nuttx/configs/sama5d3x-ek/include/board.h
2013-07-27 14:03:02 -06:00

314 lines
12 KiB
C

/************************************************************************************
* configs/sama5df3x-ek/include/board.h
*
* Copyright (C) 2013 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
************************************************************************************/
#ifndef __CONFIGS_SAMA5D3X_EK_INCLUDE_BOARD_H
#define __CONFIGS_SAMA5D3X_EK_INCLUDE_BOARD_H
/************************************************************************************
* Included Files
************************************************************************************/
#include <nuttx/config.h>
/************************************************************************************
* Definitions
************************************************************************************/
/* Clocking *************************************************************************/
/* After power-on reset, the sam3u device is running on a 4MHz internal RC. These
* definitions will configure clocking
*
* MAINOSC: Frequency = 12MHz (crysta)
* PLLA: PLL Divider = 1, Multiplier = 66 to generate PLLACK = 792MHz
* Master Clock (MCK): Source = PLLACK/2, Prescalar = 1, MDIV = 3 to generate
* MCK = 132MHz
* CPU clock = 396MHz
*/
/* Main oscillator register settings.
*
* The start up time should be should be:
* Start Up Time = 8 * MOSCXTST / SLCK = 56 Slow Clock Cycles.
*/
#define BOARD_CKGR_MOR_MOSCXTST (62 << PMC_CKGR_MOR_MOSCXTST_SHIFT) /* Start-up Time */
/* PLLA configuration.
*
* Divider = 1
* Multipler = 66
*/
#define BOARD_CKGR_PLLAR_COUNT (63 << PMC_CKGR_PLLAR_COUNT_SHIFT)
#define BOARD_CKGR_PLLAR_OUT (0)
#define BOARD_CKGR_PLLAR_MUL (65 << PMC_CKGR_PLLAR_MUL_SHIFT)
#define BOARD_CKGR_PLLAR_DIV PMC_CKGR_PLLAR_DIV_BYPASS
/* PMC master clock register settings.
*
* Master/Processor Clock Source Selection = PLLA
* Master/Processor Clock Prescaler = 1
* PLLA Divider = 2
* Master Clock Division (MDIV) = 3
*
* NOTE: Bit PLLADIV2 must always be set to 1 when MDIV is set to 3.
*
* Prescaler input = 792MHz / 2 = 396MHz
* Prescaler output = 792MHz / 1 = 396MHz
* Processor Clock (PCK) = 396MHz
* Master clock (MCK) = 396MHz / 3 = 132MHz
*/
#define BOARD_PMC_MCKR_CSS PMC_MCKR_CSS_PLLA
#define BOARD_PMC_MCKR_PRES PMC_MCKR_PRES_DIV1
#define BOARD_PMC_MCKR_PLLADIV PMC_MCKR_PLLADIV2
#define BOARD_PMC_MCKR_MDIV PMC_MCKR_MDIV_PCKDIV3
/* USB UTMI PLL start-up time */
#define BOARD_CKGR_UCKR_UPLLCOUNT (3 << PMC_CKGR_UCKR_UPLLCOUNT_SHIFT)
/* Resulting frequencies */
#define BOARD_MAINOSC_FREQUENCY (12000000) /* MAINOSC: 12MHz crystal on-board */
#define BOARD_PLLA_FREQUENCY (792000000) /* PLLACK: 66 * 12Mhz / 1 */
#define BOARD_PCK_FREQUENCY (396000000) /* CPU: PLLACK / 2 / 1 */
#define BOARD_MCK_FREQUENCY (132000000) /* MCK: PLLACK / 2 / 1 / 3 */
/* HSMCI clocking
*
* Multimedia Card Interface clock (MCCK or MCI_CK) is Master Clock (MCK)
* divided by (2*(CLKDIV+1)).
*
* MCI_SPEED = MCK / (2*(CLKDIV+1))
* CLKDIV = MCI / MCI_SPEED / 2 - 1
*
* Where CLKDIV has a range of 0-255.
*/
/* MCK = 96MHz, CLKDIV = 119, MCI_SPEED = 96MHz / 2 * (119+1) = 400 KHz */
#define HSMCI_INIT_CLKDIV (119 << HSMCI_MR_CLKDIV_SHIFT)
/* MCK = 96MHz, CLKDIV = 3, MCI_SPEED = 96MHz / 2 * (3+1) = 12 MHz */
#define HSMCI_MMCXFR_CLKDIV (3 << HSMCI_MR_CLKDIV_SHIFT)
/* MCK = 96MHz, CLKDIV = 1, MCI_SPEED = 96MHz / 2 * (1+1) = 24 MHz */
#define HSMCI_SDXFR_CLKDIV (1 << HSMCI_MR_CLKDIV_SHIFT)
#define HSMCI_SDWIDEXFR_CLKDIV HSMCI_SDXFR_CLKDIV
/* FLASH wait states
*
* FWS Max frequency
* 1.62V 1.8V
* --- ----- ------
* 0 24MHz 27MHz
* 1 40MHz 47MHz
* 2 72MHz 84MHz
* 3 84MHz 96MHz
*/
#define BOARD_FWS 3
/* LED definitions ******************************************************************/
/* There are two LEDs on the SAMA5D3 series-CM board that can be controlled
* by software. A blue LED is controlled via GPIO pins. A red LED normally
* provides an indication that power is supplied to the board but can also
* be controlled via software.
