH_CALIBRATION - Enables some build in instrumentation that
|
|
cause a 100 second delay during boot-up. This 100 second delay
|
|
serves no purpose other than it allows you to calibratre
|
|
CONFIG_ARCH_LOOPSPERMSEC. You simply use a stop watch to measure
|
|
the 100 second delay then adjust CONFIG_ARCH_LOOPSPERMSEC until
|
|
the delay actually is 100 seconds.
|
|
|
|
Individual subsystems can be enabled:
|
|
|
|
CONFIG_SAM34_RTC - Real Time Clock
|
|
CONFIG_SAM34_RTT - Real Time Timer
|
|
CONFIG_SAM34_WDT - Watchdog Timer
|
|
CONFIG_SAM34_UART0 - UART 0
|
|
CONFIG_SAM34_SMC - Static Memory Controller
|
|
CONFIG_SAM34_USART0 - USART 0
|
|
CONFIG_SAM34_USART1 - USART 1
|
|
CONFIG_SAM34_USART2 - USART 2
|
|
CONFIG_SAM34_USART3 - USART 3
|
|
CONFIG_SAM34_HSMCI - High Speed Multimedia Card Interface
|
|
CONFIG_SAM34_TWI0 - Two-Wire Interface 0
|
|
CONFIG_SAM34_TWI1 - Two-Wire Interface 1
|
|
CONFIG_SAM34_SPI0 - Serial Peripheral Interface
|
|
CONFIG_SAM34_SSC - Synchronous Serial Controller
|
|
CONFIG_SAM34_TC0 - Timer Counter 0
|
|
CONFIG_SAM34_TC1 - Timer Counter 1
|
|
CONFIG_SAM34_TC2 - Timer Counter 2
|
|
CONFIG_SAM34_PWM - Pulse Width Modulation Controller
|
|
CONFIG_SAM34_ADC12B - 12-bit ADC Controller
|
|
CONFIG_SAM34_ADC - 10-bit ADC Controller
|
|
CONFIG_SAM34_DMA - DMA Controller
|
|
CONFIG_SAM34_UDPHS - USB Device High Speed
|
|
|
|
Some subsystems can be configured to operate in different ways. The drivers
|
|
need to know how to configure the subsystem.
|
|
|
|
CONFIG_GPIOA_IRQ
|
|
CONFIG_GPIOB_IRQ
|
|
CONFIG_GPIOC_IRQ
|
|
CONFIG_USART0_ISUART
|
|
CONFIG_USART1_ISUART
|
|
CONFIG_USART2_ISUART
|
|
CONFIG_USART3_ISUART
|
|
CONFIG_SAM34_NAND - NAND memory
|
|
|
|
SAM3U specific device driver settings
|
|
|
|
CONFIG_U[S]ARTn_SERIAL_CONSOLE - selects the USARTn (n=0,1,2,3) or UART
|
|
m (m=4,5) for the console and ttys0 (default is the USART1).
|
|
CONFIG_U[S]ARTn_RXBUFSIZE - Characters are buffered as received.
|
|
This specific the size of the receive buffer
|
|
CONFIG_U[S]ARTn_TXBUFSIZE - Characters are buffered before
|
|
being sent. This specific the size of the transmit buffer
|
|
CONFIG_U[S]ARTn_BAUD - The configure BAUD of the UART. Must be
|
|
CONFIG_U[S]ARTn_BITS - The number of bits. Must be either 7 or 8.
|
|
CONFIG_U[S]ARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity
|
|
CONFIG_U[S]ARTn_2STOP - Two stop bits
|
|
|
|
LCD Options. Other than the standard LCD configuration options
|
|
(see configs/README.txt), the SAM3U-EK driver also supports:
|
|
|
|
CONFIG_LCD_PORTRAIT - Present the display in the standard 240x320
|
|
"Portrait" orientation. Default: The display is rotated to
|
|
support a 320x240 "Landscape" orientation.
|
|
|
|
Configurations
|
|
^^^^^^^^^^^^^^
|
|
|
|
Information Common to All Configurations
|
|
----------------------------------------
|
|
Each SAM3U-EK configuration is maintained in a sub-directory and
|
|
can be selected as follow:
|
|
|
|
cd tools
|
|
./configure.sh sam3u-ek/<subdir>
|
|
cd -
|
|
. ./setenv.sh
|
|
|
|
Before sourcing the setenv.sh file above, you should examine it and perform
|
|
edits as necessary so that BUILDROOT_BIN is the correct path to the directory
|
|
than holds your toolchain binaries.
