disabled-packages: rm groff, guile and mono
They have been ported :)
This commit is contained in:
parent
6286c284f0
commit
8ecee44dfb
@ -1,5 +0,0 @@
|
||||
TERMUX_PKG_HOMEPAGE=http://www.gnu.org/software/groff/
|
||||
TERMUX_PKG_DESCRIPTION="GNU troff text-formatting program"
|
||||
TERMUX_PKG_VERSION=1.22.3
|
||||
TERMUX_PKG_SRCURL=http://ftp.gnu.org/gnu/groff/groff-${TERMUX_PKG_VERSION}.tar.gz
|
||||
TERMUX_PKG_EXTRA_CONFIGURE_ARGS="--with-doc=no --without-gs --without-x"
|
@ -1,5 +0,0 @@
|
||||
TERMUX_PKG_HOMEPAGE=http://www.gnu.org/software/guile/
|
||||
TERMUX_PKG_DESCRIPTION="GNU extension language and Scheme interpreter"
|
||||
TERMUX_PKG_VERSION=2.0.11
|
||||
TERMUX_PKG_SRCURL=ftp://ftp.gnu.org/gnu/guile/guile-${TERMUX_PKG_VERSION}.tar.gz
|
||||
TERMUX_PKG_DEPENDS="libgmp, libunistring, libffi, libgc"
|
@ -1,22 +0,0 @@
|
||||
TERMUX_PKG_HOMEPAGE=http://www.mono-project.com/
|
||||
TERMUX_PKG_MAINTAINER='Vishal Biswas @vishalbiswas'
|
||||
_MONO_VERSION=5.0.0
|
||||
_MONO_PATCH=100
|
||||
TERMUX_PKG_VERSION=$_MONO_VERSION.$_MONO_PATCH
|
||||
# official package is missing support/libm/math_private.h
|
||||
#TERMUX_PKG_SRCURL=https://github.com/mono/mono/archive/mono-$TERMUX_PKG_VERSION.tar.gz
|
||||
TERMUX_PKG_SRCURL=https://download.mono-project.com/sources/mono/mono-$TERMUX_PKG_VERSION.tar.bz2
|
||||
TERMUX_PKG_SHA256=368da3ff9f42592920cd8cf6fa15c6c16558e967144c4d3df873352e5d2bb6df
|
||||
TERMUX_PKG_FOLDERNAME=mono-$_MONO_VERSION
|
||||
#TERMUX_PKG_EXTRA_CONFIGURE_ARGS='--disable-mcs-build --disable-boehm --with-sigaltstack=no'
|
||||
TERMUX_PKG_EXTRA_CONFIGURE_ARGS+="--disable-btls --disable-dynamic-btls" #--with-btls-android-ndk=$ANDROID_NDK"
|
||||
TERMUX_PKG_BUILD_IN_SRC=true
|
||||
|
||||
termux_step_pre_configure() {
|
||||
# export CFLAGS="$CFLAGS -mthumb"
|
||||
cd "$TERMUX_PKG_SRCDIR"
|
||||
# NOCONFIGURE=1 ./autogen.sh
|
||||
# cp $TERMUX_PKG_BUILDER_DIR/{complex,math_private}.h $TERMUX_PKG_SRCDIR/support/libm/
|
||||
export ANDROID_STANDALONE_TOOLCHAIN=$TERMUX_STANDALONE_TOOLCHAIN
|
||||
}
|
||||
|
@ -1,118 +0,0 @@
|
||||
/*-
|
||||
* Copyright (c) 2001-2011 The FreeBSD Project.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* $FreeBSD$
|
||||
*/
|
||||
|
||||
#ifndef _COMPLEX_H
|
||||
#define _COMPLEX_H
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
|
||||
#ifdef __GNUC__
|
||||
#if __STDC_VERSION__ < 199901
|
||||
#define _Complex __complex__
|
||||
#endif
|
||||
#define _Complex_I ((float _Complex)1.0i)
|
||||
#endif
|
||||
|
||||
#ifdef __generic
|
||||
_Static_assert(__generic(_Complex_I, float _Complex, 1, 0),
|
||||
"_Complex_I must be of type float _Complex");
|
||||
#endif
|
||||
|
||||
#define complex _Complex
|
||||
#define I _Complex_I
|
||||
|
||||
#if __ISO_C_VISIBLE >= 2011
|
||||
#ifdef __clang__
|
||||
#define CMPLX(x, y) ((double complex){ x, y })
|
||||
#define CMPLXF(x, y) ((float complex){ x, y })
|
||||
#define CMPLXL(x, y) ((long double complex){ x, y })
|
||||
#elif __GNUC_PREREQ__(4, 7)
|
||||
#define CMPLX(x, y) __builtin_complex((double)(x), (double)(y))
|
||||
#define CMPLXF(x, y) __builtin_complex((float)(x), (float)(y))
|
||||
#define CMPLXL(x, y) __builtin_complex((long double)(x), (long double)(y))
|
||||
#endif
|
||||
#endif /* __ISO_C_VISIBLE >= 2011 */
|
||||
|
||||
__BEGIN_DECLS
|
||||
