nuttx/drivers/mtd/w25.c
Xiang Xiao 9f027208d4 fs: Add model field to geometry and mtd_geometry_s
the model is very useful to track the device info

Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
2023-01-31 11:50:28 -03:00

1472 lines
46 KiB
C

/****************************************************************************
* drivers/mtd/w25.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/* Driver for SPI-based W25x16, x32, and x64 and W25q16, q32, q64, and q128
* FLASH from Winbond (and work-alike parts from AMIC)
*/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <inttypes.h>
#include <stdbool.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/kmalloc.h>
#include <nuttx/signal.h>
#include <nuttx/fs/ioctl.h>
#include <nuttx/spi/spi.h>
#include <nuttx/mtd/mtd.h>
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Configuration ************************************************************/
/* Per the data sheet, the W25 parts can be driven with either SPI mode 0
* (CPOL=0 and CPHA=0) or mode 3 (CPOL=1 and CPHA=1).
* But I have heard that other devices can operate in mode 0 or 1.
* So you may need to specify CONFIG_W25_SPIMODE to select the best mode
* for your device. If CONFIG_W25_SPIMODE is not defined, mode 0 will be
* used.
*/
#ifndef CONFIG_W25_SPIMODE
# define CONFIG_W25_SPIMODE SPIDEV_MODE0
#endif
/* SPI Frequency. May be up to 25MHz. */
#ifndef CONFIG_W25_SPIFREQUENCY
# define CONFIG_W25_SPIFREQUENCY 20000000
#endif
/* W25 Instructions *********************************************************/
#define W25_WREN 0x06 /* Write enable */
#define W25_WRDI 0x04 /* Write Disable */
#define W25_RDSR 0x05 /* Read status register */
#define W25_WRSR 0x01 /* Write Status Register */
#define W25_RDDATA 0x03 /* Read data bytes */
#define W25_FRD 0x0b /* Higher speed read */
#define W25_FRDD 0x3b /* Fast read, dual output */
#define W25_PP 0x02 /* Program page */
#define W25_BE 0xd8 /* Block Erase (64KB) */
#define W25_SE 0x20 /* Sector erase (4KB) */
#define W25_CE 0xc7 /* Chip erase */
#define W25_PD 0xb9 /* Power down */
#define W25_PURDID 0xab /* Release PD, Device ID */
#define W25_RDMFID 0x90 /* Read Manufacturer / Device */
#define W25_JEDEC_ID 0x9f /* JEDEC ID read */
/* W25 Registers ************************************************************/
/* Read ID (RDID) register values */
#define W25_MANUFACTURER 0xef /* Winbond Serial Flash */
#define W25X16_DEVID 0x14 /* W25X16 device ID (0xab, 0x90) */
#define W25X32_DEVID 0x15 /* W25X16 device ID (0xab, 0x90) */
#define W25X64_DEVID 0x16 /* W25X16 device ID (0xab, 0x90) */
/* JEDEC Read ID register values */
#define W25_JEDEC_WINBOND 0xef /* Winbond manufacturer ID */
#define W25_JEDEC_AMIC 0x37 /* AMIC manufacturer ID */
#define W25X_JEDEC_MEMORY_TYPE 0x30 /* W25X memory type */
#define W25Q_JEDEC_MEMORY_TYPE_A 0x40 /* W25Q memory type */
#define W25Q_JEDEC_MEMORY_TYPE_B 0x60 /* W25Q memory type */
#define W25Q_JEDEC_MEMORY_TYPE_C 0x50 /* W25Q memory type */
#define W25_JEDEC_CAPACITY_8MBIT 0x14 /* 256x4096 = 8Mbit memory capacity */
#define W25_JEDEC_CAPACITY_16MBIT 0x15 /* 512x4096 = 16Mbit memory capacity */
#define W25_JEDEC_CAPACITY_32MBIT 0x16 /* 1024x4096 = 32Mbit memory capacity */
#define W25_JEDEC_CAPACITY_64MBIT 0x17 /* 2048x4096 = 64Mbit memory capacity */
#define W25_JEDEC_CAPACITY_128MBIT 0x18 /* 4096x4096 = 128Mbit memory capacity */
#define NSECTORS_8MBIT 256 /* 256 sectors x 4096 bytes/sector = 1Mb */
#define NSECTORS_16MBIT 512 /* 512 sectors x 4096 bytes/sector = 2Mb */
#define NSECTORS_32MBIT 1024 /* 1024 sectors x 4096 bytes/sector = 4Mb */
#define NSECTORS_64MBIT 2048 /* 2048 sectors x 4096 bytes/sector = 8Mb */
#define NSECTORS_128MBIT 4096 /* 4096 sectors x 4096 bytes/sector = 16Mb */
/* Status register bit definitions */
#define W25_SR_BUSY (1 << 0) /* Bit 0: Write in progress */
#define W25_SR_WEL (1 << 1) /* Bit 1: Write enable latch bit */
#define W25_SR_BP_SHIFT (2) /* Bits 2-5: Block protect bits */
#define W25_SR_BP_MASK (15 << W25_SR_BP_SHIFT)
