nuttx/arch/xtensa/src/esp32/esp32_irq.c
Alan C. Assis 867c6d0636 esp32: Add initial support to Bluetooth Low Energy
Co-authored-by: saramonteiro <saramonteirosouza44@gmail.com>
Co-authored-by: Gustavo Henrique Nihei <gustavonihei@gmail.com>
2021-10-04 15:10:37 -03:00

975 lines
26 KiB
C

/****************************************************************************
* arch/xtensa/src/esp32/esp32_irq.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <stdint.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/irq.h>
#include <nuttx/arch.h>
#include <arch/irq.h>
#include "xtensa.h"
#include "hardware/esp32_dport.h"
#include "esp32_smp.h"
#include "esp32_gpio.h"
#include "esp32_irq.h"
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Interrupt stack definitions for SMP */
#if defined(CONFIG_SMP) && CONFIG_ARCH_INTERRUPTSTACK > 15
# define INTSTACK_ALLOC (CONFIG_SMP_NCPUS * INTSTACK_SIZE)
#endif
/* IRQ to CPU and CPU interrupts mapping:
*
* Encoding: CIIIIIII
* C: CPU that enabled the interrupt (0 = PRO, 1 = APP).
* I: Associated CPU interrupt.
*/
#define IRQ_UNMAPPED 0xff
#define IRQ_GETCPU(m) (((m) & 0x80) >> 0x07)
#define IRQ_GETCPUINT(m) ((m) & 0x7f)
#define IRQ_MKMAP(c, i) (((c) << 0x07) | (i))
/* CPU interrupts to peripheral mapping:
*
* Encoding: EPPPPPPP
* E: CPU interrupt status (0 = Disabled, 1 = Enabled).
* P: Attached peripheral.
*/
#define CPUINT_UNASSIGNED 0x7f
#define CPUINT_GETEN(m) (((m) & 0x80) >> 0x07)
#define CPUINT_GETIRQ(m) ((m) & 0x7f)
#define CPUINT_ASSIGN(c) (((c) & 0x7f) | 0x80)
#define CPUINT_DISABLE(m) ((m) & 0x7f)
#define CPUINT_ENABLE(m) ((m) | 0x80)
/* Mapping Peripheral IDs to map register addresses. */
#define DPORT_PRO_MAP_REGADDR(n) (DR_REG_DPORT_BASE + 0x104 + ((n) << 2))
#define DPORT_APP_MAP_REGADDR(n) (DR_REG_DPORT_BASE + 0x218 + ((n) << 2))
/* CPU interrupts can be detached from any peripheral source by setting the
* map register to an internal CPU interrupt (6, 7, 11, 15, 16, or 29).
*/
#define NO_CPUINT ESP32_CPUINT_TIMER0
/* Priority range is 1-5 */
#define ESP32_MIN_PRIORITY 1
#define ESP32_MAX_PRIORITY 5
#define ESP32_PRIO_INDEX(p) ((p) - ESP32_MIN_PRIORITY)
#ifdef CONFIG_ESP32_WIRELESS
# define ESP32_WIRELESS_RESERVE_INT (1 << ESP32_CPUINT_MAC)
#else
# define ESP32_WIRELESS_RESERVE_INT 0
#endif
#ifdef CONFIG_ESP32_BLE
# define ESP32_BLE_RESERVE_INT ((1 << ESP32_PERIPH_BT_BB_NMI) | \
(1 << ESP32_PERIPH_RWBLE_IRQ) | \
(1 << ESP32_PERIPH_RWBT_NMI))
#else
# define ESP32_BLE_RESERVE_INT 0
#endif
/****************************************************************************
* Public Data
****************************************************************************/
/* g_current_regs[] holds a reference to the current interrupt level
* register storage structure. It is non-NULL only during interrupt
* processing. Access to g_current_regs[] must be through the macro
* CURRENT_REGS for portability.
*/
#ifdef CONFIG_SMP
/* For the case of architectures with multiple CPUs, then there must be one
* such value for each processor that can receive an interrupt.