#pragma GCC visibility push(default)
|
||||
|
||||
double cabs(double complex);
|
||||
float cabsf(float complex);
|
||||
long double cabsl(long double complex);
|
||||
double complex cacos(double complex);
|
||||
float complex cacosf(float complex);
|
||||
double complex cacosh(double complex);
|
||||
float complex cacoshf(float complex);
|
||||
double carg(double complex);
|
||||
float cargf(float complex);
|
||||
long double cargl(long double complex);
|
||||
double complex casin(double complex);
|
||||
float complex casinf(float complex);
|
||||
double complex casinh(double complex);
|
||||
float complex casinhf(float complex);
|
||||
double complex catan(double complex);
|
||||
float complex catanf(float complex);
|
||||
double complex catanh(double complex);
|
||||
float complex catanhf(float complex);
|
||||
double complex ccos(double complex);
|
||||
float complex ccosf(float complex);
|
||||
double complex ccosh(double complex);
|
||||
float complex ccoshf(float complex);
|
||||
double complex cexp(double complex);
|
||||
float complex cexpf(float complex);
|
||||
double cimag(double complex) __pure2;
|
||||
float cimagf(float complex) __pure2;
|
||||
long double cimagl(long double complex) __pure2;
|
||||
double complex conj(double complex) __pure2;
|
||||
float complex conjf(float complex) __pure2;
|
||||
long double complex
|
||||
conjl(long double complex) __pure2;
|
||||
float complex cprojf(float complex) __pure2;
|
||||
double complex cproj(double complex) __pure2;
|
||||
long double complex
|
||||
cprojl(long double complex) __pure2;
|
||||
double creal(double complex) __pure2;
|
||||
float crealf(float complex) __pure2;
|
||||
long double creall(long double complex) __pure2;
|
||||
double complex csin(double complex);
|
||||
float complex csinf(float complex);
|
||||
double complex csinh(double complex);
|
||||
float complex csinhf(float complex);
|
||||
double complex csqrt(double complex);
|
||||
float complex csqrtf(float complex);
|
||||
long double complex
|
||||
csqrtl(long double complex);
|
||||
double complex ctan(double complex);
|
||||
float complex ctanf(float complex);
|
||||
double complex ctanh(double complex);
|
||||
float complex ctanhf(float complex);
|
||||
|
||||
#pragma GCC visibility pop
|
||||
__END_DECLS
|
||||
|
||||
#endif /* _COMPLEX_H */
|
@ -1,764 +0,0 @@
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* from: @(#)fdlibm.h 5.1 93/09/24
|
||||
* $FreeBSD$
|
||||
*/
|
||||
|
||||
#ifndef _MATH_PRIVATE_H_
|
||||
#define _MATH_PRIVATE_H_
|
||||
|
||||
#include <sys/types.h>
|
||||
#include <machine/endian.h>
|
||||
|
||||
/*
|
||||
* The original fdlibm code used statements like:
|
||||
* n0 = ((*(int*)&one)>>29)^1; * index of high word *
|
||||
* ix0 = *(n0+(int*)&x); * high word of x *
|
||||
* ix1 = *((1-n0)+(int*)&x); * low word of x *
|
||||
* to dig two 32 bit words out of the 64 bit IEEE floating point
|
||||
* value. That is non-ANSI, and, moreover, the gcc instruction
|
||||
* scheduler gets it wrong. We instead use the following macros.
|
||||
* Unlike the original code, we determine the endianness at compile
|
||||
* time, not at run time; I don't see much benefit to selecting
|
||||
* endianness at run time.
|
||||
*/
|
||||
|
||||
/*
|
||||
* A union which permits us to convert between a double and two 32 bit
|
||||
* ints.