|
|
|
|
And then build NuttX by simply typing the following. At the conclusion of
|
|
the make, the nuttx binary will reside in an ELF file called, simply, nuttx.
|
|
|
|
make
|
|
|
|
The <subdir> that is provided above as an argument to the tools/configure.sh
|
|
must be is one of the following.
|
|
|
|
NOTES:
|
|
|
|
1. These configurations use the mconf-based configuration tool. To
|
|
change any of these configurations using that tool, you should:
|
|
|
|
a. Build and install the kconfig-mconf tool. See nuttx/README.txt
|
|
and misc/tools/
|
|
|
|
b. Execute 'make menuconfig' in nuttx/ in order to start the
|
|
reconfiguration process.
|
|
|
|
2. Unless stated otherwise, all configurations generate console
|
|
output on UART0 (J3).
|
|
|
|
3. Unless otherwise stated, the configurations are setup for
|
|
Linux (or any other POSIX environment like Cygwin under Windows):
|
|
|
|
Build Setup:
|
|
CONFIG_HOST_LINUX=y : Linux or other POSIX environment
|
|
|
|
4. All of these configurations use the older, OABI, buildroot toolchain
|
|
(unless stated otherwise in the description of the configuration). That
|
|
toolchain selection can easily be reconfigured using 'make menuconfig'.
|
|
Here are the relevant current settings:
|
|
|
|
Build Setup:
|
|
CONFIG_HOST_LINUX=y : Linux or other pure POSIX invironment
|
|
: (including Cygwin)
|
|
System Type -> Toolchain:
|
|
CONFIG_ARMV7M_TOOLCHAIN_BUILDROOT=y : Buildroot toolchain
|
|
CONFIG_ARMV7M_OABI_TOOLCHAIN=y : Older, OABI toolchain
|
|
|
|
If you want to use the Atmel GCC toolchain, for example, here are the
|
|
steps to do so:
|
|
|
|
Build Setup:
|
|
CONFIG_HOST_WINDOWS=y : Windows
|
|
CONFIG_HOST_CYGWIN=y : Using Cygwin or other POSIX environment
|
|
|
|
System Type -> Toolchain:
|
|
CONFIG_ARMV7M_TOOLCHAIN_GNU_EABIW=y : General GCC EABI toolchain under windows
|
|
|
|
Library Routines ->
|
|
CONFIG_CXX_NEWLONG=n : size_t is an unsigned int, not long
|
|
|
|
This re-configuration should be done before making NuttX or else the
|
|
subsequent 'make' will fail. If you have already attempted building
|
|
NuttX then you will have to 1) 'make distclean' to remove the old
|
|
configuration, 2) 'cd tools; ./configure.sh sam3u-ek/ksnh' to start
|
|
with a fresh configuration, and 3) perform the configuration changes
|
|
above.
|
|
|
|
Also, make sure that your PATH variable has the new path to your
|
|
Atmel tools. Try 'which arm-none-eabi-gcc' to make sure that you
|
|
are selecting the right tool. setenv.sh is available for you to
|
|
use to set or PATH variable. The path in the that file may not,
|
|
however, be correct for your installation.
|
|
|
|
See also the "NOTE about Windows native toolchains" in the section call
|
|
"GNU Toolchain Options" above.
|
|
|
|
Configuration sub-directories
|
|
-----------------------------
|
|
|
|
knsh:
|
|
This is identical to the nsh configuration below except that NuttX
|
|
is built as a kernel-mode, monolithic module and the user applications
|
|
are built separately. It is recommends to use a special make command;
|
|
not just 'make' but make with the following two arguments:
|
|
|
|
make pass1 pass2
|
|
|
|
In the normal case (just 'make'), make will attempt to build both user-
|
|
and kernel-mode blobs more or less interleaved. This actual works!
|
|
However, for me it is very confusing so I prefer the above make command:
|
|
Make the user-space binaries first (pass1), then make the the kernel-space
|
|
binaries (pass2)
|
|
|
|
NOTES:
|
|
|
|
1. At the end of the build, there will be several files in the top-level
|
|
NuttX build directory:
|
|
|
|
PASS1:
|
|
nuttx_user.elf - The pass1 user-space ELF file
|
|
nuttx_user.hex - The pass1 Intel HEX format file (selected in defconfig)
|
|
User.map - Symbols in the user-space ELF file
|
|
|
|
PASS2:
|
|
nuttx - The pass2 kernel-space ELF file
|
|
nuttx.hex - The pass2 Intel HEX file (selected in defconfig)
|
|
System.map - Symbols in the kernel-space ELF file
|
|
|
|
The J-Link programmer will except files in .hex, .mot, .srec, and .bin
|
|
formats.