*/
volatile uint32_t *g_current_regs[CONFIG_SMP_NCPUS];
#else
volatile uint32_t *g_current_regs[1];
#endif
#if defined(CONFIG_SMP) && CONFIG_ARCH_INTERRUPTSTACK > 15
/* In the SMP configuration, we will need custom interrupt stacks.
* These definitions provide the aligned stack allocations.
*/
static uint32_t g_intstackalloc[INTSTACK_ALLOC >> 2];
/* These definitions provide the "top" of the push-down stacks. */
uintptr_t g_cpu_intstack_top[CONFIG_SMP_NCPUS] =
{
(uintptr_t)g_intstackalloc + INTSTACK_SIZE,
#if CONFIG_SMP_NCPUS > 1
(uintptr_t)g_intstackalloc + (2 * INTSTACK_SIZE),
#endif /* CONFIG_SMP_NCPUS > 1 */
};
#endif /* defined(CONFIG_SMP) && CONFIG_ARCH_INTERRUPTSTACK > 15 */
/****************************************************************************
* Private Data
****************************************************************************/
/* Maps a CPU interrupt to the IRQ of the attached peripheral interrupt */
static uint8_t g_cpu0_intmap[ESP32_NCPUINTS];
#ifdef CONFIG_SMP
static uint8_t g_cpu1_intmap[ESP32_NCPUINTS];
#endif
static volatile uint8_t g_irqmap[NR_IRQS];
/* g_intenable[] is a shadow copy of the per-CPU INTENABLE register
* content.
*/
#ifdef CONFIG_SMP
static uint32_t g_intenable[CONFIG_SMP_NCPUS];
#else
static uint32_t g_intenable[1];
#endif
/* Bitsets for free, unallocated CPU interrupts available to peripheral
* devices.
*/
static uint32_t g_cpu0_freeints = ESP32_CPUINT_PERIPHSET &
(~ESP32_WIRELESS_RESERVE_INT &
~ESP32_BLE_RESERVE_INT);
#ifdef CONFIG_SMP
static uint32_t g_cpu1_freeints = ESP32_CPUINT_PERIPHSET &
(~ESP32_WIRELESS_RESERVE_INT &
~ESP32_BLE_RESERVE_INT);
#endif
/* Bitsets for each interrupt priority 1-5 */
static const uint32_t g_priority[5] =
{
ESP32_INTPRI1_MASK,
ESP32_INTPRI2_MASK,
ESP32_INTPRI3_MASK,
ESP32_INTPRI4_MASK,
ESP32_INTPRI5_MASK
};
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: esp32_irq_dump
*
* Description:
* Dump some interesting NVIC registers
*
****************************************************************************/
#if defined(CONFIG_DEBUG_IRQ_INFO)
static void esp32_irq_dump(const char *msg, int irq)
{
irqstate_t flags;
flags = enter_critical_section();
#warning Missing logic
leave_critical_section(flags);
}
#else
# define esp32_irq_dump(msg, irq)
#endif
/****************************************************************************
* Name: xtensa_attach_fromcpu1_interrupt
****************************************************************************/
#ifdef CONFIG_SMP
static inline void xtensa_attach_fromcpu1_interrupt(void)
{
int cpuint;
/* Connect all CPU peripheral source to allocated CPU interrupt */
cpuint = esp32_setup_irq(0, ESP32_PERIPH_CPU_CPU1, 1, ESP32_CPUINT_LEVEL);
DEBUGASSERT(cpuint >= 0);
/* Attach the inter-CPU interrupt. */
irq_attach(ESP32_IRQ_CPU_CPU1, (xcpt_t)esp32_fromcpu1_interrupt, NULL);
/* Enable the inter 0 CPU interrupt. */
up_enable_irq(ESP32_IRQ_CPU_CPU1);
}
#endif
/****************************************************************************
* Name: esp32_intinfo
*
* Description:
* Return the CPU interrupt map of the given CPU and the register map
* of the given peripheral.