# define W25X16_SR_BP_NONE (0 << W25_SR_BP_SHIFT) /* Unprotected */
# define W25X16_SR_BP_UPPER32nd (1 << W25_SR_BP_SHIFT) /* Upper 32nd */
# define W25X16_SR_BP_UPPER16th (2 << W25_SR_BP_SHIFT) /* Upper 16th */
# define W25X16_SR_BP_UPPER8th (3 << W25_SR_BP_SHIFT) /* Upper 8th */
# define W25X16_SR_BP_UPPERQTR (4 << W25_SR_BP_SHIFT) /* Upper quarter */
# define W25X16_SR_BP_UPPERHALF (5 << W25_SR_BP_SHIFT) /* Upper half */
# define W25X16_SR_BP_ALL (6 << W25_SR_BP_SHIFT) /* All sectors */
# define W25X16_SR_BP_LOWER32nd (9 << W25_SR_BP_SHIFT) /* Lower 32nd */
# define W25X16_SR_BP_LOWER16th (10 << W25_SR_BP_SHIFT) /* Lower 16th */
# define W25X16_SR_BP_LOWER8th (11 << W25_SR_BP_SHIFT) /* Lower 8th */
# define W25X16_SR_BP_LOWERQTR (12 << W25_SR_BP_SHIFT) /* Lower quarter */
# define W25X16_SR_BP_LOWERHALF (13 << W25_SR_BP_SHIFT) /* Lower half */
# define W25X32_SR_BP_NONE (0 << W25_SR_BP_SHIFT) /* Unprotected */
# define W25X32_SR_BP_UPPER64th (1 << W25_SR_BP_SHIFT) /* Upper 64th */
# define W25X32_SR_BP_UPPER32nd (2 << W25_SR_BP_SHIFT) /* Upper 32nd */
# define W25X32_SR_BP_UPPER16th (3 << W25_SR_BP_SHIFT) /* Upper 16th */
# define W25X32_SR_BP_UPPER8th (4 << W25_SR_BP_SHIFT) /* Upper 8th */
# define W25X32_SR_BP_UPPERQTR (5 << W25_SR_BP_SHIFT) /* Upper quarter */
# define W25X32_SR_BP_UPPERHALF (6 << W25_SR_BP_SHIFT) /* Upper half */
# define W25X32_SR_BP_ALL (7 << W25_SR_BP_SHIFT) /* All sectors */
# define W25X32_SR_BP_LOWER64th (9 << W25_SR_BP_SHIFT) /* Lower 64th */
# define W25X32_SR_BP_LOWER32nd (10 << W25_SR_BP_SHIFT) /* Lower 32nd */
# define W25X32_SR_BP_LOWER16th (11 << W25_SR_BP_SHIFT) /* Lower 16th */
# define W25X32_SR_BP_LOWER8th (12 << W25_SR_BP_SHIFT) /* Lower 8th */
# define W25X32_SR_BP_LOWERQTR (13 << W25_SR_BP_SHIFT) /* Lower quarter */
# define W25X32_SR_BP_LOWERHALF (14 << W25_SR_BP_SHIFT) /* Lower half */
# define W25X64_SR_BP_NONE (0 << W25_SR_BP_SHIFT) /* Unprotected */
# define W25X64_SR_BP_UPPER64th (1 << W25_SR_BP_SHIFT) /* Upper 64th */
# define W25X64_SR_BP_UPPER32nd (2 << W25_SR_BP_SHIFT) /* Upper 32nd */
# define W25X64_SR_BP_UPPER16th (3 << W25_SR_BP_SHIFT) /* Upper 16th */
# define W25X64_SR_BP_UPPER8th (4 << W25_SR_BP_SHIFT) /* Upper 8th */
# define W25X64_SR_BP_UPPERQTR (5 << W25_SR_BP_SHIFT) /* Upper quarter */
# define W25X64_SR_BP_UPPERHALF (6 << W25_SR_BP_SHIFT) /* Upper half */
# define W25X46_SR_BP_ALL (7 << W25_SR_BP_SHIFT) /* All sectors */
# define W25X64_SR_BP_LOWER64th (9 << W25_SR_BP_SHIFT) /* Lower 64th */
# define W25X64_SR_BP_LOWER32nd (10 << W25_SR_BP_SHIFT) /* Lower 32nd */
# define W25X64_SR_BP_LOWER16th (11 << W25_SR_BP_SHIFT) /* Lower 16th */
# define W25X64_SR_BP_LOWER8th (12 << W25_SR_BP_SHIFT) /* Lower 8th */
# define W25X64_SR_BP_LOWERQTR (13 << W25_SR_BP_SHIFT) /* Lower quarter */
# define W25X64_SR_BP_LOWERHALF (14 << W25_SR_BP_SHIFT) /* Lower half */
/* Bit 6: Reserved */
#define W25_SR_SRP (1 << 7) /* Bit 7: Status register write protect */
#define W25_DUMMY 0xa5
/* Chip Geometries **********************************************************/
/* All members of the family support uniform 4K-byte sectors and 256 byte
* pages
*/
#define W25_SECTOR_SHIFT 12 /* Sector size 1 << 12 = 4Kb */
#define W25_SECTOR_SIZE (1 << 12) /* Sector size 1 << 12 = 4Kb */
#define W25_PAGE_SHIFT 8 /* Sector size 1 << 8 = 256b */
#define W25_PAGE_SIZE (1 << 8) /* Sector size 1 << 8 = 256b */
#ifdef CONFIG_W25_SECTOR512 /* Simulate a 512 byte sector */
# define W25_SECTOR512_SHIFT 9 /* Sector size 1 << 9 = 512 bytes */
# define W25_SECTOR512_SIZE (1 << 9) /* Sector size 1 << 9 = 512 bytes */
#endif
#define W25_ERASED_STATE 0xff /* State of FLASH when erased */
/* Cache flags */
#define W25_CACHE_VALID (1 << 0) /* 1=Cache has valid data */
#define W25_CACHE_DIRTY (1 << 1) /* 1=Cache is dirty */
#define W25_CACHE_ERASED (1 << 2) /* 1=Backing FLASH is erased */
#define IS_VALID(p) ((((p)->flags) & W25_CACHE_VALID) != 0)
#define IS_DIRTY(p) ((((p)->flags) & W25_CACHE_DIRTY) != 0)
#define IS_ERASED(p) ((((p)->flags) & W25_CACHE_ERASED) != 0)
#define SET_VALID(p) do { (p)->flags |= W25_CACHE_VALID; } while (0)
#define SET_DIRTY(p) do { (p)->flags |= W25_CACHE_DIRTY; } while (0)
#define SET_ERASED(p) do { (p)->flags |= W25_CACHE_ERASED; } while (0)
#define CLR_VALID(p) do { (p)->flags &= ~W25_CACHE_VALID; } while (0)
#define CLR_DIRTY(p) do { (p)->flags &= ~W25_CACHE_DIRTY; } while (0)
#define CLR_ERASED(p) do { (p)->flags &= ~W25_CACHE_ERASED; } while (0)
/****************************************************************************
* Private Types
****************************************************************************/
/* This type represents the state of the MTD device.
