termux-packages/x11-packages/xournal/xo-shapes.c.patch
2022-04-18 14:36:11 +05:30

366 lines
10 KiB
Diff

diff -uNr xournal-0.4.8.2016/src/xo-shapes.c xournal-0.4.8.2016.mod/src/xo-shapes.c
--- xournal-0.4.8.2016/src/xo-shapes.c 2015-08-11 07:15:33.000000000 +0300
+++ xournal-0.4.8.2016.mod/src/xo-shapes.c 2019-08-14 16:19:09.524716155 +0300
@@ -5,7 +5,7 @@
* version 2 of the License, or (at your option) any later version.
*
* This software is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
@@ -62,53 +62,53 @@
s->syy += dm*pt[1]*pt[1];
s->sxy += dm*pt[0]*pt[1];
}
-
+
void calc_inertia(double *pt, int start, int end, struct Inertia *s)
{
int i;
-
+
s->mass = s->sx = s->sy = s->sxx = s->sxy = s->syy = 0.;
for (i=start, pt+=2*start; i<end; i++, pt+=2) incr_inertia(pt, s, 1);
}
/* compute normalized quantities */
-inline double center_x(struct Inertia s)
-{
+double center_x(struct Inertia s)
+{
return s.sx/s.mass;
}
-inline double center_y(struct Inertia s)
-{
+double center_y(struct Inertia s)
+{
return s.sy/s.mass;
}
-inline double I_xx(struct Inertia s)
+double I_xx(struct Inertia s)
{
if (s.mass <= 0.) return 0.;
return (s.sxx - s.sx*s.sx/s.mass)/s.mass;
}
-inline double I_xy(struct Inertia s)
+double I_xy(struct Inertia s)
{
if (s.mass <= 0.) return 0.;
return (s.sxy - s.sx*s.sy/s.mass)/s.mass;
}
-inline double I_yy(struct Inertia s)
+double I_yy(struct Inertia s)
{
if (s.mass <= 0.) return 0.;
return (s.syy - s.sy*s.sy/s.mass)/s.mass;
}
-inline double I_rad(struct Inertia s)
+double I_rad(struct Inertia s)
{
double ixx = I_xx(s), iyy = I_yy(s);
if (ixx+iyy <= 0.) return 0.;
return sqrt(ixx+iyy);
}
-inline double I_det(struct Inertia s)
+double I_det(struct Inertia s)
{
double ixx = I_xx(s), iyy = I_yy(s), ixy = I_xy(s);
if (s.mass <= 0.) return 0.;
@@ -123,27 +123,27 @@
struct Inertia s, s1, s2;
int k, i1, i2, n1, n2;
double det1, det2;
-
+
if (end == start) return 0; // no way
if (nsides <= 0) return 0;
if (end-start<5) nsides = 1; // too small for a polygon
-
+
// look for a linear piece that's big enough
for (k=0; k<nsides; k++) {
- i1 = start + (k*(end-start))/nsides;
+ i1 = start + (k*(end-start))/nsides;
i2 = start + ((k+1)*(end-start))/nsides;
calc_inertia(pt, i1, i2, &s);
if (I_det(s) < LINE_MAX_DET) break;
}
if (k==nsides) return 0; // failed!
-
+
// grow the linear piece we found
while (1) {
if (i1>start) {
s1 = s;
incr_inertia(pt+2*(i1-1), &s1, 1);
det1 = I_det(s1);
- }
+ }
else det1 = 1.;
if (i2<end) {
s2 = s;
@@ -155,7 +155,7 @@
else if (det2<det1 && det2<LINE_MAX_DET) { i2++; s=s2; }
else break;
}
-
+
if (i1>start) {
n1 = find_polygonal(pt, start, i1, (i2==end)?(nsides-1):(nsides-2), breaks, ss);
if (n1 == 0) return 0; // it doesn't work
@@ -171,7 +171,7 @@
if (n2 == 0) return 0;
}
else n2 = 0;
-
+
return n1+n2+1;
}
@@ -183,7 +183,7 @@
double cost, newcost;
struct Inertia s1, s2;
gboolean improved;
-
+
for (i=1; i<nsides; i++) {
// optimize break between sides i and i+1
cost = I_det(ss[i-1])*I_det(ss[i-1])+I_det(ss[i])*I_det(ss[i]);