*
****************************************************************************/
static void esp32_intinfo(int cpu, int periphid,
uintptr_t *regaddr, uint8_t **intmap)
{
#ifdef CONFIG_SMP
DEBUGASSERT(cpu >= 0 && cpu < CONFIG_SMP_NCPUS);
if (cpu != 0)
{
*regaddr = DPORT_APP_MAP_REGADDR(periphid);
*intmap = g_cpu1_intmap;
}
else
#endif
{
*regaddr = DPORT_PRO_MAP_REGADDR(periphid);
*intmap = g_cpu0_intmap;
}
}
/****************************************************************************
* Name: esp32_getcpuint
*
* Description:
* Get a free CPU interrupt for a peripheral device. This function will
* not ignore all of the pre-allocated CPU interrupts for internal
* devices.
*
* Input Parameters:
* intmask - mask of candidate CPU interrupts. The CPU interrupt will be
* be allocated from free interrupts within this set
*
* Returned Value:
* On success, a CPU interrupt number is returned.
* A negated errno is returned on failure.
*
****************************************************************************/
static int esp32_getcpuint(uint32_t intmask)
{
uint32_t *freeints;
uint32_t bitmask;
uint32_t intset;
int cpuint;
int ret = -ENOMEM;
int cpu = 0;
/* Check if there are CPU interrupts with the requested properties
* available.
*/
cpu = up_cpu_index();
#ifdef CONFIG_SMP
if (cpu != 0)
{
freeints = &g_cpu1_freeints;
}
else
#endif
{
freeints = &g_cpu0_freeints;
}
intset = *freeints & intmask;
if (intset != 0)
{
/* Skip over initial unavailable CPU interrupts quickly in groups
* of 8 interrupt.
*/
for (cpuint = 0, bitmask = 0xff;
cpuint <= ESP32_CPUINT_MAX && (intset & bitmask) == 0;
cpuint += 8, bitmask <<= 8);
/* Search for an unallocated CPU interrupt number in the remaining
* intset.
*/
for (; cpuint <= ESP32_CPUINT_MAX; cpuint++)
{
/* If the bit corresponding to the CPU interrupt is '1', then
* that CPU interrupt is available.
*/
bitmask = (1ul << cpuint);
if ((intset & bitmask) != 0)
{
/* Got it! */
*freeints &= ~bitmask;
ret = cpuint;
break;
}
}
}
/* Enable the CPU interrupt now. The interrupt is still not attached
* to any peripheral and thus has no effect.
*/
if (ret >= 0)
{
xtensa_enable_cpuint(&g_intenable[cpu], (1ul << ret));
}
return ret;
}
/****************************************************************************
* Name: esp32_alloc_cpuint
*
* Description:
* Allocate a level CPU interrupt
*
* Input Parameters:
* priority - Priority of the CPU interrupt (1-5)
* type - Interrupt type (level or edge).
*
* Returned Value:
* On success, the allocated CPU interrupt number is returned.
* A negated errno is returned on failure. The only possible failure
* is that all CPU interrupts of the requested type have already been
* allocated.
*
****************************************************************************/
static int esp32_alloc_cpuint(int priority, int type)
{
uint32_t mask;
DEBUGASSERT(priority >= ESP32_MIN_PRIORITY &&
priority <= ESP32_MAX_PRIORITY);
DEBUGASSERT(type == ESP32_CPUINT_LEVEL ||
type == ESP32_CPUINT_EDGE);
if (type == ESP32_CPUINT_LEVEL)
{
/* Check if there are any level CPU interrupts available at the
* requested interrupt priority.
*/
mask = g_priority[ESP32_PRIO_INDEX(priority)] & ESP32_CPUINT_LEVELSET;
}
else
{
/* Check if there are any edge CPU interrupts available at the
* requested interrupt priority.