* The struct mtd_dev_s must appear at the beginning of the definition so
* that you can freely cast between pointers to struct mtd_dev_s and struct
* w25_dev_s.
*/
struct w25_dev_s
{
struct mtd_dev_s mtd; /* MTD interface */
FAR struct spi_dev_s *spi; /* Saved SPI interface instance */
uint16_t nsectors; /* Number of erase sectors */
uint8_t prev_instr; /* Previous instruction given to W25 device */
#if defined(CONFIG_W25_SECTOR512) && !defined(CONFIG_W25_READONLY)
uint8_t flags; /* Buffered sector flags */
uint16_t esectno; /* Erase sector number in the cache */
FAR uint8_t *sector; /* Allocated sector data */
#endif
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Helpers */
static void w25_lock(FAR struct spi_dev_s *spi);
static inline void w25_unlock(FAR struct spi_dev_s *spi);
static inline int w25_readid(FAR struct w25_dev_s *priv);
#ifndef CONFIG_W25_READONLY
static void w25_unprotect(FAR struct w25_dev_s *priv);
#endif
static uint8_t w25_waitwritecomplete(FAR struct w25_dev_s *priv);
static inline void w25_wren(FAR struct w25_dev_s *priv);
static inline void w25_wrdi(FAR struct w25_dev_s *priv);
static bool w25_is_erased(struct w25_dev_s *priv,
off_t address,
off_t size);
static void w25_sectorerase(FAR struct w25_dev_s *priv,
off_t offset);
static inline int w25_chiperase(FAR struct w25_dev_s *priv);
static void w25_byteread(FAR struct w25_dev_s *priv,
FAR uint8_t *buffer,
off_t address,
size_t nbytes);
#ifndef CONFIG_W25_READONLY
static void w25_pagewrite(FAR struct w25_dev_s *priv,
FAR const uint8_t *buffer,
off_t address,
size_t nbytes);
#endif
#ifdef CONFIG_W25_SECTOR512
static void w25_cacheflush(struct w25_dev_s *priv);
static FAR uint8_t *w25_cacheread(struct w25_dev_s *priv,
off_t sector);
static void w25_cacheerase(struct w25_dev_s *priv,
off_t sector);
static void w25_cachewrite(FAR struct w25_dev_s *priv,
FAR const uint8_t *buffer,
off_t sector, size_t nsectors);
#endif
/* MTD driver methods */
static int w25_erase(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks);
static ssize_t w25_bread(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks,
FAR uint8_t *buf);
static ssize_t w25_bwrite(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks,
FAR const uint8_t *buf);
static ssize_t w25_read(FAR struct mtd_dev_s *dev,
off_t offset,
size_t nbytes,
FAR uint8_t *buffer);
static int w25_ioctl(FAR struct mtd_dev_s *dev,
int cmd,
unsigned long arg);
#if defined(CONFIG_MTD_BYTE_WRITE) && !defined(CONFIG_W25_READONLY)
static ssize_t w25_write(FAR struct mtd_dev_s *dev,
off_t offset,
size_t nbytes,
FAR const uint8_t *buffer);
#endif
/****************************************************************************
* Private Data
****************************************************************************/
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: w25_lock
****************************************************************************/
static void w25_lock(FAR struct spi_dev_s *spi)
{
/* On SPI buses where there are multiple devices, it will be necessary to
* lock SPI to have exclusive access to the buses for a sequence of
* transfers. The bus should be locked before the chip is selected.
*
* This is a blocking call and will not return until we have exclusive
* access to the SPI bus.
* We will retain that exclusive access until the bus is unlocked.
*/
SPI_LOCK(spi, true);
/* After locking the SPI bus, the we also need call the setfrequency,
* setbits, and setmode methods to make sure that the SPI is properly
* configured for the device.
* If the SPI bus is being shared, then it may have been left in an
* incompatible state.
*/
SPI_SETMODE(spi, CONFIG_W25_SPIMODE);
SPI_SETBITS(spi, 8);
SPI_HWFEATURES(spi, 0);
SPI_SETFREQUENCY(spi, CONFIG_W25_SPIFREQUENCY);
}
/****************************************************************************
* Name: w25_unlock
****************************************************************************/
static inline void w25_unlock(FAR struct spi_dev_s *spi)
{
SPI_LOCK(spi, false);
}
/****************************************************************************
* Name: w25_readid
****************************************************************************/
static inline int w25_readid(struct w25_dev_s *priv)
{
uint16_t manufacturer;
uint16_t memory;
uint16_t capacity;
finfo("priv: %p\n", priv);
/* Lock and configure the SPI bus */
w25_lock(priv->spi);
/* Wait for any preceding write or erase operation to complete. */
w25_waitwritecomplete(priv);
/* Select this FLASH part. */
SPI_SELECT(priv->spi, SPIDEV_FLASH(0), true);
/* Send the "Read ID (RDID)" command and read the first three ID bytes */
SPI_SEND(priv->spi, W25_JEDEC_ID);
manufacturer = SPI_SEND(priv->spi, W25_DUMMY);
memory = SPI_SEND(priv->spi, W25_DUMMY);
capacity = SPI_SEND(priv->spi, W25_DUMMY);
/* Deselect the FLASH and unlock the bus */
SPI_SELECT(priv->spi, SPIDEV_FLASH(0), false);
w25_unlock(priv->spi);
finfo("manufacturer: %02x memory: %02x capacity: %02x\n",
manufacturer, memory, capacity);
/* Check for a valid manufacturer and memory type */
if ((manufacturer == W25_JEDEC_WINBOND ||
manufacturer == W25_JEDEC_AMIC) &&
(memory == W25X_JEDEC_MEMORY_TYPE ||
memory == W25Q_JEDEC_MEMORY_TYPE_A ||
memory == W25Q_JEDEC_MEMORY_TYPE_B ||
memory == W25Q_JEDEC_MEMORY_TYPE_C))
{
/* Okay.. is it a FLASH capacity that we understand? If so, save
* the FLASH capacity.