|
||||
*/
|
||||
|
||||
#ifdef __arm__
|
||||
#if defined(__VFP_FP__) || defined(__ARM_EABI__)
|
||||
#define IEEE_WORD_ORDER BYTE_ORDER
|
||||
#else
|
||||
#define IEEE_WORD_ORDER BIG_ENDIAN
|
||||
#endif
|
||||
#else /* __arm__ */
|
||||
#define IEEE_WORD_ORDER BYTE_ORDER
|
||||
#endif
|
||||
|
||||
#if IEEE_WORD_ORDER == BIG_ENDIAN
|
||||
|
||||
typedef union
|
||||
{
|
||||
double value;
|
||||
struct
|
||||
{
|
||||
u_int32_t msw;
|
||||
u_int32_t lsw;
|
||||
} parts;
|
||||
struct
|
||||
{
|
||||
u_int64_t w;
|
||||
} xparts;
|
||||
} ieee_double_shape_type;
|
||||
|
||||
#endif
|
||||
|
||||
#if IEEE_WORD_ORDER == LITTLE_ENDIAN
|
||||
|
||||
typedef union
|
||||
{
|
||||
double value;
|
||||
struct
|
||||
{
|
||||
u_int32_t lsw;
|
||||
u_int32_t msw;
|
||||
} parts;
|
||||
struct
|
||||
{
|
||||
u_int64_t w;
|
||||
} xparts;
|
||||
} ieee_double_shape_type;
|
||||
|
||||
#endif
|
||||
|
||||
/* Get two 32 bit ints from a double. */
|
||||
|
||||
#define EXTRACT_WORDS(ix0,ix1,d) \
|
||||
do { \
|
||||
ieee_double_shape_type ew_u; \
|
||||
ew_u.value = (d); \
|
||||
(ix0) = ew_u.parts.msw; \
|
||||
(ix1) = ew_u.parts.lsw; \
|
||||
} while (0)
|
||||
|
||||
/* Get a 64-bit int from a double. */
|
||||
#define EXTRACT_WORD64(ix,d) \
|
||||
do { \
|
||||
ieee_double_shape_type ew_u; \
|
||||
ew_u.value = (d); \
|
||||
(ix) = ew_u.xparts.w; \
|
||||
} while (0)
|
||||
|
||||
/* Get the more significant 32 bit int from a double. */
|
||||
|
||||
#define GET_HIGH_WORD(i,d) \
|
||||
do { \
|
||||
ieee_double_shape_type gh_u; \
|
||||
gh_u.value = (d); \
|
||||
(i) = gh_u.parts.msw; \
|
||||
} while (0)
|
||||
|
||||
/* Get the less significant 32 bit int from a double. */
|
||||
|
||||
#define GET_LOW_WORD(i,d) \
|
||||
do { \
|
||||
ieee_double_shape_type gl_u; \
|
||||
gl_u.value = (d); \
|
||||
(i) = gl_u.parts.lsw; \
|
||||
} while (0)
|
||||
|
||||
/* Set a double from two 32 bit ints. */
|
||||
|
||||
#define INSERT_WORDS(d,ix0,ix1) \
|
||||
do { \
|
||||
ieee_double_shape_type iw_u; \
|
||||
iw_u.parts.msw = (ix0); \
|
||||
iw_u.parts.lsw = (ix1); \
|
||||
(d) = iw_u.value; \
|
||||
} while (0)
|
||||
|
||||
/* Set a double from a 64-bit int. */
|
||||
#define INSERT_WORD64(d,ix) \
|
||||
do { \
|
||||
ieee_double_shape_type iw_u; \
|
||||
iw_u.xparts.w = (ix); \
|
||||
(d) = iw_u.value; \
|
||||
} while (0)
|
||||
|
||||
/* Set the more significant 32 bits of a double from an int. */
|
||||
|
||||
#define SET_HIGH_WORD(d,v) \
|
||||
do { \
|
||||
ieee_double_shape_type sh_u; \
|
||||
sh_u.value = (d); \
|
||||
sh_u.parts.msw = (v); \
|
||||
(d) = sh_u.value; \
|
||||
} while (0)
|
||||
|
||||
/* Set the less significant 32 bits of a double from an int. */
|
||||
|
||||
#define SET_LOW_WORD(d,v) \
|
||||
do { \
|
||||
ieee_double_shape_type sl_u; \
|
||||
sl_u.value = (d); \
|
||||
sl_u.parts.lsw = (v); \
|
||||
(d) = sl_u.value; \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* A union which permits us to convert between a float and a 32 bit
|
||||
* int.
|
||||
*/
|
||||
|
||||
typedef union
|
||||
{
|
||||
float value;
|
||||
/* FIXME: Assumes 32 bit int. */
|
||||
unsigned int word;
|
||||
} ieee_float_shape_type;
|
||||
|
||||
/* Get a 32 bit int from a float. */
|
||||
|
||||
#define GET_FLOAT_WORD(i,d) \
|
||||
do { \
|
||||
ieee_float_shape_type gf_u; \
|
||||
gf_u.value = (d); \
|
||||
(i) = gf_u.word; \
|
||||
} while (0)
|
||||
|
||||
/* Set a float from a 32 bit int. */
|
||||
|
||||
#define SET_FLOAT_WORD(d,i) \
|
||||
do { \
|
||||
ieee_float_shape_type sf_u; \
|
||||
sf_u.word = (i); \
|
||||
(d) = sf_u.value; \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* Get expsign and mantissa as 16 bit and 64 bit ints from an 80 bit long
|
||||
* double.
|
||||
*/
|
||||
|
||||
#define EXTRACT_LDBL80_WORDS(ix0,ix1,d) \
|
||||
do { \
|
||||
union IEEEl2bits ew_u; \
|
||||
ew_u.e = (d); \
|
||||
(ix0) = ew_u.xbits.expsign; \
|
||||
(ix1) = ew_u.xbits.man; \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* Get expsign and mantissa as one 16 bit and two 64 bit ints from a 128 bit
|
||||
* long double.
|
||||
*/
|
||||
|
||||
#define EXTRACT_LDBL128_WORDS(ix0,ix1,ix2,d) \
|
||||
do { \
|
||||
union IEEEl2bits ew_u; \
|
||||
ew_u.e = (d); \
|
||||
(ix0) = ew_u.xbits.expsign; \
|
||||
(ix1) = ew_u.xbits.manh; \
|
||||
(ix2) = ew_u.xbits.manl; \
|
||||
} while (0)
|
||||
|
||||
/* Get expsign as a 16 bit int from a long double. */
|
||||
|
||||
#define GET_LDBL_EXPSIGN(i,d) \
|
||||
do { \
|
||||
union IEEEl2bits ge_u; \
|
||||
ge_u.e = (d); \
|
||||
(i) = ge_u.xbits.expsign; \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* Set an 80 bit long double from a 16 bit int expsign and a 64 bit int
|
||||
* mantissa.
