801b9d6e5f
Remove support for the Codesourcery, Atollic, DevKitArm, Raisonance, and CodeRed toolchains. Not only are these tools old and no longer used but they are all equivalent to standard ARM EABI toolchains. Retaining specific support has no effect (they are still supported, but now just as generic EABI toolchains).
587 lines
20 KiB
Plaintext
587 lines
20 KiB
Plaintext
README
|
||
======
|
||
|
||
This README discusses issues unique to NuttX configurations for the ST
|
||
NucleoL476RG board from ST Micro. See
|
||
|
||
http://www.st.com/nucleo-l476rg
|
||
|
||
NucleoL476RG:
|
||
|
||
Microprocessor: 32-bit ARM Cortex M4 at 80MHz STM32L476RGT6
|
||
Memory: 1024 KB Flash and 96+32 KB SRAM
|
||
ADC: 2×12-bit, 2.4 MSPS A/D converter: up to 24 channels
|
||
DMA: 16-stream DMA controllers with FIFOs and burst support
|
||
Timers: Up to 11 timers: up to eight 16-bit, two 32-bit timers, two
|
||
watchdog timers, and a SysTick timer
|
||
GPIO: Up to 51 I/O ports with interrupt capability
|
||
I2C: Up to 3 × I2C interfaces
|
||
USARTs: Up to 3 USARTs, 2 UARTs, 1 LPUART
|
||
SPIs: Up to 3 SPIs
|
||
SAIs: Up to 2 dual-channel audio interfaces
|
||
CAN interface
|
||
SDIO interface
|
||
QSPI interface
|
||
USB: USB 2.0 full-speed device/host/OTG controller with on-chip PHY
|
||
CRC calculation unit
|
||
RTC
|
||
|
||
Board features:
|
||
|
||
Peripherals: 1 led, 1 push button
|
||
Debug: Serial wire debug and JTAG interfaces
|
||
Expansion I/F Ardino and Morpho Headers
|
||
|
||
Uses a STM32F103 to provide a ST-Link for programming, debug similar to the
|
||
OpenOcd FTDI function - USB to JTAG front-end.
|
||
|
||
See http://mbed.org/platforms/ST-Nucleo-L476RG for more
|
||
information about these boards.
|
||
|
||
Contents
|
||
========
|
||
|
||
- Nucleo-64 Boards
|
||
- Development Environment
|
||
- GNU Toolchain Options
|
||
- IDEs
|
||
- NuttX EABI "buildroot" Toolchain
|
||
- NXFLAT Toolchain
|
||
- Hardware
|
||
- Button
|
||
- LED
|
||
- USARTs and Serial Consoles
|
||
- LQFP64
|
||
- mbed
|
||
- Shields
|
||
- Other External Hardware/Devices
|
||
- Configurations
|
||
|
||
Nucleo-64 Boards
|
||
================
|
||
|
||
The Nucleo-L476RG is a member of the Nucleo-64 board family. The Nucleo-64
|
||
is a standard board for use with several STM32 parts in the LQFP64 package.
|
||
Variants include
|
||
|
||
Order code Targeted STM32
|
||
------------- --------------
|
||
NUCLEO-F030R8 STM32F030R8T6
|
||
NUCLEO-F070RB STM32F070RBT6
|
||
NUCLEO-F072RB STM32F072RBT6
|
||
NUCLEO-F091RC STM32F091RCT6
|
||
NUCLEO-F103RB STM32F103RBT6
|
||
NUCLEO-F302R8 STM32F302R8T6
|
||
NUCLEO-F303RE STM32F303RET6
|
||
NUCLEO-F334R8 STM32F334R8T6
|
||
NUCLEO-F401RE STM32F401RET6
|
||
NUCLEO-F410RB STM32F410RBT6
|
||
NUCLEO-F411RE STM32F411RET6
|
||
NUCLEO-F446RE STM32F446RET6
|
||
NUCLEO-L053R8 STM32L053R8T6
|
||
NUCLEO-L073RZ STM32L073RZT6
|
||
NUCLEO-L152RE STM32L152RET6
|
||
NUCLEO-L452RE STM32L452RET6
|
||
NUCLEO-L476RG STM32L476RGT6
|
||
|
||
Development Environment
|
||
=======================
|
||
|
||
Either Linux or Cygwin on Windows can be used for the development environment.
|
||
The source has been built only using the GNU toolchain (see below). Other
|
||
toolchains will likely cause problems.