*/
/* 8M-bit / 1M-byte
*
* W25Q80BV
*/
if (capacity == W25_JEDEC_CAPACITY_8MBIT)
{
priv->nsectors = NSECTORS_8MBIT;
}
/* 16M-bit / 2M-byte (2,097,152)
*
* W24X16, W25Q16BV, W25Q16CL, W25Q16CV, W25Q16DW
*/
else if (capacity == W25_JEDEC_CAPACITY_16MBIT)
{
priv->nsectors = NSECTORS_16MBIT;
}
/* 32M-bit / M-byte (4,194,304)
*
* W25X32, W25Q32BV, W25Q32DW
*/
else if (capacity == W25_JEDEC_CAPACITY_32MBIT)
{
priv->nsectors = NSECTORS_32MBIT;
}
/* 64M-bit / 8M-byte (8,388,608)
*
* W25X64, W25Q64BV, W25Q64CV, W25Q64DW
*/
else if (capacity == W25_JEDEC_CAPACITY_64MBIT)
{
priv->nsectors = NSECTORS_64MBIT;
}
/* 128M-bit / 16M-byte (16,777,216)
*
* W25Q128BV
*/
else if (capacity == W25_JEDEC_CAPACITY_128MBIT)
{
priv->nsectors = NSECTORS_128MBIT;
}
else
{
/* Nope.. we don't understand this capacity. */
ferr("ERROR: Unsupported capacity: %02x\n", capacity);
return -ENODEV;
}
return OK;
}
/* We don't understand the manufacturer or the memory type */
ferr("ERROR: Unrecognized manufacturer/memory type: %02x/%02x\n",
manufacturer, memory);
return -ENODEV;
}
/****************************************************************************
* Name: w25_unprotect
****************************************************************************/
#ifndef CONFIG_W25_READONLY
static void w25_unprotect(FAR struct w25_dev_s *priv)
{
/* Lock and configure the SPI bus */
w25_lock(priv->spi);
/* Wait for any preceding write or erase operation to complete. */
w25_waitwritecomplete(priv);
/* Send "Write enable (WREN)" */
w25_wren(priv);
/* Select this FLASH part */
SPI_SELECT(priv->spi, SPIDEV_FLASH(0), true);
/* Send "Write enable status (EWSR)" */
SPI_SEND(priv->spi, W25_WRSR);
/* Following by the new status value */
SPI_SEND(priv->spi, 0);
SPI_SEND(priv->spi, 0);
/* Deselect the FLASH and unlock the bus */
SPI_SELECT(priv->spi, SPIDEV_FLASH(0), false);
w25_unlock(priv->spi);
}
#endif
/****************************************************************************
* Name: w25_waitwritecomplete
****************************************************************************/
static uint8_t w25_waitwritecomplete(struct w25_dev_s *priv)
{
uint8_t status;
/* Loop as long as the memory is busy with a write cycle. Device sets BUSY
* flag to a 1 state whhen previous write or erase command is still
* executing and during this time, device will ignore further instructions
* except for "Read Status Register" and "Erase/Program Suspend"
* instructions.
*/
do
{
/* Select this FLASH part */
SPI_SELECT(priv->spi, SPIDEV_FLASH(0), true);
/* Send "Read Status Register (RDSR)" command */
SPI_SEND(priv->spi, W25_RDSR);
/* Send a dummy byte to generate the clock needed to shift out the
* status
*/
status = SPI_SEND(priv->spi, W25_DUMMY);
/* Deselect the FLASH */
SPI_SELECT(priv->spi, SPIDEV_FLASH(0), false);
/* Given that writing could take up to few tens of milliseconds, and
* erasing could take more. The following short delay in the "busy"
* case will allow other peripherals to access the SPI bus.
* Delay would slow down writing too much, so go to sleep only if
* previous operation was not a page program operation.
