nuttx/arch/arm/include
2018-12-05 15:17:22 -06:00
..
a1x
arm
armv6-m
armv7-a
armv7-m In the current implementation we only use very high priority interrupts (levels 0, 0x10 and 0x20 in CORTEX-M speak) but that means there are loads of lower priority ones that are effectively unused. I have *not* changed the semantics of these levels but have 'shifted' them to be based around the midpoint of the available interrupts (0x80) rather than at the top end....that allows for interrupts to be defined above (or, indeed, below) them as needed by the application. This should have no functional effect on existing code but adds in a clean capability to define higher priority interrupts. 2018-12-03 17:41:59 -06:00
armv7-r
bcm2708
c5471
dm320
efm32 In the current implementation we only use very high priority interrupts (levels 0, 0x10 and 0x20 in CORTEX-M speak) but that means there are loads of lower priority ones that are effectively unused. I have *not* changed the semantics of these levels but have 'shifted' them to be based around the midpoint of the available interrupts (0x80) rather than at the top end....that allows for interrupts to be defined above (or, indeed, below) them as needed by the application. This should have no functional effect on existing code but adds in a clean capability to define higher priority interrupts. 2018-12-03 17:41:59 -06:00
imx1
imx6
imxrt In the current implementation we only use very high priority interrupts (levels 0, 0x10 and 0x20 in CORTEX-M speak) but that means there are loads of lower priority ones that are effectively unused. I have *not* changed the semantics of these levels but have 'shifted' them to be based around the midpoint of the available interrupts (0x80) rather than at the top end....that allows for interrupts to be defined above (or, indeed, below) them as needed by the application. This should have no functional effect on existing code but adds in a clean capability to define higher priority interrupts. 2018-12-03 17:41:59 -06:00
kinetis In the current implementation we only use very high priority interrupts (levels 0, 0x10 and 0x20 in CORTEX-M speak) but that means there are loads of lower priority ones that are effectively unused. I have *not* changed the semantics of these levels but have 'shifted' them to be based around the midpoint of the available interrupts (0x80) rather than at the top end....that allows for interrupts to be defined above (or, indeed, below) them as needed by the application. This should have no functional effect on existing code but adds in a clean capability to define higher priority interrupts. 2018-12-03 17:41:59 -06:00
kl
lc823450 In the current implementation we only use very high priority interrupts (levels 0, 0x10 and 0x20 in CORTEX-M speak) but that means there are loads of lower priority ones that are effectively unused. I have *not* changed the semantics of these levels but have 'shifted' them to be based around the midpoint of the available interrupts (0x80) rather than at the top end....that allows for interrupts to be defined above (or, indeed, below) them as needed by the application. This should have no functional effect on existing code but adds in a clean capability to define higher priority interrupts. 2018-12-03 17:41:59 -06:00
lpc11xx In the current implementation we only use very high priority interrupts (levels 0, 0x10 and 0x20 in CORTEX-M speak) but that means there are loads of lower priority ones that are effectively unused. I have *not* changed the semantics of these levels but have 'shifted' them to be based around the midpoint of the available interrupts (0x80) rather than at the top end....that allows for interrupts to be defined above (or, indeed, below) them as needed by the application. This should have no functional effect on existing code but adds in a clean capability to define higher priority interrupts. 2018-12-03 17:41:59 -06:00
lpc17xx In the current implementation we only use very high priority interrupts (levels 0, 0x10 and 0x20 in CORTEX-M speak) but that means there are loads of lower priority ones that are effectively unused. I have *not* changed the semantics of these levels but have 'shifted' them to be based around the midpoint of the available interrupts (0x80) rather than at the top end....that allows for interrupts to be defined above (or, indeed, below) them as needed by the application. This should have no functional effect on existing code but adds in a clean capability to define higher priority interrupts. 2018-12-03 17:41:59 -06:00
lpc31xx
lpc43xx In the current implementation we only use very high priority interrupts (levels 0, 0x10 and 0x20 in CORTEX-M speak) but that means there are loads of lower priority ones that are effectively unused. I have *not* changed the semantics of these levels but have 'shifted' them to be based around the midpoint of the available interrupts (0x80) rather than at the top end....that allows for interrupts to be defined above (or, indeed, below) them as needed by the application. This should have no functional effect on existing code but adds in a clean capability to define higher priority interrupts. 2018-12-03 17:41:59 -06:00
lpc54xx In the current implementation we only use very high priority interrupts (levels 0, 0x10 and 0x20 in CORTEX-M speak) but that means there are loads of lower priority ones that are effectively unused. I have *not* changed the semantics of these levels but have 'shifted' them to be based around the midpoint of the available interrupts (0x80) rather than at the top end....that allows for interrupts to be defined above (or, indeed, below) them as needed by the application. This should have no functional effect on existing code but adds in a clean capability to define higher priority interrupts. 2018-12-03 17:41:59 -06:00
lpc214x
lpc2378