|
||
|
||
GNU Toolchain Options
|
||
=====================
|
||
|
||
Toolchain Configurations
|
||
------------------------
|
||
The NuttX make system has been modified to support the following different
|
||
toolchain options.
|
||
|
||
1. The NuttX buildroot Toolchain (see below), or
|
||
2. Any generic arm-none-eabi GNU toolchain.
|
||
|
||
All testing has been conducted using the NuttX Codesourcery toolchain. To use
|
||
a different toolchain, you simply need to modify the configuration. As an
|
||
example:
|
||
|
||
CONFIG_ARM_TOOLCHAIN_GNU_EABIL : Generic arm-none-eabi toolchain
|
||
|
||
IDEs
|
||
====
|
||
|
||
NuttX is built using command-line make. It can be used with an IDE, but some
|
||
effort will be required to create the project.
|
||
|
||
Makefile Build
|
||
--------------
|
||
Under Eclipse, it is pretty easy to set up an "empty makefile project" and
|
||
simply use the NuttX makefile to build the system. That is almost for free
|
||
under Linux. Under Windows, you will need to set up the "Cygwin GCC" empty
|
||
makefile project in order to work with Windows (Google for "Eclipse Cygwin" -
|
||
there is a lot of help on the internet).
|
||
|
||
Using Sourcery CodeBench from http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/overview
|
||
Download and install the latest version (as of this writing it was
|
||
sourceryg++-2013.05-64-arm-none-eabi)
|
||
|
||
Import the project from git.
|
||
File->import->Git-URI, then import a Exiting code as a Makefile progject
|
||
from the working directory the git clone was done to.
|
||
|
||
Select the Sourcery CodeBench for ARM EABI. N.B. You must do one command line
|
||
build, before the make will work in CodeBench.
|
||
|
||
Native Build
|
||
------------
|
||
Here are a few tips before you start that effort:
|
||
|
||
1) Select the toolchain that you will be using in your .config file
|
||
2) Start the NuttX build at least one time from the Cygwin command line
|
||
before trying to create your project. This is necessary to create
|
||
certain auto-generated files and directories that will be needed.
|
||
3) Set up include paths: You will need include/, arch/arm/src/stm32,
|
||
arch/arm/src/common, arch/arm/src/armv7-m, and sched/.
|
||
4) All assembly files need to have the definition option -D __ASSEMBLY__
|
||
on the command line.
|
||
|
||
Startup files will probably cause you some headaches. The NuttX startup file
|
||
is arch/arm/src/stm32/stm32_vectors.S. With RIDE, I have to build NuttX
|
||
one time from the Cygwin command line in order to obtain the pre-built
|
||
startup object needed by RIDE.
|
||
|
||
NuttX EABI "buildroot" Toolchain
|
||
================================
|
||
|
||
A GNU GCC-based toolchain is assumed. The PATH environment variable should
|
||
be modified to point to the correct path to the Cortex-M3 GCC toolchain (if
|
||
different from the default in your PATH variable).
|
||
|
||
If you have no Cortex-M3 toolchain, one can be downloaded from the NuttX
|
||
Bitbucket download site (https://bitbucket.org/nuttx/buildroot/downloads/).
|
||
This GNU toolchain builds and executes in the Linux or Cygwin environment.
|
||
|
||
1. You must have already configured Nuttx in <some-dir>/nuttx.
|
||
|
||
$ tools/configure.sh nucleo-l476rg:nsh
|
||
$ make qconfig
|
||
$ V=1 make context all 2>&1 | tee mout
|
||
|
||
2. Download the latest buildroot package into <some-dir>
|
||
|
||
3. unpack the buildroot tarball. The resulting directory may
|
||
have versioning information on it like buildroot-x.y.z. If so,
|
||
rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
|
||
|
||
4. cd <some-dir>/buildroot
|
||
|
||
5. cp boards/cortexm3-eabi-defconfig-4.6.3 .config
|
||
|
||
6. make oldconfig
|
||
|
||
7. make
|
||
|
||
8. Make sure that the PATH variable includes the path to the newly built
|
||
binaries.
|
||
|
||
See the file boards/README.txt in the buildroot source tree. That has more
|
||
details PLUS some special instructions that you will need to follow if you are
|
||
building a Cortex-M3 toolchain for Cygwin under Windows.
|
||
|
||
NOTE: Unfortunately, the 4.6.3 EABI toolchain is not compatible with the
|
||
the NXFLAT tools. See the top-level TODO file (under "Binary loaders") for
|
||
more information about this problem. If you plan to use NXFLAT, please do not
|
||
use the GCC 4.6.3 EABI toolchain; instead use the GCC 4.3.3 EABI toolchain.