|
|
|
|
2. Combining .hex files. If you plan to use the .hex files with your
|
|
debugger or FLASH utility, then you may need to combine the two hex
|
|
files into a single .hex file. Here is how you can do that.
|
|
|
|
a. The 'tail' of the nuttx.hex file should look something like this
|
|
(with my comments added):
|
|
|
|
$ tail nuttx.hex
|
|
# 00, data records
|
|
...
|
|
:10 9DC0 00 01000000000800006400020100001F0004
|
|
:10 9DD0 00 3B005A0078009700B500D400F300110151
|
|
:08 9DE0 00 30014E016D0100008D
|
|
# 05, Start Linear Address Record
|
|
:04 0000 05 0800 0419 D2
|
|
# 01, End Of File record
|
|
:00 0000 01 FF
|
|
|
|
Use an editor such as vi to remove the 05 and 01 records.
|
|
|
|
b. The 'head' of the nuttx_user.hex file should look something like
|
|
this (again with my comments added):
|
|
|
|
$ head nuttx_user.hex
|
|
# 04, Extended Linear Address Record
|
|
:02 0000 04 0801 F1
|
|
# 00, data records
|
|
:10 8000 00 BD89 01084C800108C8110208D01102087E
|
|
:10 8010 00 0010 00201C1000201C1000203C16002026
|
|
:10 8020 00 4D80 01085D80010869800108ED83010829
|
|
...
|
|
|
|
Nothing needs to be done here. The nuttx_user.hex file should
|
|
be fine.
|
|
|
|
c. Combine the edited nuttx.hex and un-edited nuttx_user.hex
|
|
file to produce a single combined hex file:
|
|
|
|
$ cat nuttx.hex nuttx_user.hex >combined.hex
|
|
|
|
Then use the combined.hex file with the to write the FLASH image.
|
|
If you do this a lot, you will probably want to invest a little time
|
|
to develop a tool to automate these steps.
|
|
|
|
nsh:
|
|
Configures the NuttShell (nsh) located at examples/nsh. The
|
|
Configuration enables both the serial and telnetd NSH interfaces.
|
|
|
|
NOTES:
|
|
|
|
1. NSH built-in applications are supported. However, there are
|
|
no built-in applications built with the default configuration.
|
|
|
|
Binary Formats:
|
|
CONFIG_BUILTIN=y : Enable support for built-in programs
|
|
|
|
Applicaton Configuration:
|
|
CONFIG_NSH_BUILTIN_APPS=y : Enable starting apps from NSH command line
|
|
|
|
2. This configuration has been used for verifying the touchscreen on
|
|
on the SAM3U-EK LCD. With these modifications, you can include the
|
|
touchscreen test program at apps/examples/touchscreen as an NSH built-in
|
|
application. You can enable the touchscreen and test by modifying the
|
|
default configuration in the following ways:
|
|
|
|
Device Drivers
|
|
CONFIG_SPI=y : Enable SPI support
|
|
CONFIG_SPI_EXCHANGE=y : The exchange() method is supported
|
|
CONFIG_SPI_OWNBUS=y : Smaller code if this is the only SPI device
|
|
|
|
CONFIG_INPUT=y : Enable support for input devices
|
|
CONFIG_INPUT_ADS7843E=y : Enable support for the XPT2048
|
|
CONFIG_ADS7843E_SPIDEV=2 : Use SPI CS 2 for communication
|
|
CONFIG_ADS7843E_SPIMODE=0 : Use SPI mode 0
|
|
CONFIG_ADS7843E_FREQUENCY=1000000 : SPI BAUD 1MHz
|
|
CONFIG_ADS7843E_SWAPXY=y : If landscpe orientation
|
|
CONFIG_ADS7843E_THRESHX=51 : These will probably need to be tuned
|
|
CONFIG_ADS7843E_THRESHY=39
|
|
|
|
System Type -> Peripherals:
|
|
CONFIG_SAM34_SPI0=y : Enable support for SPI
|
|
|
|
System Type:
|
|
CONFIG_GPIO_IRQ=y : GPIO interrupt support
|
|
CONFIG_GPIOA_IRQ=y : Enable GPIO interrupts from port A
|
|
|
|
RTOS Features:
|
|
CONFIG_DISABLE_SIGNALS=n : Signals are required
|
|
|
|
Library Support:
|
|
CONFIG_SCHED_WORKQUEUE=y : Work queue support required
|
|
|
|
Applicaton Configuration:
|
|
CONFIG_EXAMPLES_TOUCHSCREEN=y : Enable the touchscreen built-int test
|
|
|
|
Defaults should be okay for related touchscreen settings. Touchscreen
|
|
debug output on UART0 can be enabled with:
|
|
|
|
Build Setup:
|
|
CONFIG_DEBUG=y : Enable debug features
|
|
CONFIG_DEBUG_VERBOSE=y : Enable verbose debug output
|
|
CONFIG_DEBUG_INPUT=y : Enable debug output from input devices
|
|
|
|
STATUS:
|
|
2013-6-28: The touchscreen is functional.