|
||||
*/
|
||||
|
||||
#define INSERT_LDBL80_WORDS(d,ix0,ix1) \
|
||||
do { \
|
||||
union IEEEl2bits iw_u; \
|
||||
iw_u.xbits.expsign = (ix0); \
|
||||
iw_u.xbits.man = (ix1); \
|
||||
(d) = iw_u.e; \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* Set a 128 bit long double from a 16 bit int expsign and two 64 bit ints
|
||||
* comprising the mantissa.
|
||||
*/
|
||||
|
||||
#define INSERT_LDBL128_WORDS(d,ix0,ix1,ix2) \
|
||||
do { \
|
||||
union IEEEl2bits iw_u; \
|
||||
iw_u.xbits.expsign = (ix0); \
|
||||
iw_u.xbits.manh = (ix1); \
|
||||
iw_u.xbits.manl = (ix2); \
|
||||
(d) = iw_u.e; \
|
||||
} while (0)
|
||||
|
||||
/* Set expsign of a long double from a 16 bit int. */
|
||||
|
||||
#define SET_LDBL_EXPSIGN(d,v) \
|
||||
do { \
|
||||
union IEEEl2bits se_u; \
|
||||
se_u.e = (d); \
|
||||
se_u.xbits.expsign = (v); \
|
||||
(d) = se_u.e; \
|
||||
} while (0)
|
||||
|
||||
#ifdef __i386__
|
||||
/* Long double constants are broken on i386. */
|
||||
#define LD80C(m, ex, v) { \
|
||||
.xbits.man = __CONCAT(m, ULL), \
|
||||
.xbits.expsign = (0x3fff + (ex)) | ((v) < 0 ? 0x8000 : 0), \
|
||||
}
|
||||
#else
|
||||
/* The above works on non-i386 too, but we use this to check v. */
|
||||
#define LD80C(m, ex, v) { .e = (v), }
|
||||
#endif
|
||||
|
||||
#ifdef FLT_EVAL_METHOD
|
||||
/*
|
||||
* Attempt to get strict C99 semantics for assignment with non-C99 compilers.
|
||||
*/
|
||||
#if FLT_EVAL_METHOD == 0 || __GNUC__ == 0
|
||||
#define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval))
|
||||
#else
|
||||
#define STRICT_ASSIGN(type, lval, rval) do { \
|
||||
volatile type __lval; \
|
||||
\
|
||||
if (sizeof(type) >= sizeof(long double)) \
|
||||
(lval) = (rval); \
|
||||
else { \
|
||||
__lval = (rval); \
|
||||
(lval) = __lval; \
|
||||
} \
|
||||
} while (0)
|
||||
#endif
|
||||
#endif /* FLT_EVAL_METHOD */
|
||||
|
||||
/* Support switching the mode to FP_PE if necessary. */
|
||||
#if defined(__i386__) && !defined(NO_FPSETPREC)
|
||||
#define ENTERI() \
|
||||
long double __retval; \
|
||||
fp_prec_t __oprec; \
|
||||
\
|
||||
if ((__oprec = fpgetprec()) != FP_PE) \
|
||||
fpsetprec(FP_PE)
|
||||
#define RETURNI(x) do { \
|
||||
__retval = (x); \
|
||||
if (__oprec != FP_PE) \
|
||||
fpsetprec(__oprec); \
|
||||
RETURNF(__retval); \
|
||||
} while (0)
|
||||
#else
|
||||
#define ENTERI(x)
|
||||
#define RETURNI(x) RETURNF(x)
|
||||
#endif
|
||||
|
||||
/* Default return statement if hack*_t() is not used. */
|
||||
#define RETURNF(v) return (v)
|
||||
|
||||
/*
|
||||
* 2sum gives the same result as 2sumF without requiring |a| >= |b| or
|
||||
* a == 0, but is slower.
|
||||
*/
|
||||
#define _2sum(a, b) do { \
|
||||
__typeof(a) __s, __w; \
|
||||
\
|
||||
__w = (a) + (b); \
|
||||
__s = __w - (a); \
|
||||
(b) = ((a) - (__w - __s)) + ((b) - __s); \
|
||||
(a) = __w; \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* 2sumF algorithm.
|
||||
*
|
||||
* "Normalize" the terms in the infinite-precision expression a + b for
|
||||
* the sum of 2 floating point values so that b is as small as possible
|
||||
* relative to 'a'. (The resulting 'a' is the value of the expression in
|
||||
* the same precision as 'a' and the resulting b is the rounding error.)