*/
if (priv->prev_instr != W25_PP && (status & W25_SR_BUSY) != 0)
{
w25_unlock(priv->spi);
nxsig_usleep(1000);
w25_lock(priv->spi);
}
}
while ((status & W25_SR_BUSY) != 0);
return status;
}
/****************************************************************************
* Name: w25_wren
****************************************************************************/
static inline void w25_wren(struct w25_dev_s *priv)
{
/* Select this FLASH part */
SPI_SELECT(priv->spi, SPIDEV_FLASH(0), true);
/* Send "Write Enable (WREN)" command */
SPI_SEND(priv->spi, W25_WREN);
/* Deselect the FLASH */
SPI_SELECT(priv->spi, SPIDEV_FLASH(0), false);
}
/****************************************************************************
* Name: w25_wrdi
****************************************************************************/
static inline void w25_wrdi(struct w25_dev_s *priv)
{
/* Select this FLASH part */
SPI_SELECT(priv->spi, SPIDEV_FLASH(0), true);
/* Send "Write Disable (WRDI)" command */
SPI_SEND(priv->spi, W25_WRDI);
/* Deselect the FLASH */
SPI_SELECT(priv->spi, SPIDEV_FLASH(0), false);
}
/****************************************************************************
* Name: w25_is_erased
****************************************************************************/
static bool w25_is_erased(struct w25_dev_s *priv, off_t address, off_t size)
{
size_t npages = size >> W25_PAGE_SHIFT;
uint32_t erased_32;
unsigned int i;
uint32_t *buf;
DEBUGASSERT((address % W25_PAGE_SIZE) == 0);
DEBUGASSERT((size % W25_PAGE_SIZE) == 0);
buf = kmm_malloc(W25_PAGE_SIZE);
if (!buf)
{
return false;
}
memset(&erased_32, W25_ERASED_STATE, sizeof(erased_32));
/* Walk all pages in given area. */
while (npages)
{
/* Check if all bytes of page is in erased state. */
w25_byteread(priv, (unsigned char *)buf, address, W25_PAGE_SIZE);
for (i = 0; i < W25_PAGE_SIZE / sizeof(uint32_t); i++)
{
if (buf[i] != erased_32)
{
/* Page not in erased state! */
kmm_free(buf);
return false;
}
}
address += W25_PAGE_SIZE;
npages--;
}
kmm_free(buf);
return true;
}
/****************************************************************************
* Name: w25_sectorerase
****************************************************************************/
static void w25_sectorerase(struct w25_dev_s *priv, off_t sector)
{
off_t address = sector << W25_SECTOR_SHIFT;
finfo("sector: %08lx\n", (long)sector);
/* Check if sector is already erased. */
if (w25_is_erased(priv, address, W25_SECTOR_SIZE))
{
/* Sector already in erased state, so skip erase. */
return;
}
/* Wait for any preceding write or erase operation to complete. */
w25_waitwritecomplete(priv);
/* Send write enable instruction */
w25_wren(priv);
/* Select this FLASH part */
SPI_SELECT(priv->spi, SPIDEV_FLASH(0), true);
/* Send the "Sector Erase (SE)" instruction */
SPI_SEND(priv->spi, W25_SE);
priv->prev_instr = W25_SE;
/* Send the sector address high byte first. Only the most significant bits
* (those corresponding to the sector) have any meaning.
*/
SPI_SEND(priv->spi, (address >> 16) & 0xff);
SPI_SEND(priv->spi, (address >> 8) & 0xff);
SPI_SEND(priv->spi, address & 0xff);
/* Deselect the FLASH */
SPI_SELECT(priv->spi, SPIDEV_FLASH(0), false);
}
/****************************************************************************
* Name: w25_chiperase
****************************************************************************/
static inline int w25_chiperase(struct w25_dev_s *priv)
{
finfo("priv: %p\n", priv);
/* Wait for any preceding write or erase operation to complete. */
w25_waitwritecomplete(priv);
/* Send write enable instruction */
w25_wren(priv);
/* Select this FLASH part */
SPI_SELECT(priv->spi, SPIDEV_FLASH(0), true);
/* Send the "Chip Erase (CE)" instruction */
SPI_SEND(priv->spi, W25_CE);
priv->prev_instr = W25_CE;
/* Deselect the FLASH */
SPI_SELECT(priv->spi, SPIDEV_FLASH(0), false);
finfo("Return: OK\n");
return OK;
}
/****************************************************************************
* Name: w25_byteread
****************************************************************************/
static void w25_byteread(FAR struct w25_dev_s *priv, FAR uint8_t *buffer,
off_t address, size_t nbytes)
{
uint8_t status;
finfo("address: %08lx nbytes: %d\n", (long)address, (int)nbytes);
/* Wait for any preceding write or erase operation to complete. */
status = w25_waitwritecomplete(priv);
DEBUGASSERT((status & (W25_SR_WEL | W25_SR_BP_MASK)) == 0);
/* Make sure that writing is disabled */
w25_wrdi(priv);
/* Select this FLASH part */
SPI_SELECT(priv->spi, SPIDEV_FLASH(0), true);
/* Send "Read from Memory " instruction */
#ifdef CONFIG_W25_SLOWREAD
SPI_SEND(priv->spi, W25_RDDATA);
priv->prev_instr = W25_RDDATA;
#else
SPI_SEND(priv->spi, W25_FRD);
priv->prev_instr = W25_FRD;
#endif
/* Send the address high byte first. */
SPI_SEND(priv->spi, (address >> 16) & 0xff);
SPI_SEND(priv->spi, (address >> 8) & 0xff);
SPI_SEND(priv->spi, address & 0xff);
/* Send a dummy byte */
#ifndef CONFIG_W25_SLOWREAD
SPI_SEND(priv->spi, W25_DUMMY);
#endif
/* Then read all of the requested bytes */
SPI_RECVBLOCK(priv->spi, buffer, nbytes);
/* Deselect the FLASH */
SPI_SELECT(priv->spi, SPIDEV_FLASH(0), false);
}
/****************************************************************************
* Name: w25_pagewrite
****************************************************************************/
#ifndef CONFIG_W25_READONLY
static void w25_pagewrite(struct w25_dev_s *priv, FAR const uint8_t *buffer,
off_t address, size_t nbytes)
{
uint8_t status;
finfo("address: %08lx nwords: %d\n", (long)address, (int)nbytes);
DEBUGASSERT(priv && buffer && (address & 0xff) == 0 &&
(nbytes & 0xff) == 0);
for (; nbytes > 0; nbytes -= W25_PAGE_SIZE)
{
/* Wait for any preceding write or erase operation to complete. */
status = w25_waitwritecomplete(priv);
DEBUGASSERT((status & (W25_SR_WEL | W25_SR_BP_MASK)) == 0);
/* Enable write access to the FLASH */
w25_wren(priv);
/* Select this FLASH part */
SPI_SELECT(priv->spi, SPIDEV_FLASH(0), true);
/* Send the "Page Program (W25_PP)" Command */
SPI_SEND(priv->spi, W25_PP);
priv->prev_instr = W25_PP;
/* Send the address high byte first. */
SPI_SEND(priv->spi, (address >> 16) & 0xff);
SPI_SEND(priv->spi, (address >> 8) & 0xff);
SPI_SEND(priv->spi, address & 0xff);
/* Then send the page of data */
SPI_SNDBLOCK(priv->spi, buffer, W25_PAGE_SIZE);
/* Deselect the FLASH and setup for the next pass through the loop */
SPI_SELECT(priv->spi, SPIDEV_FLASH(0), false);
/* Update addresses */
address += W25_PAGE_SIZE;
buffer += W25_PAGE_SIZE;
}
/* Disable writing */
w25_wrdi(priv);
}
#endif
/****************************************************************************
* Name: w25_bytewrite
****************************************************************************/
#if defined(CONFIG_MTD_BYTE_WRITE) && !defined(CONFIG_W25_READONLY)
static inline void w25_bytewrite(struct w25_dev_s *priv,
FAR const uint8_t *buffer,
off_t offset,
uint16_t count)
{
finfo("offset: %08lx count:%d\n", (long)offset, count);
/* Wait for any preceding write to complete. We could simplify things by
* perform this wait at the end of each write operation (rather than at
* the beginning of ALL operations), but have the wait first will slightly
* improve performance.
