nuttx/arch/arm/src/kl/kl_serial.c

1117 lines
30 KiB
C
Raw Normal View History

/****************************************************************************
* arch/mips/src/kl/kl_serial.c
*
* Copyright (C) 2013-2012 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <unistd.h>
#include <semaphore.h>
#include <string.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/irq.h>
#include <nuttx/arch.h>
#include <nuttx/serial/serial.h>
#include <arch/board/board.h>
#include "up_arch.h"
#include "up_internal.h"
#include "os_internal.h"
#include "kl_config.h"
#include "kl_lowputc.h"
#include "chip.h"
#include "chip/kl_uart.h"
#include "kl_internal.h"
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Some sanity checks *******************************************************/
/* Is there at least one UART enabled and configured as a RS-232 device? */
#ifndef HAVE_UART_DEVICE
# warning "No UARTs enabled"
#endif
/* If we are not using the serial driver for the console, then we still must
* provide some minimal implementation of up_putc.
*/
#ifdef USE_SERIALDRIVER
/* Which UART with be tty0/console and which tty1-4? The console will always
* be ttyS0. If there is no console then will use the lowest numbered UART.
*/
/* First pick the console and ttys0. This could be any of UART0-5 */
#if defined(CONFIG_UART0_SERIAL_CONSOLE)
# define CONSOLE_DEV g_uart0port /* UART0 is console */
# define TTYS0_DEV g_uart0port /* UART0 is ttyS0 */
# define UART0_ASSIGNED 1
#elif defined(CONFIG_UART1_SERIAL_CONSOLE)
# define CONSOLE_DEV g_uart1port /* UART1 is console */
# define TTYS0_DEV g_uart1port /* UART1 is ttyS0 */
# define UART1_ASSIGNED 1
#elif defined(CONFIG_UART2_SERIAL_CONSOLE)
# define CONSOLE_DEV g_uart2port /* UART2 is console */
# define TTYS0_DEV g_uart2port /* UART2 is ttyS0 */
# define UART2_ASSIGNED 1
#else
# undef CONSOLE_DEV /* No console */
# if defined(CONFIG_KL_UART0)
# define TTYS0_DEV g_uart0port /* UART0 is ttyS0 */
# define UART0_ASSIGNED 1
# elif defined(CONFIG_KL_UART1)
# define TTYS0_DEV g_uart1port /* UART1 is ttyS0 */
# define UART1_ASSIGNED 1
# elif defined(CONFIG_KL_UART2)
# define TTYS0_DEV g_uart2port /* UART2 is ttyS0 */
# define UART2_ASSIGNED 1
# endif
#endif
/* Pick ttys1. This could be any of UART0-5 excluding the console UART. */
#if defined(CONFIG_KL_UART0) && !defined(UART0_ASSIGNED)
# define TTYS1_DEV g_uart0port /* UART0 is ttyS1 */
# define UART0_ASSIGNED 1
#elif defined(CONFIG_KL_UART1) && !defined(UART1_ASSIGNED)
# define TTYS1_DEV g_uart1port /* UART1 is ttyS1 */
# define UART1_ASSIGNED 1
#elif defined(CONFIG_KL_UART2) && !defined(UART2_ASSIGNED)
# define TTYS1_DEV g_uart2port /* UART2 is ttyS1 */
# define UART2_ASSIGNED 1
#endif
/* Pick ttys2. This could be one of UART1-5. It can't be UART0 because that
* was either assigned as ttyS0 or ttys1. One of UART 1-5 could also be the
* console.
*/
#if defined(CONFIG_KL_UART1) && !defined(UART1_ASSIGNED)
# define TTYS2_DEV g_uart1port /* UART1 is ttyS2 */
# define UART1_ASSIGNED 1
#elif defined(CONFIG_KL_UART2) && !defined(UART2_ASSIGNED)
# define TTYS2_DEV g_uart2port /* UART2 is ttyS2 */
# define UART2_ASSIGNED 1
#endif
/* Pick ttys3. This could be one of UART2-5. It can't be UART0-1 because
* those have already been assigned to ttsyS0, 1, or 2. One of
* UART 2-5 could also be the console.
