/*** This file is part of PulseAudio. Copyright 2004-2008 Lennart Poettering PulseAudio is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. PulseAudio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with PulseAudio; if not, see . ***/ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "module-sles-sink-symdef.h" //Only certain interfaces are supported by the fast mixer. These are: //SL_IID_ANDROIDSIMPLEBUFFERQUEUE //SL_IID_VOLUME //SL_IID_MUTESOLO #define USE_ANDROID_SIMPLE_BUFFER_QUEUE #ifdef USE_ANDROID_SIMPLE_BUFFER_QUEUE #include #define DATALOCATOR_BUFFERQUEUE SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE #define IID_BUFFERQUEUE SL_IID_ANDROIDSIMPLEBUFFERQUEUE #define BufferQueueItf SLAndroidSimpleBufferQueueItf #define BufferQueueState SLAndroidSimpleBufferQueueState #define IID_BUFFERQUEUE_USED SL_IID_ANDROIDSIMPLEBUFFERQUEUE #define INDEX index #else #define DATALOCATOR_BUFFERQUEUE SL_DATALOCATOR_BUFFERQUEUE #define IID_BUFFERQUEUE SL_IID_BUFFERQUEUE #define BufferQueueItf SLBufferQueueItf #define BufferQueueState SLBufferQueueState #define IID_BUFFERQUEUE_USED IID_BUFFERQUEUE #define INDEX playIndex #endif #define checkResult(r) do { \ if ((r) != SL_RESULT_SUCCESS) { \ if ((r) == SL_RESULT_PARAMETER_INVALID) fprintf(stderr, "error SL_RESULT_PARAMETER_INVALID at %s:%d\n", __FILE__, __LINE__); \ else if ((r) == SL_RESULT_PRECONDITIONS_VIOLATED ) fprintf(stderr, "error SL_RESULT_PRECONDITIONS_VIOLATED at %s:%d\n", __FILE__, __LINE__); \ else fprintf(stderr, "error %d at %s:%d\n", (int) r, __FILE__, __LINE__); \ } \ } while (0) PA_MODULE_AUTHOR("Lennart Poettering, Nathan Martynov"); PA_MODULE_DESCRIPTION("Android OpenSL ES sink"); PA_MODULE_VERSION(PACKAGE_VERSION); PA_MODULE_LOAD_ONCE(false); PA_MODULE_USAGE( "sink_name= " "sink_properties= " "rate= "); #define DEFAULT_SINK_NAME "OpenSL ES sink" #define BLOCK_USEC (PA_USEC_PER_SEC * 2) typedef struct pa_memblock_queue_t { pa_memblock *memblock; struct pa_memblock_queue_t* next; } pa_memblock_queue; struct userdata { pa_core *core; pa_module *module; pa_sink *sink; pa_thread *thread; pa_thread_mq thread_mq; pa_rtpoll *rtpoll; pa_usec_t block_usec; pa_usec_t timestamp; pa_memchunk memchunk; SLObjectItf engineObject; SLEngineItf engineEngine; // output mix interfaces SLObjectItf outputMixObject; // buffer queue player interfaces SLObjectItf bqPlayerObject; SLPlayItf bqPlayerPlay; BufferQueueItf bqPlayerBufferQueue; pa_memblock_queue* current; pa_memblock_queue* last; }; static const char* const valid_modargs[] = { "sink_name", "sink_properties", "rate", NULL }; static int sink_process_msg( pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) { struct userdata *u = PA_SINK(o)->userdata; switch (code) { case PA_SINK_MESSAGE_SET_STATE: if (pa_sink_get_state(u->sink) == PA_SINK_SUSPENDED || pa_sink_get_state(u->sink) == PA_SINK_INIT) { if (PA_PTR_TO_UINT(data) == PA_SINK_RUNNING || PA_PTR_TO_UINT(data) == PA_SINK_IDLE) u->timestamp = pa_rtclock_now(); } break; case PA_SINK_MESSAGE_GET_LATENCY: { pa_usec_t now; now = pa_rtclock_now(); *((pa_usec_t*) data) = u->timestamp > now ? u->timestamp - now : 0ULL; return 0; } } return