*/
w25_waitwritecomplete(priv);
/* Enable the write access to the FLASH */
w25_wren(priv);
/* Select this FLASH part */
SPI_SELECT(priv->spi, SPIDEV_FLASH(0), true);
/* Send "Page Program (PP)" command */
SPI_SEND(priv->spi, W25_PP);
priv->prev_instr = W25_PP;
/* Send the page offset high byte first. */
SPI_SEND(priv->spi, (offset >> 16) & 0xff);
SPI_SEND(priv->spi, (offset >> 8) & 0xff);
SPI_SEND(priv->spi, offset & 0xff);
/* Then write the specified number of bytes */
SPI_SNDBLOCK(priv->spi, buffer, count);
/* Deselect the FLASH: Chip Select high */
SPI_SELECT(priv->spi, SPIDEV_FLASH(0), false);
finfo("Written\n");
}
#endif /* defined(CONFIG_MTD_BYTE_WRITE) && !defined(CONFIG_W25_READONLY) */
/****************************************************************************
* Name: w25_cacheflush
****************************************************************************/
#if defined(CONFIG_W25_SECTOR512) && !defined(CONFIG_W25_READONLY)
static void w25_cacheflush(struct w25_dev_s *priv)
{
/* If the cached is dirty (meaning that it no longer matches the old FLASH
* contents) or was erased (with the cache containing the correct FLASH
* contents), then write the cached erase block to FLASH.
*/
if (IS_DIRTY(priv) || IS_ERASED(priv))
{
/* Write entire erase block to FLASH */
w25_pagewrite(priv, priv->sector,
(off_t)priv->esectno << W25_SECTOR_SHIFT,
W25_SECTOR_SIZE);
/* The case is no long dirty and the FLASH is no longer erased */
CLR_DIRTY(priv);
CLR_ERASED(priv);
}
}
#endif
/****************************************************************************
* Name: w25_cacheread
****************************************************************************/
#if defined(CONFIG_W25_SECTOR512) && !defined(CONFIG_W25_READONLY)
static FAR uint8_t *w25_cacheread(struct w25_dev_s *priv, off_t sector)
{
off_t esectno;
int shift;
int index;
/* Convert from the 512 byte sector to the erase sector size of the device.
* For exmample, if the actual erase sector size if 4Kb (1 << 12), then we
* first shift to the right by 3 to get the sector number in 4096
* increments.
*/
shift = W25_SECTOR_SHIFT - W25_SECTOR512_SHIFT;
esectno = sector >> shift;
finfo("sector: %ld esectno: %d shift=%d\n", sector, esectno, shift);
/* Check if the requested erase block is already in the cache */
if (!IS_VALID(priv) || esectno != priv->esectno)
{
/* No.. Flush any dirty erase block currently in the cache */
w25_cacheflush(priv);
/* Read the erase block into the cache */
w25_byteread(priv, priv->sector, (esectno << W25_SECTOR_SHIFT),
W25_SECTOR_SIZE);
/* Mark the sector as cached */
priv->esectno = esectno;
SET_VALID(priv); /* The data in the cache is valid */
CLR_DIRTY(priv); /* It should match the FLASH contents */
CLR_ERASED(priv); /* The underlying FLASH has not been erased */
}
/* Get the index to the 512 sector in the erase block that holds the
* argument
*/
index = sector & ((1 << shift) - 1);
/* Return the address in the cache that holds this sector */
return &priv->sector[index << W25_SECTOR512_SHIFT];
}
#endif
/****************************************************************************
* Name: w25_cacheerase
****************************************************************************/
#if defined(CONFIG_W25_SECTOR512) && !defined(CONFIG_W25_READONLY)
static void w25_cacheerase(struct w25_dev_s *priv, off_t sector)
{
FAR uint8_t *dest;
/* First, make sure that the erase block containing the 512 byte sector is
* in the cache.
*/
dest = w25_cacheread(priv, sector);
/* Erase the block containing this sector if it is not already erased.
* The erased indicated will be cleared when the data from the erase
* sector is read into the cache and set here when we erase the block.
*/
if (!IS_ERASED(priv))
{
off_t esectno = sector >> (W25_SECTOR_SHIFT - W25_SECTOR512_SHIFT);
finfo("sector: %ld esectno: %d\n", sector, esectno);
w25_sectorerase(priv, esectno);
SET_ERASED(priv);
}
/* Put the cached sector data into the erase state and mart the cache as
* dirty (but don't update the FLASH yet.
* The caller will do that at a more optimal time).