*/
#if defined(CONFIG_KL_UART2) && !defined(UART2_ASSIGNED)
# define TTYS3_DEV g_uart2port /* UART2 is ttyS3 */
# define UART2_ASSIGNED 1
#endif
/****************************************************************************
* Private Types
****************************************************************************/
struct up_dev_s
{
uintptr_t uartbase; /* Base address of UART registers */
uint32_t baud; /* Configured baud */
uint32_t clock; /* Clocking frequency of the UART module */
#ifdef CONFIG_DEBUG
uint8_t irqe; /* Error IRQ associated with this UART (for enable) */
#endif
uint8_t irqs; /* Status IRQ associated with this UART (for enable) */
uint8_t irqprio; /* Interrupt priority */
uint8_t ie; /* Interrupts enabled */
uint8_t parity; /* 0=none, 1=odd, 2=even */
uint8_t bits; /* Number of bits (8 or 9) */
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
static int up_setup(struct uart_dev_s *dev);
static void up_shutdown(struct uart_dev_s *dev);
static int up_attach(struct uart_dev_s *dev);
static void up_detach(struct uart_dev_s *dev);
#ifdef CONFIG_DEBUG
static int up_interrupte(int irq, void *context);
#endif
static int up_interrupts(int irq, void *context);
static int up_ioctl(struct file *filep, int cmd, unsigned long arg);
static int up_receive(struct uart_dev_s *dev, uint32_t *status);
static void up_rxint(struct uart_dev_s *dev, bool enable);
static bool up_rxavailable(struct uart_dev_s *dev);
static void up_send(struct uart_dev_s *dev, int ch);
static void up_txint(struct uart_dev_s *dev, bool enable);
static bool up_txready(struct uart_dev_s *dev);
#ifdef CONFIG_KL_UARTFIFOS
static bool up_txempty(struct uart_dev_s *dev);
#endif
/****************************************************************************
* Private Variables
****************************************************************************/
static const struct uart_ops_s g_uart_ops =
{
.setup = up_setup,
.shutdown = up_shutdown,
.attach = up_attach,
.detach = up_detach,
.ioctl = up_ioctl,
.receive = up_receive,
.rxint = up_rxint,
.rxavailable = up_rxavailable,
.send = up_send,
.txint = up_txint,
.txready = up_txready,
#ifdef CONFIG_KL_UARTFIFOS
.txempty = up_txempty,
#else
.txempty = up_txready,
#endif
};
/* I/O buffers */
#ifdef CONFIG_KL_UART0
static char g_uart0rxbuffer[CONFIG_UART0_RXBUFSIZE];
static char g_uart0txbuffer[CONFIG_UART0_TXBUFSIZE];
#endif
#ifdef CONFIG_KL_UART1
static char g_uart1rxbuffer[CONFIG_UART1_RXBUFSIZE];
static char g_uart1txbuffer[CONFIG_UART1_TXBUFSIZE];
#endif
#ifdef CONFIG_KL_UART2
static char g_uart2rxbuffer[CONFIG_UART2_RXBUFSIZE];
static char g_uart2txbuffer[CONFIG_UART2_TXBUFSIZE];
#endif
/* This describes the state of the Kinetis UART0 port. */
#ifdef CONFIG_KL_UART0
static struct up_dev_s g_uart0priv =
{
.uartbase = KL_UART0_BASE,
.clock = BOARD_CORECLK_FREQ,
.baud = CONFIG_UART0_BAUD,
.irqprio = CONFIG_KL_UART0PRIO,
.parity = CONFIG_UART0_PARITY,
.bits = CONFIG_UART0_BITS,
};
static uart_dev_t g_uart0port =
{
.recv =
{
.size = CONFIG_UART0_RXBUFSIZE,
.buffer = g_uart0rxbuffer,
},
.xmit =
{
.size = CONFIG_UART0_TXBUFSIZE,
.buffer = g_uart0txbuffer,
},
.ops = &g_uart_ops,
.priv = &g_uart0priv,
};
#endif
/* This describes the state of the Kinetis UART1 port. */
#ifdef CONFIG_KL_UART1