@@ -196,7 +196,7 @@
newcost = I_det(s1)*I_det(s1)+I_det(s2)*I_det(s2);
if (newcost >= cost) break;
improved = TRUE;
- cost = newcost;
+ cost = newcost;
breaks[i]--;
ss[i-1] = s1;
ss[i] = s2;
@@ -209,7 +209,7 @@
incr_inertia(pt+2*breaks[i], &s2, -1);
newcost = I_det(s1)*I_det(s1)+I_det(s2)*I_det(s2);
if (newcost >= cost) break;
- cost = newcost;
+ cost = newcost;
breaks[i]++;
ss[i-1] = s1;
ss[i] = s2;
@@ -223,14 +223,14 @@
{
double a, b, c, lmin, lmax, l;
int i;
-
+
r->xcenter = center_x(*s);
r->ycenter = center_y(*s);
a = I_xx(*s); b = I_xy(*s); c = I_yy(*s);
/* max angle for inertia quadratic form solves: tan(2t) = 2b/(a-c) */
- r->angle = atan2(2*b, a-c)/2;
+ r->angle = atan2(2*b, a-c)/2;
r->radius = sqrt(3*(a+c));
-
+
lmin = lmax = 0.;
for (i=start, pt+=2*start; i<=end; i++, pt+=2) {
l = (pt[0]-r->xcenter)*cos(r->angle)+(pt[1]-r->ycenter)*sin(r->angle);
@@ -249,7 +249,7 @@
{
double sum, x0, y0, r0, dm, deltar;
int i;
-
+
if (s->mass == 0.) return 0;
sum = 0.;
x0 = center_x(*s); y0 = center_y(*s); r0 = I_rad(*s);
@@ -268,7 +268,7 @@
int npts, i;
struct Item *item;
struct UndoErasureData *erasure;
-
+
npts = (int)(2*r);
if (npts<12) npts = 12; // min. number of points
realloc_cur_path(npts+1);
@@ -282,7 +282,7 @@
void calc_edge_isect(struct RecoSegment *r1, struct RecoSegment *r2, double *pt)
{
double t;
- t = (r2->xcenter - r1->xcenter) * sin(r2->angle) -
+ t = (r2->xcenter - r1->xcenter) * sin(r2->angle) -
(r2->ycenter - r1->ycenter) * cos(r2->angle);
t /= sin(r2->angle-r1->angle);
pt[0] = r1->xcenter + t*cos(r1->angle);
@@ -301,7 +301,7 @@
undo->layer = ui.cur_layer;
undo->erasurelist = NULL;
shift = 0;
-
+
for (i=0; i<num_old_items; i++) {
if (rs[i].item == old_item) continue; // already done
old_item = rs[i].item;
@@ -335,7 +335,7 @@
item->widths = NULL;
update_item_bbox(item);
ui.cur_path.num_points = 0;
-
+
erasure->nrepl++;
erasure->replacement_items = g_list_append(erasure->replacement_items, item);
ui.cur_layer->items = g_list_append(ui.cur_layer->items, item);
@@ -352,7 +352,7 @@
struct RecoSegment *rs, *r1, *r2;
int i;
double dist, avg_angle;
-
+
// first, we need whole strokes to combine to 4 segments...
if (recognizer_queue_length<4) return FALSE;
rs = recognizer_queue + recognizer_queue_length - 4;
@@ -377,7 +377,7 @@
(r1->reversed?r1->y1:r1->y2) - (r2->reversed?r2->y2:r2->y1));
if (dist > RECTANGLE_LINEAR_TOLERANCE*(r1->radius+r2->radius)) return FALSE;
}
-
+
// make a rectangle of the correct size and slope
avg_angle = avg_angle/4;
if (fabs(avg_angle)<SLANT_TOLERANCE) avg_angle = 0.;
@@ -388,7 +388,7 @@
for (i=0; i<=3; i++) calc_edge_isect(rs+i, rs+(i+1)%4, ui.cur_path.coords+2*i+2);
ui.cur_path.coords[0] = ui.cur_path.coords[8];
ui.cur_path.coords[1] = ui.cur_path.coords[9];
-
+
remove_recognized_strokes(rs, 4);
insert_recognized_curpath();
return TRUE;
@@ -401,7 +401,7 @@
double alpha[3], dist, pt[2], tmp, delta;
double x1, y1, x2, y2, angle;
gboolean rev[3];
-
+
// first, we need whole strokes to combine to nsides segments...