|
||
|
||
NXFLAT Toolchain
|
||
================
|
||
|
||
If you are *not* using the NuttX buildroot toolchain and you want to use
|
||
the NXFLAT tools, then you will still have to build a portion of the buildroot
|
||
tools -- just the NXFLAT tools. The buildroot with the NXFLAT tools can
|
||
be downloaded from the NuttX Bitbucket download site
|
||
(https://bitbucket.org/nuttx/nuttx/downloads/).
|
||
|
||
This GNU toolchain builds and executes in the Linux or Cygwin environment.
|
||
|
||
1. You must have already configured Nuttx in <some-dir>/nuttx.
|
||
|
||
tools/configure.sh lpcxpresso-lpc1768:<sub-dir>
|
||
|
||
2. Download the latest buildroot package into <some-dir>
|
||
|
||
3. unpack the buildroot tarball. The resulting directory may
|
||
have versioning information on it like buildroot-x.y.z. If so,
|
||
rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
|
||
|
||
4. cd <some-dir>/buildroot
|
||
|
||
5. cp boards/cortexm3-defconfig-nxflat .config
|
||
|
||
6. make oldconfig
|
||
|
||
7. make
|
||
|
||
8. Make sure that the PATH variable includes the path to the newly built
|
||
NXFLAT binaries.
|
||
|
||
mbed
|
||
====
|
||
|
||
The Nucleo-L476RG includes boot loader from mbed:
|
||
|
||
https://mbed.org/platforms/ST-Nucleo-L476RG/
|
||
https://mbed.org/handbook/Homepage
|
||
|
||
Using the mbed loader:
|
||
|
||
1. Connect the Nucleo-F4x1RE to the host PC using the USB connector.
|
||
2. A new file system will appear called NUCLEO; open it with Windows
|
||
Explorer (assuming that you are using Windows).
|
||
3. Drag and drop nuttx.bin into the MBED window. This will load the
|
||
nuttx.bin binary into the Nucleo-F4x1RE. The NUCLEO window will
|
||
close then re-open and the Nucleo-F4x1RE will be running the new code.
|
||
|
||
Hardware
|
||
========
|
||
|
||
GPIO
|
||
----
|
||
SERIAL_TX=PA_2 USER_BUTTON=PC_13
|
||
SERIAL_RX=PA_3 LED1 =PA_5
|
||
|
||
A0=PA_0 USART2RX D0=PA_3 D8 =PA_9
|
||
A1=PA_1 USART2TX D1=PA_2 D9 =PC_7
|
||
A2=PA_4 D2=PA_10 WIFI_CS=D10=PB_6 SPI_CS
|
||
A3=PB_0 WIFI_INT=D3=PB_3 D11=PA_7 SPI_MOSI
|
||
A4=PC_1 SDCS=D4=PB_5 D12=PA_6 SPI_MISO
|
||
A5=PC_0 WIFI_EN=D5=PB_4 LED1=D13=PA_5 SPI_SCK
|
||
LED2=D6=PB_10 I2C1_SDA=D14=PB_9 Probe
|
||
D7=PA_8 I2C1_SCL=D15=PB_8 Probe
|
||
|
||
From: https://mbed.org/platforms/ST-Nucleo-L476RG/
|
||
|
||
Buttons
|
||
-------
|
||
B1 USER: the user button is connected to the I/O PC13 (pin 2) of the STM32
|
||
microcontroller.
|
||
|
||
LEDs
|
||
----
|
||
The Nucleo L476RG provides a single user LED, LD2. LD2 is the green LED
|
||
connected to Arduino signal D13 corresponding to MCU I/O PA5 (pin 21) or
|
||
PB13 (pin 34) depending on the STM32target.
|
||
|
||
- When the I/O is HIGH value, the LED is on.
|
||
- When the I/O is LOW, the LED is off.