|
||||
* |a| must be >= |b| or 0, b's type must be no larger than 'a's type, and
|
||||
* exponent overflow or underflow must not occur. This uses a Theorem of
|
||||
* Dekker (1971). See Knuth (1981) 4.2.2 Theorem C. The name "TwoSum"
|
||||
* is apparently due to Skewchuk (1997).
|
||||
*
|
||||
* For this to always work, assignment of a + b to 'a' must not retain any
|
||||
* extra precision in a + b. This is required by C standards but broken
|
||||
* in many compilers. The brokenness cannot be worked around using
|
||||
* STRICT_ASSIGN() like we do elsewhere, since the efficiency of this
|
||||
* algorithm would be destroyed by non-null strict assignments. (The
|
||||
* compilers are correct to be broken -- the efficiency of all floating
|
||||
* point code calculations would be destroyed similarly if they forced the
|
||||
* conversions.)
|
||||
*
|
||||
* Fortunately, a case that works well can usually be arranged by building
|
||||
* any extra precision into the type of 'a' -- 'a' should have type float_t,
|
||||
* double_t or long double. b's type should be no larger than 'a's type.
|
||||
* Callers should use these types with scopes as large as possible, to
|
||||
* reduce their own extra-precision and efficiciency problems. In
|
||||
* particular, they shouldn't convert back and forth just to call here.
|
||||
*/
|
||||
#ifdef DEBUG
|
||||
#define _2sumF(a, b) do { \
|
||||
__typeof(a) __w; \
|
||||
volatile __typeof(a) __ia, __ib, __r, __vw; \
|
||||
\
|
||||
__ia = (a); \
|
||||
__ib = (b); \
|
||||
assert(__ia == 0 || fabsl(__ia) >= fabsl(__ib)); \
|
||||
\
|
||||
__w = (a) + (b); \
|
||||
(b) = ((a) - __w) + (b); \
|
||||
(a) = __w; \
|
||||
\
|
||||
/* The next 2 assertions are weak if (a) is already long double. */ \
|
||||
assert((long double)__ia + __ib == (long double)(a) + (b)); \
|
||||
__vw = __ia + __ib; \
|
||||
__r = __ia - __vw; \
|
||||
__r += __ib; \
|
||||
assert(__vw == (a) && __r == (b)); \
|
||||
} while (0)
|
||||
#else /* !DEBUG */
|
||||
#define _2sumF(a, b) do { \
|
||||
__typeof(a) __w; \
|
||||
\
|
||||
__w = (a) + (b); \
|
||||
(b) = ((a) - __w) + (b); \
|
||||
(a) = __w; \
|
||||
} while (0)
|
||||
#endif /* DEBUG */
|
||||
|
||||
/*
|
||||
* Set x += c, where x is represented in extra precision as a + b.
|
||||
* x must be sufficiently normalized and sufficiently larger than c,
|
||||
* and the result is then sufficiently normalized.
|
||||
*
|
||||
* The details of ordering are that |a| must be >= |c| (so that (a, c)
|
||||
* can be normalized without extra work to swap 'a' with c). The details of
|
||||
* the normalization are that b must be small relative to the normalized 'a'.
|
||||
* Normalization of (a, c) makes the normalized c tiny relative to the
|
||||
* normalized a, so b remains small relative to 'a' in the result. However,
|
||||
* b need not ever be tiny relative to 'a'. For example, b might be about
|
||||
* 2**20 times smaller than 'a' to give about 20 extra bits of precision.
|
||||
* That is usually enough, and adding c (which by normalization is about
|
||||
* 2**53 times smaller than a) cannot change b significantly. However,
|
||||
* cancellation of 'a' with c in normalization of (a, c) may reduce 'a'
|
||||
* significantly relative to b. The caller must ensure that significant
|
||||
* cancellation doesn't occur, either by having c of the same sign as 'a',
|
||||
* or by having |c| a few percent smaller than |a|. Pre-normalization of
|
||||
* (a, b) may help.
|
||||
*
|
||||
* This is is a variant of an algorithm of Kahan (see Knuth (1981) 4.2.2
|
||||
* exercise 19). We gain considerable efficiency by requiring the terms to
|
||||
* be sufficiently normalized and sufficiently increasing.
|
||||
*/
|
||||
#define _3sumF(a, b, c) do { \
|
||||
__typeof(a) __tmp; \
|
||||
\
|
||||
__tmp = (c); \
|
||||
_2sumF(__tmp, (a)); \
|
||||
(b) += (a); \
|
||||
(a) = __tmp; \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* Common routine to process the arguments to nan(), nanf(), and nanl().
|
||||
*/
|
||||
void _scan_nan(uint32_t *__words, int __num_words, const char *__s);
|
||||
|
||||
#ifdef _COMPLEX_H
|
||||
|
||||
/*
|
||||
* C99 specifies that complex numbers have the same representation as
|
||||
* an array of two elements, where the first element is the real part
|
||||
* and the second element is the imaginary part.
|
||||
*/
|
||||
typedef union {
|
||||
float complex f;
|
||||
float a[2];
|
||||
} float_complex;
|
||||
typedef union {
|
||||
double complex f;
|
||||
double a[2];
|
||||
} double_complex;
|
||||
typedef union {
|
||||
long double complex f;
|
||||
long double a[2];
|
||||
} long_double_complex;
|
||||
#define REALPART(z) ((z).a[0])
|
||||
#define IMAGPART(z) ((z).a[1])
|
||||
|
||||
/*
|
||||
* Inline functions that can be used to construct complex values.
