Go to file
2015-07-15 19:30:22 -04:00
ndk_patches ndk_patches: Update android_setup_pwd() to avoid allocating memory, and check that ~/.termux/shell points att executable 2015-07-15 13:12:28 -04:00
packages termux-api: Add Werror 2015-07-15 19:30:22 -04:00
build-all.sh Do not take path as argument for buildorder.py 2015-07-04 09:00:46 -04:00
build-package.sh Work against 64-bit builds 2015-06-25 06:36:03 -04:00
buildorder.py Do not take path as argument for buildorder.py 2015-07-04 09:00:46 -04:00
check-pie.sh Initial push 2015-06-13 01:03:31 +02:00
check-versions.sh Initial push 2015-06-13 01:03:31 +02:00
clean-rebuild-all.sh Initial push 2015-06-13 01:03:31 +02:00
detect-hardlinks.sh Add detect-hardlinks.sh script 2015-07-08 21:10:10 -04:00
install-sdk.sh Initial push 2015-06-13 01:03:31 +02:00
list-packages-html.sh Add list-packages-html.sh 2015-07-14 01:11:30 +02:00
list-packages.sh Make list-packages.sh be runnable by sh 2015-07-04 08:57:12 -04:00
README.md Add notes about emulator ssh access 2015-07-04 14:48:58 +02:00
termux.spec Initial push 2015-06-13 01:03:31 +02:00

termux-packages

This project contains scripts and patches to cross compile and package packages for the Termux Android application.

Overview

In a non-rooted Android device an app such as Termux may not write to system locations, which is why every package is installed inside the private file area of the Termux app: PREFIX=/data/data/com.termux/files/usr

For simplicity while developing and building, the build scripts here assume that a /data folder is reserved for use on the host builder, which requires setup: sudo mkdir /data sudo chown $USER /data

The basic flow is then to run "./build-package.sh $PKG", which - Sets up a patched stand-alone Android NDK toolchain - Reads packages/$PKG/build.sh to find out where to find the source code of the package and how to build it. - Applies all patches in packages/$PKG/*.patch - Builds the package and installs it to $PREFIX - Packages the package in one or more .dpkg files for distribution Reading and following build-package.sh is the best way to understand what's going on here.

Additional utilities are contained here: - build-all.sh, used for building all packages in the correct order (using buildorder.py) - check-pie.sh, used for verifying that all binaries are using PIE, which is required for Android 5+ - check-versions.sh, used for checking for package updates - clean-rebuild-all.sh, used for doing a clean rebuild of all packages (takes a couple of hours) - list-packages.sh, used for listing all packages with a one-line summary

Resources about cross-compiling packages

Common porting problems

  • The Android bionic libc does not have iconv and gettext/libintl functionality built in. A package from the NDK, libandroid-support, contains these and may be used by all packages.

  • "error: z: no archive symbol table (run ranlib)" usually means that the build machines libz is used instead of the one for cross compilation, due to the builder library -L path being setup incorrectly

  • rindex(3) is defined in <strings.h> but does not exist in NDK, but strrchr(3) from <string.h> is preferred anyway

  • <sys/termios.h> does not exist, but <termios.h> is the standard location.

  • <sys/fcntl.h> does not exist, but <fcntl.h> is the standard location.

  • glob(3) system function (glob.h) - not in bionic, but use the libglob package

  • undefined reference to 'rpl_malloc' and/or 'rpl_realloc': These functions are added by some autoconf setups when it fails to detect 0-safe malloc and realloc during cross-compilating. Avoided by defining "ac_cv_func_malloc_0_nonnull=yes ac_cv_func_realloc_0_nonnull=yes". See http://wiki.buici.com/xwiki/bin/view/Programing+C+and+C%2B%2B/Autoconf+and+RPL_MALLOC

  • cmake and cross compiling: http://www.cmake.org/Wiki/CMake_Cross_Compiling CMAKE_FIND_ROOT_PATH=$TERMUX_PREFIX to search there. CMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY and CMAKE_FIND_ROOT_PATH_MODE_INCLUDE=ONLY for only searching there and don't fall back to build machines