pa_sink_process_msg(o, code, data, offset, chunk); } static void sink_update_requested_latency_cb(pa_sink *s) { struct userdata *u; size_t nbytes; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); u->block_usec = pa_sink_get_requested_latency_within_thread(s); if (u->block_usec == (pa_usec_t) -1) u->block_usec = s->thread_info.max_latency; nbytes = pa_usec_to_bytes(u->block_usec, &s->sample_spec); pa_sink_set_max_rewind_within_thread(s, nbytes); pa_sink_set_max_request_within_thread(s, nbytes); } static void pa_sles_callback(BufferQueueItf bq, void *context){ struct userdata* s = (struct userdata*) context; pa_memblock_queue* next; if (s->current != NULL){ if (s->current->memblock != NULL) pa_memblock_unref(s->current->memblock); next = s->current->next; free(s->current); s->current = next; } } static int pa_init_sles_player(struct userdata *s, SLint32 sl_rate) { if (s == NULL) return -1; SLresult result; // create engine result = slCreateEngine(&(s->engineObject), 0, NULL, 0, NULL, NULL); checkResult(result); result = (*s->engineObject)->Realize(s->engineObject, SL_BOOLEAN_FALSE); checkResult(result); result = (*s->engineObject)->GetInterface(s->engineObject, SL_IID_ENGINE, &(s->engineEngine)); checkResult(result); // create output mix result = (*s->engineEngine)->CreateOutputMix(s->engineEngine, &(s->outputMixObject), 0, NULL, NULL); checkResult(result); result = (*s->outputMixObject)->Realize(s->outputMixObject, SL_BOOLEAN_FALSE); checkResult(result); // create audio player SLDataLocator_OutputMix locator_outputmix; locator_outputmix.locatorType = SL_DATALOCATOR_OUTPUTMIX; locator_outputmix.outputMix = s->outputMixObject; SLDataLocator_BufferQueue locator_bufferqueue; locator_bufferqueue.locatorType = DATALOCATOR_BUFFERQUEUE; locator_bufferqueue.numBuffers = 50; if (sl_rate < SL_SAMPLINGRATE_8 || sl_rate > SL_SAMPLINGRATE_192) { pa_log("Incompatible sample rate"); return -1; } SLDataFormat_PCM pcm; pcm.formatType = SL_DATAFORMAT_PCM; pcm.numChannels = 2; pcm.samplesPerSec = sl_rate; pcm.bitsPerSample = SL_PCMSAMPLEFORMAT_FIXED_16; pcm.containerSize = 16; pcm.channelMask = SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT; pcm.endianness = SL_BYTEORDER_LITTLEENDIAN; SLDataSource audiosrc; audiosrc.pLocator = &locator_bufferqueue; audiosrc.pFormat = &pcm; SLDataSink audiosnk; audiosnk.pLocator = &locator_outputmix; audiosnk.pFormat = NULL; SLInterfaceID ids[1] = {IID_BUFFERQUEUE}; SLboolean flags[1] = {SL_BOOLEAN_TRUE}; result = (*s->engineEngine)->CreateAudioPlayer(s->engineEngine, &s->bqPlayerObject, &audiosrc, &audiosnk, 1, ids, flags); checkResult(result); result = (*s->bqPlayerObject)->Realize(s->bqPlayerObject, SL_BOOLEAN_FALSE); checkResult(result); result = (*s->bqPlayerObject)->GetInterface(s->bqPlayerObject, SL_IID_PLAY, &s->bqPlayerPlay); checkResult(result); result = (*s->bqPlayerObject)->GetInterface(s->bqPlayerObject, IID_BUFFERQUEUE_USED, &s->bqPlayerBufferQueue); checkResult(result); result = (*s->bqPlayerBufferQueue)->RegisterCallback(s->bqPlayerBufferQueue, pa_sles_callback, s); checkResult(result); result = (*s->bqPlayerPlay)->SetPlayState(s->bqPlayerPlay, SL_PLAYSTATE_PLAYING); checkResult(result); return 