|
||||
*
|
||||
* The C99 standard intends x+I*y to be used for this, but x+I*y is
|
||||
* currently unusable in general since gcc introduces many overflow,
|
||||
* underflow, sign and efficiency bugs by rewriting I*y as
|
||||
* (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
|
||||
* In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
|
||||
* to -0.0+I*0.0.
|
||||
*/
|
||||
static __inline float complex
|
||||
cpackf(float x, float y)
|
||||
{
|
||||
float_complex z;
|
||||
|
||||
REALPART(z) = x;
|
||||
IMAGPART(z) = y;
|
||||
return (z.f);
|
||||
}
|
||||
|
||||
static __inline double complex
|
||||
cpack(double x, double y)
|
||||
{
|
||||
double_complex z;
|
||||
|
||||
REALPART(z) = x;
|
||||
IMAGPART(z) = y;
|
||||
return (z.f);
|
||||
}
|
||||
|
||||
static __inline long double complex
|
||||
cpackl(long double x, long double y)
|
||||
{
|
||||
long_double_complex z;
|
||||
|
||||
REALPART(z) = x;
|
||||
IMAGPART(z) = y;
|
||||
return (z.f);
|
||||
}
|
||||
#endif /* _COMPLEX_H */
|
||||
|
||||
#ifdef __GNUCLIKE_ASM
|
||||
|
||||
/* Asm versions of some functions. */
|
||||
|
||||
#ifdef __amd64__
|
||||
static __inline int
|
||||
irint(double x)
|
||||
{
|
||||
int n;
|
||||
|
||||
asm("cvtsd2si %1,%0" : "=r" (n) : "x" (x));
|
||||
return (n);
|
||||
}
|
||||
#define HAVE_EFFICIENT_IRINT
|
||||
#endif
|
||||
|
||||
#ifdef __i386__
|
||||
static __inline int
|
||||
irint(double x)
|
||||
{
|
||||
int n;
|
||||
|
||||
asm("fistl %0" : "=m" (n) : "t" (x));
|
||||
return (n);
|
||||
}
|
||||
#define HAVE_EFFICIENT_IRINT
|
||||
#endif
|
||||
|
||||
#if defined(__amd64__) || defined(__i386__)
|
||||
static __inline int
|
||||
irintl(long double x)
|
||||
{
|
||||
int n;
|
||||
|
||||
asm("fistl %0" : "=m" (n) : "t" (x));
|
||||
return (n);
|
||||
}
|
||||
#define HAVE_EFFICIENT_IRINTL
|
||||
#endif
|
||||
|
||||
#endif /* __GNUCLIKE_ASM */
|
||||
|
||||
#ifdef DEBUG
|
||||
#if defined(__amd64__) || defined(__i386__)
|
||||
#define breakpoint() asm("int $3")
|
||||
#else
|
||||
#include <signal.h>
|
||||
|
||||
#define breakpoint() raise(SIGTRAP)
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* Write a pari script to test things externally. */
|
||||
#ifdef DOPRINT
|
||||
#include <stdio.h>
|
||||
|
||||
#ifndef DOPRINT_SWIZZLE
|
||||
#define DOPRINT_SWIZZLE 0
|
||||
#endif
|
||||
|
||||
#ifdef DOPRINT_LD80
|
||||
|
||||
#define DOPRINT_START(xp) do { \
|
||||
uint64_t __lx; \
|
||||
uint16_t __hx; \
|
||||
\
|
||||
/* Hack to give more-problematic args. */ \
|
||||
EXTRACT_LDBL80_WORDS(__hx, __lx, *xp); \
|
||||
__lx ^= DOPRINT_SWIZZLE; \
|
||||
INSERT_LDBL80_WORDS(*xp, __hx, __lx); \
|
||||
printf("x = %.21Lg; ", (long double)*xp); \
|
||||
} while (0)
|
||||
#define DOPRINT_END1(v) \
|
||||
printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
|
||||
#define DOPRINT_END2(hi, lo) \
|
||||
printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
|
||||
(long double)(hi), (long double)(lo))
|
||||
|
||||
#elif defined(DOPRINT_D64)
|
||||
|
||||
#define DOPRINT_START(xp) do { \
|
||||
uint32_t __hx, __lx; \
|