*/
memset(dest, W25_ERASED_STATE, W25_SECTOR512_SIZE);
SET_DIRTY(priv);
}
#endif
/****************************************************************************
* Name: w25_cachewrite
****************************************************************************/
#if defined(CONFIG_W25_SECTOR512) && !defined(CONFIG_W25_READONLY)
static void w25_cachewrite(FAR struct w25_dev_s *priv,
FAR const uint8_t *buffer,
off_t sector,
size_t nsectors)
{
FAR uint8_t *dest;
for (; nsectors > 0; nsectors--)
{
/* First, make sure that the erase block containing 512 byte sector is
* in memory.
*/
dest = w25_cacheread(priv, sector);
/* Erase the block containing this sector if it is not already erased.
* The erased indicated will be cleared when the data from the erase
* sector is read into the cache and set here when we erase the sector.
*/
if (!IS_ERASED(priv))
{
off_t esectno = sector >>
(W25_SECTOR_SHIFT - W25_SECTOR512_SHIFT);
finfo("sector: %ld esectno: %d\n", sector, esectno);
w25_sectorerase(priv, esectno);
SET_ERASED(priv);
}
/* Copy the new sector data into cached erase block */
memcpy(dest, buffer, W25_SECTOR512_SIZE);
SET_DIRTY(priv);
/* Set up for the next 512 byte sector */
buffer += W25_SECTOR512_SIZE;
sector++;
}
/* Flush the last erase block left in the cache */
w25_cacheflush(priv);
}
#endif
/****************************************************************************
* Name: w25_erase
****************************************************************************/
static int w25_erase(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks)
{
#ifdef CONFIG_W25_READONLY
return -EACESS
#else
FAR struct w25_dev_s *priv = (FAR struct w25_dev_s *)dev;
size_t blocksleft = nblocks;
finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* Lock access to the SPI bus until we complete the erase */
w25_lock(priv->spi);
while (blocksleft-- > 0)
{
/* Erase each sector */
#ifdef CONFIG_W25_SECTOR512
w25_cacheerase(priv, startblock);
#else
w25_sectorerase(priv, startblock);
#endif
startblock++;
}
#ifdef CONFIG_W25_SECTOR512
/* Flush the last erase block left in the cache */
w25_cacheflush(priv);
#endif
w25_unlock(priv->spi);
return (int)nblocks;
#endif
}
/****************************************************************************
* Name: w25_bread
****************************************************************************/
static ssize_t w25_bread(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks,
FAR uint8_t *buffer)
{
ssize_t nbytes;
finfo("startblock: %08lx nblocks: %d\n",
(long)startblock, (int)nblocks);
/* On this device, we can handle the block read just like the byte-oriented
* read
*/
#ifdef CONFIG_W25_SECTOR512
nbytes = w25_read(dev, startblock << W25_SECTOR512_SHIFT,
nblocks << W25_SECTOR512_SHIFT, buffer);
if (nbytes > 0)
{
nbytes >>= W25_SECTOR512_SHIFT;
}
#else
nbytes = w25_read(dev, startblock << W25_PAGE_SHIFT,
nblocks << W25_PAGE_SHIFT, buffer);
if (nbytes > 0)
{
nbytes >>= W25_PAGE_SHIFT;
}
#endif
return nbytes;
}
/****************************************************************************
* Name: w25_bwrite
****************************************************************************/
static ssize_t w25_bwrite(FAR struct mtd_dev_s *dev, off_t startblock,
size_t nblocks, FAR const uint8_t *buffer)
{
#ifdef CONFIG_W25_READONLY
return -EACCESS;
#else
FAR struct w25_dev_s *priv = (FAR struct w25_dev_s *)dev;
finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* Lock the SPI bus and write all of the pages to FLASH */
w25_lock(priv->spi);
#if defined(CONFIG_W25_SECTOR512)
w25_cachewrite(priv, buffer, startblock, nblocks);
#else
w25_pagewrite(priv, buffer, startblock << W25_PAGE_SHIFT,
nblocks << W25_PAGE_SHIFT);
#endif
w25_unlock(priv->spi);
return nblocks;
#endif
}
/****************************************************************************
* Name: w25_read
****************************************************************************/
static ssize_t w25_read(FAR struct mtd_dev_s *dev,
off_t offset,
size_t nbytes,
FAR uint8_t *buffer)
{
FAR struct w25_dev_s *priv = (FAR struct w25_dev_s *)dev;
finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes);
/* Lock the SPI bus and select this FLASH part */
w25_lock(priv->spi);
w25_byteread(priv, buffer, offset, nbytes);
w25_unlock(priv->spi);
finfo("return nbytes: %d\n", (int)nbytes);
return nbytes;
}
/****************************************************************************
* Name: w25_write
****************************************************************************/
#if defined(CONFIG_MTD_BYTE_WRITE) && !defined(CONFIG_W25_READONLY)
static ssize_t w25_write(FAR struct mtd_dev_s *dev,
off_t offset,
size_t nbytes,
FAR const uint8_t *buffer)
{
FAR struct w25_dev_s *priv = (FAR struct w25_dev_s *)dev;
int startpage;
int endpage;
int count;
int index;
int bytestowrite;
finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes);
/* We must test if the offset + count crosses one or more pages
* and perform individual writes. The devices can only write in
* page increments.