*/
mask = g_priority[ESP32_PRIO_INDEX(priority)] & ESP32_CPUINT_EDGESET;
}
return esp32_getcpuint(mask);
}
/****************************************************************************
* Name: esp32_free_cpuint
*
* Description:
* Free a previously allocated CPU interrupt
*
* Input Parameters:
* The CPU interrupt number to be freed
*
* Returned Value:
* None
*
****************************************************************************/
static void esp32_free_cpuint(int cpuint)
{
uint32_t *freeints;
uint32_t bitmask;
DEBUGASSERT(cpuint >= 0 && cpuint <= ESP32_CPUINT_MAX);
/* Mark the CPU interrupt as available */
bitmask = (1ul << cpuint);
#ifdef CONFIG_SMP
if (up_cpu_index() != 0)
{
freeints = &g_cpu1_freeints;
}
else
#endif
{
freeints = &g_cpu0_freeints;
}
DEBUGASSERT((*freeints & bitmask) == 0);
*freeints |= bitmask;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: up_irqinitialize
****************************************************************************/
void up_irqinitialize(void)
{
int i;
for (i = 0; i < NR_IRQS; i++)
{
g_irqmap[i] = IRQ_UNMAPPED;
}
/* Hard code special cases. */
g_irqmap[XTENSA_IRQ_TIMER0] = IRQ_MKMAP(0, ESP32_CPUINT_TIMER0);
#ifdef CONFIG_ESP32_WIRELESS
g_irqmap[ESP32_IRQ_MAC] = IRQ_MKMAP(0, ESP32_CPUINT_MAC);
#endif
#ifdef CONFIG_ESP32_BLE
g_irqmap[ESP32_IRQ_BT_BB_NMI] = IRQ_MKMAP(0, ESP32_PERIPH_BT_BB_NMI);
g_irqmap[ESP32_IRQ_RWBT_NMI] = IRQ_MKMAP(0, ESP32_PERIPH_RWBT_NMI);
g_irqmap[ESP32_IRQ_RWBLE_IRQ] = IRQ_MKMAP(0, ESP32_PERIPH_RWBLE_IRQ);
#endif
/* Initialize CPU interrupts */
esp32_cpuint_initialize();
/* Attach and enable internal interrupts */
#ifdef CONFIG_SMP
/* Attach and enable the inter-CPU interrupt */
xtensa_attach_fromcpu1_interrupt();
#endif
esp32_irq_dump("initial", NR_IRQS);
#ifdef CONFIG_ESP32_GPIO_IRQ
/* Initialize GPIO interrupt support */
esp32_gpioirqinitialize(0);
#endif
#ifndef CONFIG_SUPPRESS_INTERRUPTS
/* And finally, enable interrupts. Also clears PS.EXCM */
up_irq_enable();
#endif
}
/****************************************************************************
* Name: up_disable_irq
*
* Description:
* Disable the IRQ specified by 'irq'
*
****************************************************************************/
void up_disable_irq(int irq)
{
int cpu = IRQ_GETCPU(g_irqmap[irq]);
int cpuint = IRQ_GETCPUINT(g_irqmap[irq]);
if (g_irqmap[irq] == IRQ_UNMAPPED)
{
/* This interrupt is already disabled. */
return;
}
DEBUGASSERT(cpuint >= 0 && cpuint <= ESP32_CPUINT_MAX);
#ifdef CONFIG_SMP
DEBUGASSERT(cpu >= 0 && cpu <= CONFIG_SMP_NCPUS);
#else
DEBUGASSERT(cpu == 0);
#endif
if (irq < XTENSA_NIRQ_INTERNAL)
{
/* This is an internal CPU interrupt, it cannot be disabled using
* the Interrupt Matrix.