static struct up_dev_s g_uart1priv =
{
.uartbase = KL_UART1_BASE,
2013-04-25 02:29:26 +02:00
.clock = BOARD_BUSCLK_FREQ,
.baud = CONFIG_UART1_BAUD,
#ifdef CONFIG_DEBUG
.irqe = KL_IRQ_UART1E,
#endif
.irqs = KL_IRQ_UART1S,
.irqprio = CONFIG_KL_UART1PRIO,
.parity = CONFIG_UART1_PARITY,
.bits = CONFIG_UART1_BITS,
};
static uart_dev_t g_uart1port =
{
.recv =
{
.size = CONFIG_UART1_RXBUFSIZE,
.buffer = g_uart1rxbuffer,
},
.xmit =
{
.size = CONFIG_UART1_TXBUFSIZE,
.buffer = g_uart1txbuffer,
},
.ops = &g_uart_ops,
.priv = &g_uart1priv,
};
#endif
/* This describes the state of the Kinetis UART2 port. */
#ifdef CONFIG_KL_UART2
static struct up_dev_s g_uart2priv =
{
.uartbase = KL_UART2_BASE,
2013-04-25 02:29:26 +02:00
.clock = BOARD_BUSCLK_FREQ,
.baud = CONFIG_UART2_BAUD,
#ifdef CONFIG_DEBUG
.irqe = KL_IRQ_UART2E,
#endif
.irqs = KL_IRQ_UART2S,
.irqprio = CONFIG_KL_UART2PRIO,
.parity = CONFIG_UART2_PARITY,
.bits = CONFIG_UART2_BITS,
};
static uart_dev_t g_uart2port =
{
.recv =
{
.size = CONFIG_UART2_RXBUFSIZE,
.buffer = g_uart2rxbuffer,
},
.xmit =
{
.size = CONFIG_UART2_TXBUFSIZE,
.buffer = g_uart2txbuffer,
},
.ops = &g_uart_ops,
.priv = &g_uart2priv,
};
#endif
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: up_serialin
****************************************************************************/
static inline uint8_t up_serialin(struct up_dev_s *priv, int offset)
{
return getreg8(priv->uartbase + offset);
}
/****************************************************************************
* Name: up_serialout
****************************************************************************/
static inline void up_serialout(struct up_dev_s *priv, int offset, uint8_t value)
{
putreg8(value, priv->uartbase + offset);
}
/****************************************************************************
* Name: up_setuartint
****************************************************************************/
static void up_setuartint(struct up_dev_s *priv)
{
irqstate_t flags;
uint8_t regval;
/* Re-enable/re-disable interrupts corresponding to the state of bits in ie */
flags = irqsave();
regval = up_serialin(priv, KL_UART_C2_OFFSET);
regval &= ~UART_C2_ALLINTS;
regval |= priv->ie;
up_serialout(priv, KL_UART_C2_OFFSET, regval);
irqrestore(flags);
}
/****************************************************************************
* Name: up_restoreuartint
****************************************************************************/
static void up_restoreuartint(struct up_dev_s *priv, uint8_t ie)
{
irqstate_t flags;
/* Re-enable/re-disable interrupts corresponding to the state of bits in ie */
flags = irqsave();
priv->ie = ie & UART_C2_ALLINTS;
up_setuartint(priv);
irqrestore(flags);
}
/****************************************************************************
* Name: up_disableuartint
****************************************************************************/
static void up_disableuartint(struct up_dev_s *priv, uint8_t *ie)
{
irqstate_t flags;
flags = irqsave();
if (ie)
{
*ie = priv->ie;
}
up_restoreuartint(priv, 0);
irqrestore(flags);
}
/****************************************************************************
* Name: up_setup
*
* Description:
* Configure the UART baud, bits, parity, etc. This method is called the
* first time that the serial port is opened.