|
||
|
||
These LEDs are not used by the board port unless CONFIG_ARCH_LEDS is
|
||
defined. In that case, the usage by the board port is defined in
|
||
include/board.h and src/sam_leds.c. The LEDs are used to encode OS-related
|
||
events as follows when the red LED (PE24) is available:
|
||
|
||
SYMBOL Meaning LD2
|
||
------------------- ----------------------- -----------
|
||
LED_STARTED NuttX has been started OFF
|
||
LED_HEAPALLOCATE Heap has been allocated OFF
|
||
LED_IRQSENABLED Interrupts enabled OFF
|
||
LED_STACKCREATED Idle stack created ON
|
||
LED_INIRQ In an interrupt No change
|
||
LED_SIGNAL In a signal handler No change
|
||
LED_ASSERTION An assertion failed No change
|
||
LED_PANIC The system has crashed Blinking
|
||
LED_IDLE MCU is is sleep mode Not used
|
||
|
||
Thus if LD2, NuttX has successfully booted and is, apparently, running
|
||
normally. If LD2 is flashing at approximately 2Hz, then a fatal error
|
||
has been detected and the system has halted.
|
||
|
||
Serial Consoles
|
||
===============
|
||
|
||
USART1
|
||
------
|
||
Pins and Connectors:
|
||
|
||
RXD: PA11 CN10 pin 14
|
||
PB7 CN7 pin 21
|
||
TXD: PA10 CN9 pin 3, CN10 pin 33
|
||
PB6 CN5 pin 3, CN10 pin 17
|
||
|
||
NOTE: You may need to edit the include/board.h to select different USART1
|
||
pin selections.
|
||
|
||
TTL to RS-232 converter connection:
|
||
|
||
Nucleo CN10 STM32F4x1RE
|
||
----------- ------------
|
||
Pin 21 PA9 USART1_RX *Warning you make need to reverse RX/TX on
|
||
Pin 33 PA10 USART1_TX some RS-232 converters
|
||
Pin 20 GND
|
||
Pin 8 U5V
|
||
|
||
To configure USART1 as the console:
|
||
|
||
CONFIG_STM32_USART1=y
|
||
CONFIG_USART1_SERIALDRIVER=y
|
||
CONFIG_USART1_SERIAL_CONSOLE=y
|
||
CONFIG_USART1_RXBUFSIZE=256
|
||
CONFIG_USART1_TXBUFSIZE=256
|
||
CONFIG_USART1_BAUD=115200
|
||
CONFIG_USART1_BITS=8
|
||
CONFIG_USART1_PARITY=0
|
||
CONFIG_USART1_2STOP=0
|
||
|
||
USART2
|
||
-----
|
||
Pins and Connectors:
|
||
|
||
RXD: PA3 CN9 pin 1 (See SB13, 14, 62, 63). CN10 pin 37
|
||
PD6
|
||
TXD: PA2 CN9 pin 2(See SB13, 14, 62, 63). CN10 pin 35
|
||
PD5
|
||
|
||
UART2 is the default in all of these configurations.
|
||
|
||
TTL to RS-232 converter connection:
|
||
|
||
Nucleo CN9 STM32F4x1RE
|
||
----------- ------------
|
||
Pin 1 PA3 USART2_RX *Warning you make need to reverse RX/TX on
|
||
Pin 2 PA2 USART2_TX some RS-232 converters
|
||
|
||
Solder Bridges. This configuration requires:
|
||
|
||
- SB62 and SB63 Closed: PA2 and PA3 on STM32 MCU are connected to D1 and D0
|
||
(pin 7 and pin 8) on Arduino connector CN9 and ST Morpho connector CN10
|
||
as USART signals. Thus SB13 and SB14 should be OFF.
|
||
|
||
- SB13 and SB14 Open: PA2 and PA3 on STM32F103C8T6 (ST-LINK MCU) are
|
||
disconnected to PA3 and PA2 on STM32 MCU.
|
||
|
||
To configure USART2 as the console:
|
||
|
||
CONFIG_STM32_USART2=y
|
||
CONFIG_USART2_SERIALDRIVER=y
|
||
CONFIG_USART2_SERIAL_CONSOLE=y
|
||
CONFIG_USART2_RXBUFSIZE=256
|
||
CONFIG_USART2_TXBUFSIZE=256
|
||
CONFIG_USART2_BAUD=115200
|
||
CONFIG_USART2_BITS=8
|
||
CONFIG_USART2_PARITY=0
|
||
CONFIG_USART2_2STOP=0
|
||
|
||
USART6
|
||
------
|
||
Pins and Connectors:
|
||
|
||
RXD: PC7 CN5 pin2, CN10 pin 19
|
||
PA12 CN10, pin 12
|
||
TXD: PC6 CN10, pin 4
|
||
PA11 CN10, pin 14
|
||
|
||
To configure USART6 as the console:
|
||
|
||
CONFIG_STM32_USART6=y
|
||
CONFIG_USART6_SERIALDRIVER=y
|
||
CONFIG_USART6_SERIAL_CONSOLE=y
|
||
CONFIG_USART6_RXBUFSIZE=256
|
||
CONFIG_USART6_TXBUFSIZE=256
|
||
CONFIG_USART6_BAUD=115200
|
||
CONFIG_USART6_BITS=8
|
||
CONFIG_USART6_PARITY=0
|
||
CONFIG_USART6_2STOP=0
|
||
|
||
Virtual COM Port
|
||
----------------
|
||
Yet another option is to use UART2 and the USB virtual COM port. This
|
||
option may be more convenient for long term development, but is painful
|
||
to use during board bring-up.