0; } static void pa_destroy_sles_player(struct userdata *s){ if (s == NULL) return; (*s->bqPlayerPlay)->SetPlayState(s->bqPlayerPlay, SL_PLAYSTATE_STOPPED); (*s->bqPlayerObject)->Destroy(s->bqPlayerObject); (*s->outputMixObject)->Destroy(s->outputMixObject); (*s->engineObject)->Destroy(s->engineObject); } static void process_render(struct userdata *u, pa_usec_t now) { pa_memblock_queue* current_block; size_t ate = 0; pa_assert(u); /* This is the configured latency. Sink inputs connected to us might not have a single frame more than the maxrequest value queued. Hence: at maximum read this many bytes from the sink inputs. */ /* Fill the buffer up the latency size */ while (u->timestamp < now + u->block_usec) { void *p; pa_sink_render(u->sink, u->sink->thread_info.max_request, &u->memchunk); p = pa_memblock_acquire(u->memchunk.memblock); (*u->bqPlayerBufferQueue)->Enqueue(u->bqPlayerBufferQueue, (uint8_t*) p + u->memchunk.index, u->memchunk.length); pa_memblock_release(u->memchunk.memblock); u->timestamp += pa_bytes_to_usec(u->memchunk.length, &u->sink->sample_spec); ate += u->memchunk.length; current_block = malloc(sizeof(pa_memblock_queue)); memset(current_block, 0, sizeof(pa_memblock_queue)); current_block->memblock = u->memchunk.memblock; if (u->current == NULL) { u->current = current_block; } if (u->last == NULL) { u->last = current_block; } else { u->last->next = current_block; u->last = current_block; } //pa_memblock_unref(u->memchunk.memblock); pa_memchunk_reset(&u->memchunk); if (ate >= u->sink->thread_info.max_request) break; } } static void thread_func(void *userdata) { struct userdata *u = userdata; pa_assert(u); pa_log_debug("Thread starting up"); pa_thread_mq_install(&u->thread_mq); u->timestamp = pa_rtclock_now(); for (;;) { pa_usec_t now = 0; int ret; if (PA_SINK_IS_OPENED(u->sink->thread_info.state)) now = pa_rtclock_now(); if (PA_UNLIKELY(u->sink->thread_info.rewind_requested)) pa_sink_process_rewind(u->sink, 0); /* Render some data and drop it immediately */ if (PA_SINK_IS_OPENED(u->sink->thread_info.state)) { if (u->timestamp <= now) process_render(u, now); pa_rtpoll_set_timer_absolute(u->rtpoll, u->timestamp); } else pa_rtpoll_set_timer_disabled(u->rtpoll); /* Hmm, nothing to do. Let's sleep */ if ((ret = pa_rtpoll_run(u->rtpoll)) < 0) goto fail; if (ret == 0) goto finish; } fail: /* If this was no regular exit from the loop we have to continue * processing messages until we received PA_MESSAGE_SHUTDOWN */ pa_asyncmsgq_post(u->thread_mq.outq, PA_MSGOBJECT(u->core), PA_CORE_MESSAGE_UNLOAD_MODULE, u->module, 0, NULL, NULL); pa_asyncmsgq_wait_for(u->thread_mq.inq, PA_MESSAGE_SHUTDOWN); finish: pa_log_debug("Thread shutting down"); } static int getenv_int(const char * env, size_t min_len){ char * got_env = getenv(env); int ret = 0; if (got_env != NULL && strlen(got_env) >= min_len) ret = atoi(got_env); //"8000" is 4 symbols return ret; } int pa__init(pa_module*m) { struct userdata *u = NULL; pa_sample_spec ss; pa_channel_map map; pa_modargs *ma = NULL; pa_sink_new_data data; size_t nbytes; pa_assert(m); if (!