*
****************************************************************************/
static int up_setup(struct uart_dev_s *dev)
{
#ifndef CONFIG_SUPPRESS_UART_CONFIG
struct up_dev_s *priv = (struct up_dev_s*)dev->priv;
/* Configure the UART as an RS-232 UART */
kl_uartconfigure(priv->uartbase, priv->baud, priv->clock,
priv->parity, priv->bits);
#endif
/* Make sure that all interrupts are disabled */
up_restoreuartint(priv, 0);
/* Set up the interrupt priority */
up_prioritize_irq(priv->irqs, priv->irqprio);
#ifdef CONFIG_DEBUG
up_prioritize_irq(priv->irqe, priv->irqprio);
#endif
return OK;
}
/****************************************************************************
* Name: up_shutdown
*
* Description:
* Disable the UART. This method is called when the serial
* port is closed
*
****************************************************************************/
static void up_shutdown(struct uart_dev_s *dev)
{
struct up_dev_s *priv = (struct up_dev_s*)dev->priv;
/* Disable interrupts */
up_restoreuartint(priv, 0);
/* Reset hardware and disable Rx and Tx */
kl_uartreset(priv->uartbase);
}
/****************************************************************************
* Name: up_attach
*
* Description:
* Configure the UART to operation in interrupt driven mode. This method is
* called when the serial port is opened. Normally, this is just after the
* the setup() method is called, however, the serial console may operate in
* a non-interrupt driven mode during the boot phase.
*
* RX and TX interrupts are not enabled when by the attach method (unless the
* hardware supports multiple levels of interrupt enabling). The RX and TX
* interrupts are not enabled until the txint() and rxint() methods are called.
*
****************************************************************************/
static int up_attach(struct uart_dev_s *dev)
{
struct up_dev_s *priv = (struct up_dev_s*)dev->priv;
int ret;
/* Attach and enable the IRQ(s). The interrupts are (probably) still
* disabled in the C2 register.
*/
ret = irq_attach(priv->irqs, up_interrupts);
#ifdef CONFIG_DEBUG
if (ret == OK)
{
ret = irq_attach(priv->irqe, up_interrupte);
}
#endif
if (ret == OK)
{
#ifdef CONFIG_DEBUG
up_enable_irq(priv->irqe);
#endif
up_enable_irq(priv->irqs);
}
return ret;
}
/****************************************************************************
* Name: up_detach
*
* Description:
* Detach UART interrupts. This method is called when the serial port is
* closed normally just before the shutdown method is called. The exception
* is the serial console which is never shutdown.
*
****************************************************************************/
static void up_detach(struct uart_dev_s *dev)
{
struct up_dev_s *priv = (struct up_dev_s*)dev->priv;
2013-04-25 02:29:26 +02:00
/* Disable interrupts */
up_restoreuartint(priv, 0);
#ifdef CONFIG_DEBUG
up_disable_irq(priv->irqe);
#endif
up_disable_irq(priv->irqs);
/* Detach from the interrupt(s) */
irq_detach(priv->irqs);
#ifdef CONFIG_DEBUG
irq_detach(priv->irqe);
#endif
}
/****************************************************************************
* Name: up_interrupte
*
* Description:
* This is the UART error interrupt handler. It will be invoked when an
* interrupt received on the 'irq'
*
****************************************************************************/
#ifdef CONFIG_DEBUG
static int up_interrupte(int irq, void *context)
{
struct uart_dev_s *dev = NULL;
struct up_dev_s *priv;
uint8_t regval;
#ifdef CONFIG_KL_UART0
if (g_uart0priv.irqe == irq)
{
dev = &g_uart0port;
}
else
#endif
#ifdef CONFIG_KL_UART1
if (g_uart1priv.irqe == irq)
{
dev = &g_uart1port;
}
else
#endif
#ifdef CONFIG_KL_UART2
if (g_uart2priv.irqe == irq)
{
dev = &g_uart2port;
}
else
#endif
{
PANIC(OSERR_INTERNAL);
}
priv = (struct up_dev_s*)dev->priv;
DEBUGASSERT(priv);
/* Handle error interrupts. This interrupt may be caused by:
*
* FE: Framing error. To clear FE, read S1 with FE set and then read the
* UART data register (D).