*/
startpage = offset / W25_PAGE_SIZE;
endpage = (offset + nbytes) / W25_PAGE_SIZE;
w25_lock(priv->spi);
if (startpage == endpage)
{
/* All bytes within one programmable page. Just do the write. */
w25_bytewrite(priv, buffer, offset, nbytes);
}
else
{
/* Write the 1st partial-page */
count = nbytes;
bytestowrite = W25_PAGE_SIZE - (offset & (W25_PAGE_SIZE - 1));
w25_bytewrite(priv, buffer, offset, bytestowrite);
/* Update offset and count */
offset += bytestowrite;
count -= bytestowrite;
index = bytestowrite;
/* Write full pages */
while (count >= W25_PAGE_SIZE)
{
w25_bytewrite(priv, &buffer[index], offset, W25_PAGE_SIZE);
/* Update offset and count */
offset += W25_PAGE_SIZE;
count -= W25_PAGE_SIZE;
index += W25_PAGE_SIZE;
}
/* Now write any partial page at the end */
if (count > 0)
{
w25_bytewrite(priv, &buffer[index], offset, count);
}
}
w25_unlock(priv->spi);
return nbytes;
}
#endif /* defined(CONFIG_MTD_BYTE_WRITE) && !defined(CONFIG_W25_READONLY) */
/****************************************************************************
* Name: w25_ioctl
****************************************************************************/
static int w25_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg)
{
FAR struct w25_dev_s *priv = (FAR struct w25_dev_s *)dev;
int ret = -EINVAL; /* Assume good command with bad parameters */
finfo("cmd: %d\n", cmd);
switch (cmd)
{
case MTDIOC_GEOMETRY:
{
FAR struct mtd_geometry_s *geo =
(FAR struct mtd_geometry_s *)((uintptr_t)arg);
if (geo)
{
memset(geo, 0, sizeof(*geo));
/* Populate the geometry structure with information need to
* know the capacity and how to access the device.
*
* NOTE:
* that the device is treated as though it where just an array
* of fixed size blocks. That is most likely not true, but the
* client will expect the device logic to do whatever is
* necessary to make it appear so.
*/
#ifdef CONFIG_W25_SECTOR512
geo->blocksize = (1 << W25_SECTOR512_SHIFT);
geo->erasesize = (1 << W25_SECTOR512_SHIFT);
geo->neraseblocks = priv->nsectors <<
(W25_SECTOR_SHIFT - W25_SECTOR512_SHIFT);
#else
geo->blocksize = W25_PAGE_SIZE;
geo->erasesize = W25_SECTOR_SIZE;
geo->neraseblocks = priv->nsectors;
#endif
ret = OK;
finfo("blocksize: %" PRIu32 " erasesize: %" PRIu32
" neraseblocks: %" PRIu32 "\n",
geo->blocksize, geo->erasesize, geo->neraseblocks);
}
}
break;
case BIOC_PARTINFO:
{
FAR struct partition_info_s *info =
(FAR struct partition_info_s *)arg;
if (info != NULL)
{
#ifdef CONFIG_W25_SECTOR512
info->numsectors = priv->nsectors <<
(W25_SECTOR_SHIFT - W25_SECTOR512_SHIFT);
info->sectorsize = 1 << W25_SECTOR512_SHIFT;
#else
info->numsectors = priv->nsectors *
W25_SECTOR_SIZE / W25_PAGE_SIZE;
info->sectorsize = W25_PAGE_SIZE;
#endif
info->startsector = 0;
info->parent[0] = '\0';
ret = OK;
}
}
break;
case MTDIOC_BULKERASE:
{
/* Erase the entire device */
w25_lock(priv->spi);
ret = w25_chiperase(priv);
w25_unlock(priv->spi);
}
break;
case MTDIOC_ERASESTATE:
{
FAR uint8_t *result = (FAR uint8_t *)arg;
*result = W25_ERASED_STATE;
ret = OK;
}
break;
default:
ret = -ENOTTY; /* Bad command */
break;
}
finfo("return %d\n", ret);
return ret;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: w25_initialize
*
* Description:
* Create an initialize MTD device instance. MTD devices are not registered
* in the file system, but are created as instances that can be bound to
* other functions (such as a block or character driver front end).
*
****************************************************************************/
FAR struct mtd_dev_s *w25_initialize(FAR struct spi_dev_s *spi)
{
FAR struct w25_dev_s *priv;
int ret;
finfo("spi: %p\n", spi);
/* Allocate a state structure (we allocate the structure instead of using
* a fixed, static allocation so that we can handle multiple FLASH devices.
* The current implementation would handle only one FLASH part per SPI
* device (only because of the SPIDEV_FLASH(0) definition) and so would
* have to be extended to handle multiple FLASH parts on the same SPI bus.
*/
priv = (FAR struct w25_dev_s *)kmm_zalloc(sizeof(struct w25_dev_s));
if (priv)
{
/* Initialize the allocated structure (unsupported methods were
* nullified by kmm_zalloc).
*/
priv->mtd.erase = w25_erase;
priv->mtd.bread = w25_bread;
priv->mtd.bwrite = w25_bwrite;
priv->mtd.read = w25_read;
priv->mtd.ioctl = w25_ioctl;
#if defined(CONFIG_MTD_BYTE_WRITE) && !defined(CONFIG_W25_READONLY)
priv->mtd.write = w25_write;
#endif
priv->mtd.name = "w25";
priv->spi = spi;
/* Deselect the FLASH */
SPI_SELECT(spi, SPIDEV_FLASH(0), false);
/* Identify the FLASH chip and get its capacity */
ret = w25_readid(priv);
if (ret != OK)
{
/* Unrecognized! Discard all of that work we just did and
* return NULL
*/
ferr("ERROR: Unrecognized\n");
kmm_free(priv);
return NULL;
}
else
{
/* Make sure that the FLASH is unprotected so that we can write
* into it.
*/
#ifndef CONFIG_W25_READONLY
w25_unprotect(priv);
#endif
#ifdef CONFIG_W25_SECTOR512 /* Simulate a 512 byte sector */
/* Allocate a buffer for the erase block cache */
priv->sector = (FAR uint8_t *)kmm_malloc(W25_SECTOR_SIZE);
if (!priv->sector)
{
/* Discard all of that work we just did and return NULL */
ferr("ERROR: Allocation failed\n");
kmm_free(priv);
return NULL;
}
#endif
}
}
/* Return the implementation-specific state structure as the MTD device */
finfo("Return %p\n", priv);
return (FAR struct mtd_dev_s *)priv;
}