if (recognizer_queue_length<3) return FALSE;
rs = recognizer_queue + recognizer_queue_length - 3;
@@ -414,15 +414,15 @@
hypot(rs[i].xcenter-rs->x2, rs[i].ycenter-rs->y2));
}
if (rev[1]!=rev[2]) return FALSE;
- if (rev[1]) {
- x1 = rs->x2; y1 = rs->y2; x2 = rs->x1; y2 = rs->y1;
+ if (rev[1]) {
+ x1 = rs->x2; y1 = rs->y2; x2 = rs->x1; y2 = rs->y1;
angle = rs->angle + M_PI;
}
- else {
+ else {
x1 = rs->x1; y1 = rs->y1; x2 = rs->x2; y2 = rs->y2;
angle = rs->angle;
}
-
+
// check arrow head not too big, and angles roughly ok
for (i=1; i<=2; i++) {
rs[i].reversed = FALSE;
@@ -434,7 +434,7 @@
#endif
if (fabs(alpha[i])<ARROW_ANGLE_MIN || fabs(alpha[i])>ARROW_ANGLE_MAX) return FALSE;
}
-
+
// check arrow head segments are roughly symmetric
if (alpha[1]*alpha[2]>0 || fabs(alpha[1]+alpha[2]) > ARROW_ASYMMETRY_MAX_ANGLE) return FALSE;
if (rs[1].radius/rs[2].radius > 1+ARROW_ASYMMETRY_MAX_LINEAR) return FALSE;
@@ -479,7 +479,7 @@
delta = fabs(alpha[1]-alpha[2])/2;
dist = (hypot(rs[1].x1-rs[1].x2, rs[1].y1-rs[1].y2) +
hypot(rs[2].x1-rs[2].x2, rs[2].y1-rs[2].y2))/2;
-
+
realloc_cur_path(2);
ui.cur_path.num_points = 2;
ui.cur_path.coords[0] = x1; ui.cur_path.coords[1] = y1;
@@ -491,7 +491,7 @@
ui.cur_path.num_points = 3;
ui.cur_path.coords[0] = x2 - dist*cos(angle+delta);
ui.cur_path.coords[1] = y2 - dist*sin(angle+delta);
- ui.cur_path.coords[2] = x2;
+ ui.cur_path.coords[2] = x2;
ui.cur_path.coords[3] = y2;
ui.cur_path.coords[4] = x2 - dist*cos(angle-delta);
ui.cur_path.coords[5] = y2 - dist*sin(angle-delta);
@@ -505,7 +505,7 @@
struct RecoSegment *rs, *r1, *r2;
int i;
double dist, pt[2];
-
+
// first, we need whole strokes to combine to nsides segments...
if (recognizer_queue_length<nsides) return FALSE;
rs = recognizer_queue + recognizer_queue_length - nsides;
@@ -526,15 +526,15 @@
if (dist > POLYGON_LINEAR_TOLERANCE*(r1->radius+r2->radius)) return FALSE;
if (fabs(pt[0])>2*ui.cur_page->width || fabs(pt[1])>2*ui.cur_page->height) return FALSE;
}
-
+
// make a polygon of the correct size and slope
realloc_cur_path(nsides+1);
ui.cur_path.num_points = nsides+1;
- for (i=0; i<nsides; i++)
+ for (i=0; i<nsides; i++)
calc_edge_isect(rs+i, rs+(i+1)%nsides, ui.cur_path.coords+2*i+2);
ui.cur_path.coords[0] = ui.cur_path.coords[2*nsides];
ui.cur_path.coords[1] = ui.cur_path.coords[2*nsides+1];
-
+
remove_recognized_strokes(rs, nsides);
insert_recognized_curpath();
return TRUE;
@@ -549,7 +549,7 @@
int n, i;
int brk[5];
double score;
-
+
if (!undo || undo->type!=ITEM_STROKE) return;
if (undo->next != last_item_checker) reset_recognizer(); // reset queue
if (last_item_checker!=NULL && ui.cur_layer != last_item_checker->layer) reset_recognizer();
@@ -558,7 +558,7 @@
calc_inertia(it->path->coords, 0, it->path->num_points-1, &s);
#ifdef RECOGNIZER_DEBUG
printf("DEBUG: Mass=%.0f, Center=(%.1f,%.1f), I=(%.0f,%.0f, %.0f), "
- "Rad=%.2f, Det=%.4f \n",
+ "Rad=%.2f, Det=%.4f \n",
s.mass, center_x(s), center_y(s), I_xx(s), I_yy(s), I_xy(s), I_rad(s), I_det(s));
#endif
@@ -578,7 +578,7 @@
i=1;
while (i<recognizer_queue_length && recognizer_queue[i].startpt!=0) i++;
recognizer_queue_length-=i;
- g_memmove(recognizer_queue, recognizer_queue+i,
+ g_memmove(recognizer_queue, recognizer_queue+i,
recognizer_queue_length * sizeof(struct RecoSegment));
}
#ifdef RECOGNIZER_DEBUG
@@ -591,7 +591,7 @@
rs[i].startpt = brk[i];
rs[i].endpt = brk[i+1];
get_segment_geometry(it->path->coords, brk[i], brk[i+1], ss+i, rs+i);
- }
+ }
if (try_rectangle()) { reset_recognizer(); return; }
if (try_arrow()) { reset_recognizer(); return; }
if (try_closed_polygon(3)) { reset_recognizer(); return; }