*/
#ifdef CONFIG_SMP
int me = up_cpu_index();
if (me != cpu)
{
/* It was the other CPU that enabled this interrupt. */
return;
}
#endif
xtensa_disable_cpuint(&g_intenable[cpu], (1ul << cpuint));
}
else
{
/* A peripheral interrupt, use the Interrupt Matrix to disable it. */
int periph = ESP32_IRQ2PERIPH(irq);
uintptr_t regaddr;
uint8_t *intmap;
#ifdef CONFIG_ESP32_GPIO_IRQ
#ifdef CONFIG_SMP
/* The APP's CPU GPIO is a special case. See esp32/irq.h */
if (periph == ESP32_IRQ_APPCPU_GPIO)
{
periph = ESP32_IRQ_CPU_GPIO;
}
#endif
#endif
DEBUGASSERT(periph >= 0 && periph < ESP32_NPERIPHERALS);
esp32_intinfo(cpu, periph, &regaddr, &intmap);
intmap[cpuint] = CPUINT_DISABLE(intmap[cpuint]);
putreg32(NO_CPUINT, regaddr);
}
}
/****************************************************************************
* Name: up_enable_irq
*
* Description:
* Enable the IRQ specified by 'irq'
*
****************************************************************************/
void up_enable_irq(int irq)
{
int cpu = IRQ_GETCPU(g_irqmap[irq]);
int cpuint = IRQ_GETCPUINT(g_irqmap[irq]);
DEBUGASSERT(cpuint >= 0 && cpuint <= ESP32_CPUINT_MAX);
#ifdef CONFIG_SMP
DEBUGASSERT(cpu >= 0 && cpu <= CONFIG_SMP_NCPUS);
#else
DEBUGASSERT(cpu == 0);
#endif
if (irq < XTENSA_NIRQ_INTERNAL)
{
/* Enable the CPU interrupt now for internal CPU. */
xtensa_enable_cpuint(&g_intenable[cpu], (1ul << cpuint));
}
else
{
/* For peripheral interrupts, attach the interrupt to the peripheral;
* the CPU interrupt was already enabled when allocated.
*/
int periph = ESP32_IRQ2PERIPH(irq);
uintptr_t regaddr;
uint8_t *intmap;
#ifdef CONFIG_ESP32_GPIO_IRQ
#ifdef CONFIG_SMP
/* The APP's CPU GPIO is a special case. See esp32/irq.h */
if (periph == ESP32_IRQ_APPCPU_GPIO)
{
periph = ESP32_IRQ_CPU_GPIO;
}
#endif
#endif
DEBUGASSERT(periph >= 0 && periph < ESP32_NPERIPHERALS);
esp32_intinfo(cpu, periph, &regaddr, &intmap);
intmap[cpuint] = CPUINT_ENABLE(intmap[cpuint]);
putreg32(cpuint, regaddr);
}
}
/****************************************************************************
* Name: xtensa_intstack_top
*
* Description:
* Return a pointer to the top of the correct interrupt stack for the
* given CPU.
*
****************************************************************************/
#if defined(CONFIG_SMP) && CONFIG_ARCH_INTERRUPTSTACK > 15
uintptr_t xtensa_intstack_top(void)
{
return g_cpu_intstack_top[up_cpu_index()];
}
/****************************************************************************
* Name: xtensa_intstack_alloc
*
* Description:
* Return a pointer to the "alloc" the correct interrupt stack allocation
* for the current CPU.
*
****************************************************************************/
uintptr_t xtensa_intstack_alloc(void)
{
return g_cpu_intstack_top[up_cpu_index()] - INTSTACK_SIZE;
}
#endif
/****************************************************************************
* Name: esp32_cpuint_initialize
*
* Description:
* Initialize CPU interrupts
*
* Input Parameters:
* None
*
* Returned Value:
* Zero (OK) is returned on success; A negated errno value is returned on
* any failure.
*
****************************************************************************/
int esp32_cpuint_initialize(void)
{
uintptr_t regaddr;
uint8_t *intmap;
#ifdef CONFIG_SMP
int cpu;
#endif
int i;
#ifdef CONFIG_SMP
/* Which CPU are we initializing */
cpu = up_cpu_index();
DEBUGASSERT(cpu >= 0 && cpu < CONFIG_SMP_NCPUS);
#endif
/* Disable all CPU interrupts on this CPU */
xtensa_disable_all();
/* Detach all peripheral sources PRO CPU interrupts */
for (i = 0; i < ESP32_NPERIPHERALS; i++)
{
#ifdef CONFIG_SMP
if (cpu != 0)
{
regaddr = DPORT_APP_MAP_REGADDR(i);
}
else
#endif
{
regaddr = DPORT_PRO_MAP_REGADDR(i);
}
putreg32(NO_CPUINT, regaddr);
}
/* Initialize CPU interrupt-to-IRQ mapping table */
#ifdef CONFIG_SMP
if (cpu != 0)
{
intmap = g_cpu1_intmap;
}
else
#endif
{
intmap = g_cpu0_intmap;
}
/* Indicate that no peripheral interrupts are assigned to CPU interrupts */
memset(intmap, CPUINT_UNASSIGNED, ESP32_NCPUINTS);
/* Special case the 6 internal interrupts.