*
* PE25. This blue LED is pulled high and is illuminated by pulling PE25
* low.
*
* PE24. The red LED is also pulled high but is driven by a transistor so
* that it is illuminated when power is applied even if PE24 is not
* configured as an output. If PE24 is configured as an output, then the
* LCD is illuminated by a low output.
*/
/* LED index values for use with sam_setled() */
#define BOARD_BLUE 0
#define BOARD_RED 1
#define BOARD_NLEDS 2
/* LED bits for use with sam_setleds() */
#define BOARD_BLUE_BIT (1 << BOARD_BLUE)
#define BOARD_RED_BIT (1 << BOARD_RED)
/* These LEDs are not used by the board port unless CONFIG_ARCH_LEDS is
* defined. In that case, the usage by the board port is defined in
* include/board.h and src/sam_leds.c. The LEDs are used to encode OS-related
* events as follows:
*
* SYMBOL Val Meaning LED state
* Blue Red
* ----------------- --- ----------------------- -------- -------- */
#define LED_STARTED 0 /* NuttX has been started OFF OFF */
#define LED_HEAPALLOCATE 0 /* Heap has been allocated OFF OFF */
#define LED_IRQSENABLED 0 /* Interrupts enabled OFF OFF */
#define LED_STACKCREATED 1 /* Idle stack created ON OFF */
#define LED_INIRQ 2 /* In an interrupt No change */
#define LED_SIGNAL 2 /* In a signal handler No change */
#define LED_ASSERTION 2 /* An assertion failed No change */
#define LED_PANIC 3 /* The system has crashed OFF Blinking */
#undef LED_IDLE /* MCU is is sleep mode Not used */
/* Thus if the blue LED is statically on, NuttX has successfully booted and
* is, apparently, running normmally. If the red is flashing at
* approximately 2Hz, then a fatal error has been detected and the system
* has halted.
*/
/* Button definitions ***************************************************************/
/* There are five push button switches on the SAMA5D3X-EK base board:
*
* 1. One Reset, board reset (BP1)
* 2. One Wake up, push button to bring the processor out of low power mode
* (BP2)
* 3. One User momentary Push Button
* 4. One Disable CS Push Button
*
* Only the momentary push button is controllable by software (labeled
* "PB_USER1" on the board):
*
* - PE27. Pressing the switch connect PE27 to grounded. Therefore, PE27
* must be pulled high internally. When the button is pressed the SAMA5
* will sense "0" is on PE27.
*/
#define BUTTON_USER1 0
#define NUM_BUTTONS 1
#define BUTTON_USER1_BIT (1 << BUTTON_USER1)
/************************************************************************************
* Public Data
************************************************************************************/
#ifndef __ASSEMBLY__
#undef EXTERN
#if defined(__cplusplus)
#define EXTERN extern "C"
extern "C" {
#else
#define EXTERN extern
#endif
/************************************************************************************
* Public Function Prototypes
************************************************************************************/
/************************************************************************************
* Name: sam_boardinitialize
*
* Description:
* All SAMA5 architectures must provide the following entry point. This entry point
* is called early in the intitialization -- after all memory has been configured
* and mapped but before any devices have been initialized.
*
************************************************************************************/
void sam_boardinitialize(void);
/************************************************************************************
* Name: sam_ledinit, sam_setled, and sam_setleds
*
* Description:
* If CONFIG_ARCH_LEDS is defined, then NuttX will control the on-board LEDs. If
* CONFIG_ARCH_LEDS is not defined, then the following interfaces are available to
* control the LEDs from user applications.
*
************************************************************************************/
#ifndef CONFIG_ARCH_LEDS
void sam_ledinit(void);
void sam_setled(int led, bool ledon);
void sam_setleds(uint8_t ledset);
#endif
/************************************************************************************
* Name: up_buttoninit
*
* Description:
* up_buttoninit() must be called to initialize button resources. After that,
* up_buttons() may be called to collect the current state of all buttons or
* up_irqbutton() may be called to register button interrupt handlers.
*
************************************************************************************/
#ifdef CONFIG_ARCH_BUTTONS
void up_buttoninit(void);
/************************************************************************************
* Name: up_buttons
*
* Description:
* After up_buttoninit() has been called, up_buttons() may be called to collect
* the state of all buttons. up_buttons() returns an 8-bit bit set with each bit
* associated with a button. See the BUTTON* definitions above for the meaning of
* each bit in the returned value.
*
************************************************************************************/
uint8_t up_buttons(void);
/************************************************************************************
* Name: up_irqbutton
*
* Description:
* This function may be called to register an interrupt handler that will be
* called when a button is depressed or released. The ID value is one of the
* BUTTON* definitions provided above. The previous interrupt handler address is
* returned (so that it may restored, if so desired).
*
************************************************************************************/
#ifdef CONFIG_PIOA_IRQ
xcpt_t up_irqbutton(int id, xcpt_t irqhandler);
#endif
#endif /* CONFIG_ARCH_BUTTONS */
#undef EXTERN
#if defined(__cplusplus)
}
#endif
#endif /* __ASSEMBLY__ */
#endif /* __CONFIGS_SAMA5D3X_EK_INCLUDE_BOARD_H */