nuttx/libs/libc/math/__sin.c
2021-03-09 23:18:28 +08:00

122 lines
4.7 KiB
C

/****************************************************************************
* libs/libc/math/__sin.c
*
* Ported to NuttX from FreeBSD by Alan Carvalho de Assis:
*
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/* __sin( x, y, iy)
*
* kernel sin function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
* Input x is assumed to be bounded by ~pi/4 in magnitude.
* Input y is the tail of x.
* Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
*
* Algorithm
* 1. Since sin(-x) = -sin(x), we need only to consider positive x.
* 2. Callers must return sin(-0) = -0 without calling here since our
* odd polynomial is not evaluated in a way that preserves -0.
* Callers may do the optimization sin(x) ~ x for tiny x.
* 3. sin(x) is approximated by a polynomial of degree 13 on
* [0,pi/4]
* 3 13
* sin(x) ~ x + S1*x + ... + S6*x
* where
*
* |sin(x) 2 4 6 8 10 12 | -58
* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
* | x |
*
* 4. sin(x+y) = sin(x) + sin'(x')*y
* ~ sin(x) + (1-x*x/2)*y
* For better accuracy, let
* 3 2 2 2 2
* r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
* then 3 2
* sin(x) = x + (S1*x + (x *(r-y/2)+y))
*/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <nuttx/compiler.h>
#include <sys/types.h>
#include <math.h>
#ifdef CONFIG_HAVE_DOUBLE
/****************************************************************************
* Private Data
****************************************************************************/
static const double g_s1 = -1.66666666666666324348e-01; /* 0xbfc55555, 0x55555549 */
static const double g_s2 = 8.33333333332248946124e-03; /* 0x3f811111, 0x1110f8a6 */
static const double g_s3 = -1.98412698298579493134e-04; /* 0xbf2a01a0, 0x19c161d5 */
static const double g_s4 = 2.75573137070700676789e-06; /* 0x3ec71de3, 0x57b1fe7d */
static const double g_s5 = -2.50507602534068634195e-08; /* 0xbe5ae5e6, 0x8a2b9ceb */
static const double g_s6 = 1.58969099521155010221e-10; /* 0x3de5d93a, 0x5acfd57c */
/****************************************************************************
* Public Functions
****************************************************************************/
double __sin(double x, double y, int iy)
{
double z;
double r;
double v;
double w;
z = x * x;
w = z * z;
r = g_s2 + z * (g_s3 + z * g_s4) + z * w * (g_s5 + z * g_s6);
v = z * x;
if (iy == 0)
{
return x + v * (g_s1 + z * r);
}
else
{
return x - ((z * (0.5 * y - v * r) - y) - v * g_s1);
}
}
#endif