*
* CPU interrupt bit IRQ number
* --------------------------- ---------------------
* ESP32_CPUINT_MAC 0 ESP32_IRQ_MAC 4
* ESP32_CPUINT_TIMER0 6 XTENSA_IRQ_TIMER0 0
* ESP32_CPUINT_SOFTWARE0 7 Not yet defined
* ESP32_CPUINT_PROFILING 11 Not yet defined
* ESP32_CPUINT_TIMER1 15 XTENSA_IRQ_TIMER1 1
* ESP32_CPUINT_TIMER2 16 XTENSA_IRQ_TIMER2 2
* ESP32_CPUINT_SOFTWARE1 29 Not yet defined
*/
intmap[ESP32_CPUINT_TIMER0] = CPUINT_ASSIGN(XTENSA_IRQ_TIMER0);
intmap[ESP32_CPUINT_TIMER1] = CPUINT_ASSIGN(XTENSA_IRQ_TIMER1);
intmap[ESP32_CPUINT_TIMER2] = CPUINT_ASSIGN(XTENSA_IRQ_TIMER2);
/* Reserve CPU interrupt for some special drivers */
#ifdef CONFIG_ESP32_WIRELESS
intmap[ESP32_CPUINT_MAC] = CPUINT_ASSIGN(ESP32_IRQ_MAC);
xtensa_enable_cpuint(&g_intenable[0], 1 << ESP32_CPUINT_MAC);
#endif
#ifdef CONFIG_ESP32_BLE
intmap[ESP32_PERIPH_BT_BB_NMI] = CPUINT_ASSIGN(ESP32_IRQ_BT_BB_NMI);
intmap[ESP32_PERIPH_RWBT_NMI] = CPUINT_ASSIGN(ESP32_IRQ_RWBT_NMI);
intmap[ESP32_PERIPH_RWBLE_IRQ] = CPUINT_ASSIGN(ESP32_IRQ_RWBLE_IRQ);
xtensa_enable_cpuint(&g_intenable[0], 1 << ESP32_PERIPH_BT_BB_NMI);
xtensa_enable_cpuint(&g_intenable[0], 1 << ESP32_PERIPH_RWBT_NMI);
xtensa_enable_cpuint(&g_intenable[0], 1 << ESP32_PERIPH_RWBLE_IRQ);
#endif
return OK;
}
/****************************************************************************
* Name: esp32_setup_irq
*
* Description:
* This function sets up the IRQ. It allocates a CPU interrupt of the given
* priority and type and attaches it to the given peripheral.
*
* Input Parameters:
* cpu - The CPU to receive the interrupt 0=PRO CPU 1=APP CPU
* periphid - The peripheral number from irq.h to be assigned to
* a CPU interrupt.
* priority - Interrupt's priority (1 - 5).
* type - Interrupt's type (level or edge).
*
* Returned Value:
* The allocated CPU interrupt on success, a negated errno value on
* failure.
*
****************************************************************************/
int esp32_setup_irq(int cpu, int periphid, int priority, int type)
{
irqstate_t irqstate;
uintptr_t regaddr;
uint8_t *intmap;
int irq;
int cpuint;
irqstate = enter_critical_section();
/* Setting up an IRQ includes the following steps:
* 1. Allocate a CPU interrupt.
* 2. Attach that CPU interrupt to the peripheral.
* 3. Map the CPU interrupt to the IRQ to ease searching later.
*/
cpuint = esp32_alloc_cpuint(priority, type);
if (cpuint < 0)
{
irqerr("Unable to allocate CPU interrupt for priority=%d and type=%d",
priority, type);
leave_critical_section(irqstate);
return cpuint;
}
irq = ESP32_PERIPH2IRQ(periphid);
DEBUGASSERT(periphid >= 0 && periphid < ESP32_NPERIPHERALS);
DEBUGASSERT(cpuint >= 0 && cpuint <= ESP32_CPUINT_MAX);
esp32_intinfo(cpu, periphid, &regaddr, &intmap);
DEBUGASSERT(intmap[cpuint] == CPUINT_UNASSIGNED);
intmap[cpuint] = CPUINT_ASSIGN(periphid + XTENSA_IRQ_FIRSTPERIPH);
g_irqmap[irq] = IRQ_MKMAP(cpu, cpuint);
putreg32(cpuint, regaddr);
leave_critical_section(irqstate);
return cpuint;
}
/****************************************************************************
* Name: esp32_teardown_irq
*
* Description:
* This function undoes the operations done by esp32_setup_irq.