  • Android is removing sys/timeb.h because it was removed in POSIX 2008, but ftime(3) can be replaced with gettimeofday(2)

  • mempcpy(3) is a GNU extension. We have added it to <string.h> provided TERMUX_EXPOSE_MEMPCPY is defined, so use something like CFLAGS+=" -DTERMUX_EXPOSE_MEMPCPY=1" for packages expecting that function to exist.

dlopen() and RTLD_* flags

<dlfn.h> declares

enum { RTLD_NOW = 2, RTLD_LAZY = 1, RTLD_LOCAL = 0, RTLD_GLOBAL = 0x00100, RTLD_NOLOAD = 4}; // 64 bit enum { RTLD_NOW = 0, RTLD_LAZY = 1, RTLD_LOCAL = 0, RTLD_GLOBAL = 2, RTLD_NOLOAD = 4}; // 32 bit

These differs from glibc ones in that

  1. They are not preprocessor #define:s so cannot be checked for with #ifdef RTLD_GLOBAL (dln.c in ruby does this)
  2. They differ in value from glibc ones, so cannot be hardcoded in files (DLFCN.py in python does this)
  3. They are missing some values (RTLD_BINDING_MASK, RTLD_NOLOAD, ...)

RPATH, LD_LIBRARY_PATH AND RUNPATH

On desktop linux the linker searches for shared libraries in:

  1. RPATH - a list of directories which is linked into the executable, supported on most UNIX systems. It is ignored if RUNPATH is present.
  2. LD_LIBRARY_PATH - an environment variable which holds a list of directories
  3. RUNPATH - same as RPATH, but searched after LD_LIBRARY_PATH, supported only on most recent UNIX systems, e.g. on most current Linux systems The Android linker (/system/bin/linker) does not support RPATH or RUNPATH, so we set LD_LIBRARY_PATH=$USR/lib and try to avoid building useless rpath entries with --disable-rpath configure flags. Another option to avoid depending on LD_LIBRARY_PATH would be supplying a custom linker - this is not done due to the overhead of maintaining a custom linker.

Warnings about unused DT entries

Starting from 5.1 the Android linker warns about VERNEED (0x6FFFFFFE) and VERNEEDNUM (0x6FFFFFFF) ELF dynamic sections: WARNING: linker: $BINARY: unused DT entry: type 0x6ffffffe arg ... WARNING: linker: $BINARY: unused DT entry: type 0x6fffffff arg ... These may come from version scripts in a Makefile such as: -Wl,--version-script=$(top_srcdir)/proc/libprocps.sym The termux-elf-cleaner utilty is run from build-package.sh and should normally take care of that problem.

Obtaining shell access on an emulator

First install and start sshd on device: apt install openssh sshd The follow the below steps: # Find out the linux user for the package to use in the chown command later: adb shell dumpsys package com.termux | grep userId= # Push your public ssh key: adb push $HOME/.ssh/id_dsa.pub /data/data/com.termux/files/home/.ssh/authorized_keys # Use the linux user for the package, 10053 below, to set ownerhip and permissions: adb shell chown -R 10053 /data/data/com.termux/files/home/.ssh/ adb shell chmod -R 0700 /data/data/com.termux/files/home/.ssh/ # Forward port 8022 to the emulator: adb forward tcp:8022 tcp:8022 # Finally connect with ssh: ssh -p 8022 localhost

Bootstrapping

To get files on device one option is: udpsvd -vE 0.0.0.0 8069 tftpd -c . # Run on device. -c arg to allow file uploading printf "mode binary\nput out.md\nquit" | tftp 192.168.0.12 8069 # on computer Another is with ftp: tcpsvd -vE 0.0.0.0 8021 ftpd -w . # Run on device. -w arg to allow file uploading printf "put tmp.c\nquit" | ftp -n 192.168.0.12 8021 # Run on computer. -n arg to use anonymous login NOTE: The ftpd and tftpd programs has been patched to run without chroot. This means that the directory serving is only the starting point and clients may cd out of if the access the whole system!