(ma = pa_modargs_new(m->argument, valid_modargs))) { pa_log("Failed to parse module arguments."); goto fail; } // High rate causes glitches on some devices, this is needed to prevent it //ss.rate = 32000; //ss.channels = 2; //ss.format = PA_SAMPLE_S16LE; //OK. That will allow users to define sampling rate under his responsibility ss = m->core->default_sample_spec; map = m->core->default_channel_map; if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) { pa_log("Invalid sample format specification or channel map"); goto fail; } //Needed. Don't touch ss.channels = 2; ss.format = PA_SAMPLE_S16LE; m->userdata = u = pa_xnew0(struct userdata, 1); int forceFormat = getenv_int("PROPERTY_OUTPUT_SAMPLE_RATE", 4); //"8000" is 4 symbols if (forceFormat >= 8000 && forceFormat <= 192000) { ss.rate = forceFormat; pa_log_info("Sample rate was forced to be %u\n", ss.rate); } u->core = m->core; u->module = m; u->rtpoll = pa_rtpoll_new(); pa_thread_mq_init(&u->thread_mq, m->core->mainloop, u->rtpoll); //Pulseaudio uses samples per sec but OpenSL ES uses samples per ms if (pa_init_sles_player(u, ss.rate * 1000) < 0) goto fail; //int buff[2] = {0, 0}; //(*u->bqPlayerBufferQueue)->Enqueue(u->bqPlayerBufferQueue, buff, 1); pa_sink_new_data_init(&data); data.driver = __FILE__; data.module = m; pa_sink_new_data_set_name(&data, pa_modargs_get_value(ma, "sink_name", DEFAULT_SINK_NAME)); pa_sink_new_data_set_sample_spec(&data, &ss); pa_sink_new_data_set_channel_map(&data, &map); pa_proplist_sets(data.proplist, PA_PROP_DEVICE_DESCRIPTION, _("OpenSL ES Output")); pa_proplist_sets(data.proplist, PA_PROP_DEVICE_CLASS, "abstract"); if (pa_modargs_get_proplist(ma, "sink_properties", data.proplist, PA_UPDATE_REPLACE) < 0) { pa_log("Invalid properties"); pa_sink_new_data_done(&data); goto fail; } u->sink = pa_sink_new(m->core, &data, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY); pa_sink_new_data_done(&data); if (!u->sink) { pa_log("Failed to create sink object."); goto fail; } u->sink->parent.process_msg = sink_process_msg; u->sink->update_requested_latency = sink_update_requested_latency_cb; u->sink->userdata = u; pa_sink_set_asyncmsgq(u->sink, u->thread_mq.inq); pa_sink_set_rtpoll(u->sink, u->rtpoll); u->block_usec = BLOCK_USEC; nbytes = pa_usec_to_bytes(u->block_usec, &u->sink->sample_spec); pa_sink_set_max_rewind(u->sink, nbytes); pa_sink_set_max_request(u->sink, nbytes); if (!(u->thread = pa_thread_new("sles-sink", thread_func, u))) { pa_log("Failed to create thread."); goto fail; } pa_sink_set_latency_range(u->sink, 0, BLOCK_USEC); pa_sink_put(u->sink); pa_modargs_free(ma); return 0; fail: if (ma) pa_modargs_free(ma); pa__done(m); return -1; } int pa__get_n_used(pa_module *m) { struct userdata *u; pa_assert(m); pa_assert_se(u = m->userdata); return pa_sink_linked_by(u->sink); } void pa__done(pa_module*m) { struct userdata *u; pa_assert(m); if (!(u = m->userdata)) return; if (u->sink) pa_sink_unlink(u->sink); if (u->thread) { pa_asyncmsgq_send(u->thread_mq.inq, NULL, PA_MESSAGE_SHUTDOWN, NULL, 0, NULL); pa_thread_free(u->thread); } if (u->engineObject){ pa_destroy_sles_player(u); } pa_thread_mq_done(&u->thread_mq); if (u->sink) pa_sink_unref(u->sink); if (u->rtpoll) pa_rtpoll_free(u->rtpoll); pa_xfree(u); }