nuttx/binfmt/libnxflat/libnxflat_load.c
patacongo ef6dcd6f90 C++ constructors work with ELF load now
git-svn-id: svn://svn.code.sf.net/p/nuttx/code/trunk@5273 42af7a65-404d-4744-a932-0658087f49c3
2012-10-29 19:32:05 +00:00

191 lines
6.9 KiB
C

/****************************************************************************
* binfmt/libnxflat/libnxflat_load.c
*
* Copyright (C) 2009 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <stdint.h>
#include <stdlib.h>
#include <nxflat.h>
#include <debug.h>
#include <errno.h>
#include <arpa/inet.h>
#include <nuttx/binfmt/nxflat.h>
/****************************************************************************
* Pre-Processor Definitions
****************************************************************************/
#ifndef MAX
#define MAX(x,y) ((x) > (y) ? (x) : (y))
#endif
/****************************************************************************
* Private Constant Data
****************************************************************************/
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: nxflat_load
*
* Description:
* Loads the binary specified by nxflat_init into memory, mapping
* the I-space executable regions, allocating the D-Space region,
* and inializing the data segment (relocation information is
* temporarily loaded into the BSS region. BSS will be cleared
* by nxflat_bind() after the relocation data has been processed).
*
* Returned Value:
* 0 (OK) is returned on success and a negated errno is returned on
* failure.
*
****************************************************************************/
int nxflat_load(struct nxflat_loadinfo_s *loadinfo)
{
off_t doffset; /* Offset to .data in the NXFLAT file */
uint32_t dreadsize; /* Total number of bytes of .data to be read */
uint32_t relocsize; /* Memory needed to hold relocations */
uint32_t extrasize; /* MAX(BSS size, relocsize) */
int ret = OK;
/* Calculate the extra space we need to allocate. This extra space will be
* the size of the BSS section. This extra space will also be used
* temporarily to hold relocation information. So the allocated size of this
* region will either be the size of .data + size of.bss section OR, the
* size of .data + the relocation entries, whichever is larger
*
* This is the amount of memory that we have to have to hold the
* relocations.
*/
relocsize = loadinfo->reloccount * sizeof(struct nxflat_reloc_s);
/* In the file, the relocations should lie at the same offset as BSS.
* The additional amount that we allocate have to be either (1) the
* BSS size, or (2) the size of the relocation records, whicher is
* larger.
*/
extrasize = MAX(loadinfo->bsssize, relocsize);
/* Use this additional amount to adjust the total size of the dspace
* region.
*/
loadinfo->dsize = loadinfo->datasize + extrasize;
/* The number of bytes of data that we have to read from the file is
* the data size plus the size of the relocation table.
*/
dreadsize = loadinfo->datasize + relocsize;
/* We'll need this a few times. */
doffset = loadinfo->isize;
/* We will make two mmap calls create an address space for the executable.
* We will attempt to map the file to get the ISpace address space and
* to allocate RAM to get the DSpace address space. If the filesystem does
* not support file mapping, the map() implementation should do the
* right thing.
*/
/* The following call will give as a pointer to the mapped file ISpace.
* This may be in ROM, RAM, Flash, ... We don't really care where the memory
* resides as long as it is fully initialized and ready to execute.
*/
loadinfo->ispace = (uint32_t)mmap(NULL, loadinfo->isize, PROT_READ,
MAP_SHARED|MAP_FILE, loadinfo->filfd, 0);
if (loadinfo->ispace == (uint32_t)MAP_FAILED)
{
bdbg("Failed to map NXFLAT ISpace: %d\n", errno);
return -errno;
}
bvdbg("Mapped ISpace (%d bytes) at %08x\n", loadinfo->isize, loadinfo->ispace);
/* The following call will give a pointer to the allocated but
* uninitialized ISpace memory.
*/
loadinfo->dspace = (struct dspace_s *)malloc(SIZEOF_DSPACE_S(loadinfo->dsize));
if (loadinfo->dspace == 0)
{
bdbg("Failed to allocate DSpace\n");
ret = -ENOMEM;
goto errout;
}
loadinfo->dspace->crefs = 1;
bvdbg("Allocated DSpace (%d bytes) at %p\n", loadinfo->dsize, loadinfo->dspace->region);
/* Now, read the data into allocated DSpace at doffset into the
* allocated DSpace memory.
*/
ret = nxflat_read(loadinfo, (char*)loadinfo->dspace->region, dreadsize, doffset);
if (ret < 0)
{
bdbg("Failed to read .data section: %d\n", ret);
goto errout;
}
bvdbg("TEXT: %08x Entry point offset: %08x Data offset: %08x\n",
loadinfo->ispace, loadinfo->entryoffs, doffset);
return OK;
errout:
(void)nxflat_unload(loadinfo);
return ret;
}