|
||
|
||
Solder Bridges. This configuration requires:
|
||
|
||
- SB62 and SB63 Open: PA2 and PA3 on STM32 MCU are disconnected to D1
|
||
and D0 (pin 7 and pin 8) on Arduino connector CN9 and ST Morpho
|
||
connector CN10.
|
||
|
||
- SB13 and SB14 Closed: PA2 and PA3 on STM32F103C8T6 (ST-LINK MCU) are
|
||
connected to PA3 and PA2 on STM32 MCU to have USART communication
|
||
between them. Thus SB61, SB62 and SB63 should be OFF.
|
||
|
||
Configuring USART2 is the same as given above.
|
||
|
||
Question: What BAUD should be configure to interface with the Virtual
|
||
COM port? 115200 8N1?
|
||
|
||
Default
|
||
-------
|
||
As shipped, SB62 and SB63 are open and SB13 and SB14 closed, so the
|
||
virtual COM port is enabled.
|
||
|
||
Shields
|
||
=======
|
||
|
||
RS-232 from Cutedigi.com
|
||
------------------------
|
||
Supports a single RS-232 connected via
|
||
|
||
Nucleo CN9 STM32F4x1RE Cutedigi
|
||
----------- ------------ --------
|
||
Pin 1 PA3 USART2_RX RXD
|
||
Pin 2 PA2 USART2_TX TXD
|
||
|
||
Support for this shield is enabled by selecting USART2 and configuring
|
||
SB13, 14, 62, and 63 as described above under "Serial Consoles"
|
||
|
||
Itead Joystick Shield
|
||
---------------------
|
||
See http://imall.iteadstudio.com/im120417014.html for more information
|
||
about this joystick.
|
||
|
||
Itead Joystick Connection:
|
||
|
||
--------- ----------------- ---------------------------------
|
||
ARDUINO ITEAD NUCLEO-F4x1
|
||
PIN NAME SIGNAL SIGNAL
|
||
--------- ----------------- ---------------------------------
|
||
D3 Button E Output PB3
|
||
D4 Button D Output PB5
|
||
D5 Button C Output PB4
|
||
D6 Button B Output PB10
|
||
D7 Button A Output PA8
|
||
D8 Button F Output PA9
|
||
D9 Button G Output PC7
|
||
A0 Joystick Y Output PA0 ADC1_0
|
||
A1 Joystick X Output PA1 ADC1_1
|
||
--------- ----------------- ---------------------------------
|
||
|
||
All buttons are pulled on the shield. A sensed low value indicates
|
||
when the button is pressed.
|
||
|
||
NOTE: Button F cannot be used with the default USART1 configuration
|
||
because PA9 is configured for USART1_RX by default. Use select
|
||
different USART1 pins in the board.h file or select a different
|
||
USART or select CONFIG_NUCLEO_L476RG_AJOY_MINBUTTONS which will
|
||
eliminate all but buttons A, B, and C.
|
||
|
||
Itead Joystick Signal interpretation:
|
||
|
||
--------- ----------------------- ---------------------------
|
||
BUTTON TYPE NUTTX ALIAS
|
||
--------- ----------------------- ---------------------------
|
||
Button A Large button A JUMP/BUTTON 3
|
||
Button B Large button B FIRE/BUTTON 2
|
||
Button C Joystick select button SELECT/BUTTON 1
|
||
Button D Tiny Button D BUTTON 6
|
||
Button E Tiny Button E BUTTON 7
|
||
Button F Large Button F BUTTON 4
|
||
Button G Large Button G BUTTON 5
|
||
--------- ----------------------- ---------------------------
|
||
|
||
Itead Joystick configuration settings:
|
||
|
||
System Type -> STM32 Peripheral Support
|
||
CONFIG_STM32_ADC1=y : Enable ADC1 driver support
|
||
|
||
Drivers
|
||
CONFIG_ANALOG=y : Should be automatically selected
|
||
CONFIG_ADC=y : Should be automatically selected
|
||
CONFIG_INPUT=y : Select input device support
|
||
CONFIG_AJOYSTICK=y : Select analog joystick support
|
||
|
||
There is nothing in the configuration that currently uses the joystick.