||||
\
|
||||
EXTRACT_WORDS(__hx, __lx, *xp); \
|
||||
__lx ^= DOPRINT_SWIZZLE; \
|
||||
INSERT_WORDS(*xp, __hx, __lx); \
|
||||
printf("x = %.21Lg; ", (long double)*xp); \
|
||||
} while (0)
|
||||
#define DOPRINT_END1(v) \
|
||||
printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
|
||||
#define DOPRINT_END2(hi, lo) \
|
||||
printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
|
||||
(long double)(hi), (long double)(lo))
|
||||
|
||||
#elif defined(DOPRINT_F32)
|
||||
|
||||
#define DOPRINT_START(xp) do { \
|
||||
uint32_t __hx; \
|
||||
\
|
||||
GET_FLOAT_WORD(__hx, *xp); \
|
||||
__hx ^= DOPRINT_SWIZZLE; \
|
||||
SET_FLOAT_WORD(*xp, __hx); \
|
||||
printf("x = %.21Lg; ", (long double)*xp); \
|
||||
} while (0)
|
||||
#define DOPRINT_END1(v) \
|
||||
printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
|
||||
#define DOPRINT_END2(hi, lo) \
|
||||
printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
|
||||
(long double)(hi), (long double)(lo))
|
||||
|
||||
#else /* !DOPRINT_LD80 && !DOPRINT_D64 (LD128 only) */
|
||||
|
||||
#ifndef DOPRINT_SWIZZLE_HIGH
|
||||
#define DOPRINT_SWIZZLE_HIGH 0
|
||||
#endif
|
||||
|
||||
#define DOPRINT_START(xp) do { \
|
||||
uint64_t __lx, __llx; \
|
||||
uint16_t __hx; \
|
||||
\
|
||||
EXTRACT_LDBL128_WORDS(__hx, __lx, __llx, *xp); \
|
||||
__llx ^= DOPRINT_SWIZZLE; \
|
||||
__lx ^= DOPRINT_SWIZZLE_HIGH; \
|
||||
INSERT_LDBL128_WORDS(*xp, __hx, __lx, __llx); \
|
||||
printf("x = %.36Lg; ", (long double)*xp); \
|
||||
} while (0)
|
||||
#define DOPRINT_END1(v) \
|
||||
printf("y = %.36Lg; z = 0; show(x, y, z);\n", (long double)(v))
|
||||
#define DOPRINT_END2(hi, lo) \
|
||||
printf("y = %.36Lg; z = %.36Lg; show(x, y, z);\n", \
|
||||
(long double)(hi), (long double)(lo))
|
||||
|
||||
#endif /* DOPRINT_LD80 */
|
||||
|
||||
#else /* !DOPRINT */
|
||||
#define DOPRINT_START(xp)
|
||||
#define DOPRINT_END1(v)
|
||||
#define DOPRINT_END2(hi, lo)
|
||||
#endif /* DOPRINT */
|
||||
|
||||
#define RETURNP(x) do { \
|
||||
DOPRINT_END1(x); \
|
||||
RETURNF(x); \
|
||||
} while (0)
|
||||
#define RETURNPI(x) do { \
|
||||
DOPRINT_END1(x); \
|
||||
RETURNI(x); \
|
||||
} while (0)
|
||||
#define RETURN2P(x, y) do { \
|
||||
DOPRINT_END2((x), (y)); \
|
||||
RETURNF((x) + (y)); \
|
||||
} while (0)
|
||||
#define RETURN2PI(x, y) do { \
|
||||
DOPRINT_END2((x), (y)); \
|
||||
RETURNI((x) + (y)); \
|
||||
} while (0)
|
||||
#ifdef STRUCT_RETURN
|
||||
#define RETURNSP(rp) do { \
|
||||
if (!(rp)->lo_set) \
|
||||
RETURNP((rp)->hi); \
|
||||
RETURN2P((rp)->hi, (rp)->lo); \
|
||||
} while (0)
|
||||
#define RETURNSPI(rp) do { \
|
||||
if (!(rp)->lo_set) \
|
||||
RETURNPI((rp)->hi); \
|
||||
RETURN2PI((rp)->hi, (rp)->lo); \
|
||||
} while (0)
|
||||
#endif
|
||||
#define SUM2P(x, y) ({ \
|
||||
const __typeof (x) __x = (x); \
|
||||
const __typeof (y) __y = (y); \
|
||||
\
|
||||
DOPRINT_END2(__x, __y); \
|
||||
__x + __y; \
|
||||
})
|
||||
|
||||
/*
|
||||
* ieee style elementary functions
|
||||
*
|
||||
* We rename functions here to improve other sources' diffability
|
||||
* against fdlibm.