* It detaches a peripheral interrupt from a CPU interrupt and frees the
* CPU interrupt.
*
* Input Parameters:
* cpu - The CPU to receive the interrupt 0=PRO CPU 1=APP CPU
* periphid - The peripheral number from irq.h to be detached from the
* CPU interrupt.
* cpuint - The CPU interrupt from which the peripheral interrupt will
* be detached.
*
* Returned Value:
* None
*
****************************************************************************/
void esp32_teardown_irq(int cpu, int periphid, int cpuint)
{
irqstate_t irqstate;
uintptr_t regaddr;
uint8_t *intmap;
int irq;
irqstate = enter_critical_section();
/* Tearing down an IRQ includes the following steps:
* 1. Free the previously allocated CPU interrupt.
* 2. Detach the interrupt from the peripheral.
* 3. Unmap the IRQ from the IRQ-to-cpuint map.
*/
esp32_free_cpuint(cpuint);
irq = ESP32_PERIPH2IRQ(periphid);
DEBUGASSERT(periphid >= 0 && periphid < ESP32_NPERIPHERALS);
esp32_intinfo(cpu, periphid, &regaddr, &intmap);
DEBUGASSERT(intmap[cpuint] != CPUINT_UNASSIGNED);
intmap[cpuint] = CPUINT_UNASSIGNED;
g_irqmap[irq] = IRQ_UNMAPPED;
putreg32(NO_CPUINT, regaddr);
leave_critical_section(irqstate);
}
/****************************************************************************
* Name: xtensa_int_decode
*
* Description:
* Determine the peripheral that generated the interrupt and dispatch
* handling to the registered interrupt handler via xtensa_irq_dispatch().
*
* Input Parameters:
* cpuints - Set of pending interrupts valid for this level
* regs - Saves processor state on the stack
*
* Returned Value:
* Normally the same value as regs is returned. But, in the event of an
* interrupt level context switch, the returned value will, instead point
* to the saved processor state in the TCB of the newly started task.
*
****************************************************************************/
uint32_t *xtensa_int_decode(uint32_t cpuints, uint32_t *regs)
{
uint8_t *intmap;
uint32_t mask;
int bit;
#ifdef CONFIG_SMP
int cpu;
#endif
#ifdef CONFIG_SMP
/* Select PRO or APP CPU interrupt mapping table */
cpu = up_cpu_index();
if (cpu != 0)
{
intmap = g_cpu1_intmap;
}
else
#endif
{
intmap = g_cpu0_intmap;
}
/* Skip over zero bits, eight at a time */
for (bit = 0, mask = 0xff;
bit < ESP32_NCPUINTS && (cpuints & mask) == 0;
bit += 8, mask <<= 8);
/* Process each pending CPU interrupt */
for (; bit < ESP32_NCPUINTS && cpuints != 0; bit++)
{
mask = (1 << bit);
if ((cpuints & mask) != 0)
{
/* Extract the IRQ number from the mapping table */
uint8_t irq = CPUINT_GETIRQ(intmap[bit]);
DEBUGASSERT(CPUINT_GETEN(intmap[bit]));
DEBUGASSERT(irq != CPUINT_UNASSIGNED);
/* Clear software or edge-triggered interrupt */
xtensa_intclear(mask);
/* Dispatch the CPU interrupt.
*
* NOTE that regs may be altered in the case of an interrupt
* level context switch.
*/
regs = xtensa_irq_dispatch((int)irq, regs);
/* Clear the bit in the pending interrupt so that perhaps
* we can exit the look early.
*/
cpuints &= ~mask;
}
}
return regs;
}