|
||
For testing, you can add the following configuration options to enable the
|
||
analog joystick example at apps/examples/ajoystick:
|
||
|
||
CONFIG_NSH_ARCHINIT=y
|
||
CONFIG_EXAMPLES_AJOYSTICK=y
|
||
CONFIG_EXAMPLES_AJOYSTICK_DEVNAME="/dev/ajoy0"
|
||
CONFIG_EXAMPLES_AJOYSTICK_SIGNO=13
|
||
|
||
STATUS:
|
||
2014-12-04:
|
||
- Without ADC DMA support, it is not possible to sample both X and Y
|
||
with a single ADC. Right now, only one axis is being converted.
|
||
- There is conflicts with some of the Arduino data pins and the
|
||
default USART1 configuration. I am currently running with USART1
|
||
but with CONFIG_NUCLEO_L476RG_AJOY_MINBUTTONS to eliminate the
|
||
conflict.
|
||
- Current showstopper: I appear to be getting infinite interrupts as
|
||
soon as joystick button interrupts are enabled.
|
||
|
||
Other External Hardware/Devices
|
||
===============================
|
||
|
||
Using external SPI SDCard
|
||
-------------------------
|
||
It is possible to use external SDCard over SPI with the
|
||
nucleo-stm32l476rg Cortex-M4. This option will or can broaden the
|
||
functionality in your project, solution or application.
|
||
|
||
In this Nuttx project we attach an MH-SD Card Module (SPI).
|
||
[http://www.geeetech.com/wiki/index.php/Arduino_SD_card_Module]
|
||
|
||
Other solutions should also work.
|
||
|
||
Nucleo CN10 STM32L4x6RG
|
||
----------- ------------
|
||
Pin 31 PB3 SLCK
|
||
Pin 27 PB4 MISO
|
||
Pin 29 PB5 MOSI
|
||
Pin 25 PB10 CS
|
||
|
||
Nucleo CN7 STM32L4x6RG
|
||
----------- ------------
|
||
Pin 18 +5V 5V
|
||
Pin 22 GND GND
|
||
|
||
On the board the pins are labeled and are corresponding with the functions
|
||
as written before.
|
||
Configuring can be done by using ./tools/configure.sh nucleo-l476rg/spimmcsd
|
||
|
||
Configurations
|
||
==============
|
||
|
||
nsh:
|
||
---------
|
||
Configures the NuttShell (nsh) located at apps/examples/nsh for the
|
||
Nucleo-L476RG board. The Configuration enables the serial interfaces
|
||
on UART2. Support for builtin applications is enabled, but in the base
|
||
configuration no builtin applications are selected (see NOTES below).
|
||
|
||
NOTES:
|
||
|
||
1. This configuration uses the mconf-based configuration tool. To
|
||
change this configuration using that tool, you should:
|
||
|
||
a. Build and install the kconfig-mconf tool. See nuttx/README.txt
|
||
see additional README.txt files in the NuttX tools repository.
|
||
|
||
b. Execute 'make menuconfig' in nuttx/ in order to start the
|
||
reconfiguration process.
|
||
|
||
2. By default, this configuration uses the ARM EABI toolchain
|
||
for Linux. That can easily be reconfigured, of course.
|
||
|
||
CONFIG_HOST_LINUX=y : Builds under Linux
|
||
CONFIG_ARMV7M_TOOLCHAIN_GNU_EABIL=y : GNU EABI toolchain for Linux
|
||
|
||
3. Although the default console is USART2 (which would correspond to
|
||
the Virtual COM port) I have done all testing with the console
|
||
device configured for USART1 (see instruction above under "Serial
|
||
Consoles). I have been using a TTL-to-RS-232 converter connected
|
||
as shown below:
|
||
|
||
Nucleo CN10 STM32F4x1RE
|
||
----------- ------------
|
||
Pin 21 PA9 USART1_RX *Warning you make need to reverse RX/TX on
|
||
Pin 33 PA10 USART1_TX some RS-232 converters
|
||
Pin 20 GND
|
||
Pin 8 U5V
|
||
|
||
nxdemo
|
||
--------
|
||
This is an NSH configuration that enables the NX graphics demo at
|
||
apps/examples/nxdemo. It uses the PCD8544 display on SPI1.
|