|
||||
*/
|
||||
#define __ieee754_sqrt sqrt
|
||||
#define __ieee754_acos acos
|
||||
#define __ieee754_acosh acosh
|
||||
#define __ieee754_log log
|
||||
#define __ieee754_log2 log2
|
||||
#define __ieee754_atanh atanh
|
||||
#define __ieee754_asin asin
|
||||
#define __ieee754_atan2 atan2
|
||||
#define __ieee754_exp exp
|
||||
#define __ieee754_cosh cosh
|
||||
#define __ieee754_fmod fmod
|
||||
#define __ieee754_pow pow
|
||||
#define __ieee754_lgamma lgamma
|
||||
#define __ieee754_gamma gamma
|
||||
#define __ieee754_lgamma_r lgamma_r
|
||||
#define __ieee754_gamma_r gamma_r
|
||||
#define __ieee754_log10 log10
|
||||
#define __ieee754_sinh sinh
|
||||
#define __ieee754_hypot hypot
|
||||
#define __ieee754_j0 j0
|
||||
#define __ieee754_j1 j1
|
||||
#define __ieee754_y0 y0
|
||||
#define __ieee754_y1 y1
|
||||
#define __ieee754_jn jn
|
||||
#define __ieee754_yn yn
|
||||
#define __ieee754_remainder remainder
|
||||
#define __ieee754_scalb scalb
|
||||
#define __ieee754_sqrtf sqrtf
|
||||
#define __ieee754_acosf acosf
|
||||
#define __ieee754_acoshf acoshf
|
||||
#define __ieee754_logf logf
|
||||
#define __ieee754_atanhf atanhf
|
||||
#define __ieee754_asinf asinf
|
||||
#define __ieee754_atan2f atan2f
|
||||
#define __ieee754_expf expf
|
||||
#define __ieee754_coshf coshf
|
||||
#define __ieee754_fmodf fmodf
|
||||
#define __ieee754_powf powf
|
||||
#define __ieee754_lgammaf lgammaf
|
||||
#define __ieee754_gammaf gammaf
|
||||
#define __ieee754_lgammaf_r lgammaf_r
|
||||
#define __ieee754_gammaf_r gammaf_r
|
||||
#define __ieee754_log10f log10f
|
||||
#define __ieee754_log2f log2f
|
||||
#define __ieee754_sinhf sinhf
|
||||
#define __ieee754_hypotf hypotf
|
||||
#define __ieee754_j0f j0f
|
||||
#define __ieee754_j1f j1f
|
||||
#define __ieee754_y0f y0f
|
||||
#define __ieee754_y1f y1f
|
||||
#define __ieee754_jnf jnf
|
||||
#define __ieee754_ynf ynf
|
||||
#define __ieee754_remainderf remainderf
|
||||
#define __ieee754_scalbf scalbf
|
||||
|
||||
/* fdlibm kernel function */
|
||||
int __kernel_rem_pio2(double*,double*,int,int,int);
|
||||
|
||||
/* double precision kernel functions */
|
||||
#ifndef INLINE_REM_PIO2
|
||||
int __ieee754_rem_pio2(double,double*);
|
||||
#endif
|
||||
double __kernel_sin(double,double,int);
|
||||
double __kernel_cos(double,double);
|
||||
double __kernel_tan(double,double,int);
|
||||
double __ldexp_exp(double,int);
|
||||
#ifdef _COMPLEX_H
|
||||
double complex __ldexp_cexp(double complex,int);
|
||||
#endif
|
||||
|
||||
/* float precision kernel functions */
|
||||
#ifndef INLINE_REM_PIO2F
|
||||
int __ieee754_rem_pio2f(float,double*);
|
||||
#endif
|
||||
#ifndef INLINE_KERNEL_SINDF
|
||||
float __kernel_sindf(double);
|
||||
#endif
|
||||
#ifndef INLINE_KERNEL_COSDF
|
||||
float __kernel_cosdf(double);
|
||||
#endif
|
||||
#ifndef INLINE_KERNEL_TANDF
|
||||
float __kernel_tandf(double,int);
|
||||
#endif
|
||||
float __ldexp_expf(float,int);
|
||||
#ifdef _COMPLEX_H
|
||||
float complex __ldexp_cexpf(float complex,int);
|
||||
#endif
|
||||
|
||||
/* long double precision kernel functions */
|
||||
long double __kernel_sinl(long double, long double, int);
|
||||
long double __kernel_cosl(long double, long double);
|
||||
long double __kernel_tanl(long double, long double, int);
|
||||
|
||||
#endif /* !_MATH_PRIVATE_H_ */
|
@ -1,27 +0,0 @@
|
||||
--- ./libgc/pthread_stop_world.c 2017-01-03 15:49:34.000000000 +0530
|
||||
+++ ../pthread_stop_world.c 2017-01-05 18:54:28.314868754 +0530
|
||||
@@ -379,11 +379,7 @@
|
||||
GC_printf1("Sending suspend signal to 0x%lx\n", p -> id);
|
||||
#endif
|
||||
|
||||
-#ifndef PLATFORM_ANDROID
|
||||
result = pthread_kill(p -> id, SIG_SUSPEND);
|
||||
-#else
|
||||
- result = android_thread_kill(p -> kernel_id, SIG_SUSPEND);
|
||||
-#endif
|
||||
switch(result) {
|
||||
case ESRCH:
|
||||
/* Not really there anymore. Possible? */
|
||||
--- ./mono/utils/mono-threads-posix.c 2017-01-03 15:49:38.000000000 +0530
|
||||
+++ ../mono-threads-posix.c 2017-01-05 18:57:48.313245586 +0530
|
||||
@@ -21,10 +21,6 @@
|
||||
|
||||
#include <errno.h>
|
||||
|
||||
-#if defined(PLATFORM_ANDROID) && !defined(TARGET_ARM64) && !defined(TARGET_AMD64)
|
||||
-#define USE_TKILL_ON_ANDROID 1
|
||||
-#endif
|
||||
-
|
||||
#ifdef USE_TKILL_ON_ANDROID
|
||||
extern int tkill (pid_t tid, int signal);
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user