|
|
2013-6-29: Hmmm... but there appear to be conditions when the
|
|
touchscreen driver locks up. Looks like some issue with
|
|
managing the interrupts.
|
|
2013-6-30: Those lock-ups appear to be due to poorly placed
|
|
debug output statements. If you do not enable debug output,
|
|
the touchscreen is rock-solid.
|
|
|
|
nx:
|
|
Configures to use examples/nx using the HX834x LCD hardware on
|
|
the SAM3U-EK development board.
|
|
|
|
nxwm:
|
|
This is a special configuration setup for the NxWM window manager
|
|
UnitTest. It includes support for both the HX834x LCD and the
|
|
ADS7843E touchscreen controller on board the SAM3U-EK board.
|
|
|
|
The NxWM window manager is a tiny window manager tailor for use
|
|
with smaller LCDs. It supports a toolchain, a start window, and
|
|
multiple application windows. However, to make the best use of
|
|
the visible LCD space, only one application window is visiable at
|
|
at time.
|
|
|
|
The NxWM window manager can be found here:
|
|
|
|
nuttx-git/NxWidgets/nxwm
|
|
|
|
The NxWM unit test can be found at:
|
|
|
|
nuttx-git/NxWidgets/UnitTests/nxwm
|
|
|
|
Documentation for installing the NxWM unit test can be found here:
|
|
|
|
nuttx-git/NxWidgets/UnitTests/README.txt
|
|
|
|
Here is the quick summary of the build steps. These steps assume that
|
|
you have the entire NuttX GIT in some directory ~/nuttx-git. You may
|
|
have these components installed elsewhere. In that case, you will need
|
|
to adjust all of the paths in the following accordingly:
|
|
|
|
1. Intall the nxwm configuration
|
|
|
|
$ cd ~/nuttx-git/nuttx/tools
|
|
$ ./configure.sh sam3u-ek/nxwm
|
|
|
|
2. Make the build context (only)
|
|
|
|
$ cd ..
|
|
$ . ./setenv.sh
|
|
$ make context
|
|
...
|
|
|
|
NOTE: the use of the setenv.sh file is optional. All that it will
|
|
do is to adjust your PATH variable so that the build system can find
|
|
your tools. If you use it, you will most likely need to modify the
|
|
script so that it has the correct path to your tool binaries
|
|
directory.
|
|
|
|
3. Install the nxwm unit test
|
|
|
|
$ cd ~/nuttx-git/NxWidgets
|
|
$ tools/install.sh ~/nuttx-git/apps nxwm
|
|
Creating symbolic link
|
|
- To ~/nuttx-git/NxWidgets/UnitTests/nxwm
|
|
- At ~/nuttx-git/apps/external
|
|
|
|
4. Build the NxWidgets library
|
|
|
|
$ cd ~/nuttx-git/NxWidgets/libnxwidgets
|
|
$ make TOPDIR=~/nuttx-git/nuttx
|
|
...
|
|
|
|
5. Build the NxWM library
|
|
|
|
$ cd ~/nuttx-git/NxWidgets/nxwm
|
|
$ make TOPDIR=~/nuttx-git/nuttx
|
|
...
|
|
|
|
6. Built NuttX with the installed unit test as the application
|
|
|
|
$ cd ~/nuttx-git/nuttx
|
|
$ make
|
|
|
|
STATUS:
|
|
|
|
1. 2013-6-28: Created the configuration but have not yet done
|
|
anything with it.
|
|
|
|
2. 2013-6-29: Various changes to get a clean build of this
|
|
configuration. Still untested.
|
|
|
|
3. 20113-6-30: I cannot load this program using AtmelStudio6.1.
|
|
The total size with DEBUG on is 138.9 KB. I have verified
|
|
that the first 128KB may have been written correctly, but then
|
|
the code above 128KB wraps and overwrites the code at the
|
|
beginning of FLASH, trashing the FLASH images.
|
|
|
|
Bottom line: Still untested.
|
|
|
|
ostest:
|
|
This configuration directory, performs a simple OS test using
|
|
examples/ostest. By default, this project assumes that you are
|
|
using the DFU bootloader.
|