max326xx In the current implementation we only use very high priority interrupts (levels 0, 0x10 and 0x20 in CORTEX-M speak) but that means there are loads of lower priority ones that are effectively unused. I have *not* changed the semantics of these levels but have 'shifted' them to be based around the midpoint of the available interrupts (0x80) rather than at the top end....that allows for interrupts to be defined above (or, indeed, below) them as needed by the application. This should have no functional effect on existing code but adds in a clean capability to define higher priority interrupts. 2018-12-03 17:41:59 -06:00
moxart
nrf52 In the current implementation we only use very high priority interrupts (levels 0, 0x10 and 0x20 in CORTEX-M speak) but that means there are loads of lower priority ones that are effectively unused. I have *not* changed the semantics of these levels but have 'shifted' them to be based around the midpoint of the available interrupts (0x80) rather than at the top end....that allows for interrupts to be defined above (or, indeed, below) them as needed by the application. This should have no functional effect on existing code but adds in a clean capability to define higher priority interrupts. 2018-12-03 17:41:59 -06:00
nuc1xx
sam34 In the current implementation we only use very high priority interrupts (levels 0, 0x10 and 0x20 in CORTEX-M speak) but that means there are loads of lower priority ones that are effectively unused. I have *not* changed the semantics of these levels but have 'shifted' them to be based around the midpoint of the available interrupts (0x80) rather than at the top end....that allows for interrupts to be defined above (or, indeed, below) them as needed by the application. This should have no functional effect on existing code but adds in a clean capability to define higher priority interrupts. 2018-12-03 17:41:59 -06:00
sama5
samd2l2
samd5e5
samv7 In the current implementation we only use very high priority interrupts (levels 0, 0x10 and 0x20 in CORTEX-M speak) but that means there are loads of lower priority ones that are effectively unused. I have *not* changed the semantics of these levels but have 'shifted' them to be based around the midpoint of the available interrupts (0x80) rather than at the top end....that allows for interrupts to be defined above (or, indeed, below) them as needed by the application. This should have no functional effect on existing code but adds in a clean capability to define higher priority interrupts. 2018-12-03 17:41:59 -06:00
stm32 Merged in raiden00/nuttx_pe (pull request #773) 2018-12-05 11:46:36 +00:00
stm32f0 In the current implementation we only use very high priority interrupts (levels 0, 0x10 and 0x20 in CORTEX-M speak) but that means there are loads of lower priority ones that are effectively unused. I have *not* changed the semantics of these levels but have 'shifted' them to be based around the midpoint of the available interrupts (0x80) rather than at the top end....that allows for interrupts to be defined above (or, indeed, below) them as needed by the application. This should have no functional effect on existing code but adds in a clean capability to define higher priority interrupts. 2018-12-03 17:41:59 -06:00
stm32f7 In the current implementation we only use very high priority interrupts (levels 0, 0x10 and 0x20 in CORTEX-M speak) but that means there are loads of lower priority ones that are effectively unused. I have *not* changed the semantics of these levels but have 'shifted' them to be based around the midpoint of the available interrupts (0x80) rather than at the top end....that allows for interrupts to be defined above (or, indeed, below) them as needed by the application. This should have no functional effect on existing code but adds in a clean capability to define higher priority interrupts. 2018-12-03 17:41:59 -06:00
stm32h7 In the current implementation we only use very high priority interrupts (levels 0, 0x10 and 0x20 in CORTEX-M speak) but that means there are loads of lower priority ones that are effectively unused. I have *not* changed the semantics of these levels but have 'shifted' them to be based around the midpoint of the available interrupts (0x80) rather than at the top end....that allows for interrupts to be defined above (or, indeed, below) them as needed by the application. This should have no functional effect on existing code but adds in a clean capability to define higher priority interrupts. 2018-12-03 17:41:59 -06:00
stm32l4 In the current implementation we only use very high priority interrupts (levels 0, 0x10 and 0x20 in CORTEX-M speak) but that means there are loads of lower priority ones that are effectively unused. I have *not* changed the semantics of these levels but have 'shifted' them to be based around the midpoint of the available interrupts (0x80) rather than at the top end....that allows for interrupts to be defined above (or, indeed, below) them as needed by the application. This should have no functional effect on existing code but adds in a clean capability to define higher priority interrupts. 2018-12-03 17:41:59 -06:00
str71x
tiva arch/arm/src/tiva: Starting to work through alternate function pin configuration and GPIO interrupts for C13xx. Works a lot differently than the LM and Tiva parts. 2018-12-05 15:17:22 -06:00
tms570
xmc4 In the current implementation we only use very high priority interrupts (levels 0, 0x10 and 0x20 in CORTEX-M speak) but that means there are loads of lower priority ones that are effectively unused. I have *not* changed the semantics of these levels but have 'shifted' them to be based around the midpoint of the available interrupts (0x80) rather than at the top end....that allows for interrupts to be defined above (or, indeed, below) them as needed by the application. This should have no functional effect on existing code but adds in a clean capability to define higher priority interrupts. 2018-12-03 17:41:59 -06:00
.gitignore
arch.h
elf.h
inttypes.h
irq.h
limits.h
serial.h
spinlock.h
stdarg.h
syscall.h
tls.h
types.h
watchdog.h