* NF: Noise flag. To clear NF, read S1 and then read the UART data
* register (D).
* PF: Parity error flag. To clear PF, read S1 and then read the UART data
* register (D).
*/
regval = up_serialin(priv, KL_UART_S1_OFFSET);
lldbg("S1: %02x\n", regval);
regval = up_serialin(priv, KL_UART_D_OFFSET);
return OK;
}
#endif /* CONFIG_DEBUG */
/****************************************************************************
* Name: up_interrupts
*
* Description:
* This is the UART status interrupt handler. It will be invoked when an
* interrupt received on the 'irq' It should call uart_transmitchars or
* uart_receivechar to perform the appropriate data transfers. The
* interrupt handling logic must be able to map the 'irq' number into the
* approprite uart_dev_s structure in order to call these functions.
*
****************************************************************************/
static int up_interrupts(int irq, void *context)
{
struct uart_dev_s *dev = NULL;
struct up_dev_s *priv;
int passes;
#ifdef CONFIG_KL_UARTFIFOS
unsigned int count;
#else
uint8_t s1;
#endif
bool handled;
#ifdef CONFIG_KL_UART0
if (g_uart0priv.irqs == irq)
{
dev = &g_uart0port;
}
else
#endif
#ifdef CONFIG_KL_UART1
if (g_uart1priv.irqs == irq)
{
dev = &g_uart1port;
}
else
#endif
#ifdef CONFIG_KL_UART2
if (g_uart2priv.irqs == irq)
{
dev = &g_uart2port;
}
else
#endif
{
PANIC(OSERR_INTERNAL);
}
priv = (struct up_dev_s*)dev->priv;
DEBUGASSERT(priv);
/* Loop until there are no characters to be transferred or,
* until we have been looping for a long time.
*/
handled = true;
for (passes = 0; passes < 256 && handled; passes++)
{
handled = false;
/* Read status register 1 */
#ifndef CONFIG_KL_UARTFIFOS
s1 = up_serialin(priv, KL_UART_S1_OFFSET);
#endif
/* Handle incoming, receive bytes */
#ifdef CONFIG_KL_UARTFIFOS
/* Check the count of bytes in the RX FIFO */
count = up_serialin(priv, KL_UART_RCFIFO_OFFSET);
if (count > 0)
#else
/* Check if the receive data register is full (RDRF). NOTE: If
* FIFOS are enabled, this does not mean that the the FIFO is full,
* rather, it means that the the number of bytes in the RX FIFO has
* exceeded the watermark setting. There may actually be RX data
* available!
*
* The RDRF status indication is cleared when the data is read from
* the RX data register.
*/
if ((s1 & UART_S1_RDRF) != 0)
#endif
{
/* Process incoming bytes */
uart_recvchars(dev);
handled = true;
}
/* Handle outgoing, transmit bytes */
#ifdef CONFIG_KL_UARTFIFOS
/* Read the number of bytes currently in the FIFO and compare that to
* the size of the FIFO. If there are fewer bytes in the FIFO than
* the size of the FIFO, then we are able to transmit.
*/
# error "Missing logic"
#else
/* Check if the transmit data register is "empty." NOTE: If FIFOS
* are enabled, this does not mean that the the FIFO is empty, rather,
* it means that the the number of bytes in the TX FIFO is below the
* watermark setting. There could actually be space for additional TX
* data.
*
* The TDRE status indication is cleared when the data is written to
* the TX data register.
*/
if ((s1 & UART_S1_TDRE) != 0)
#endif
{
/* Process outgoing bytes */
uart_xmitchars(dev);
handled = true;
}
}
return OK;
}
/****************************************************************************
* Name: up_ioctl
*
* Description:
* All ioctl calls will be routed through this method
*
****************************************************************************/
static int up_ioctl(struct file *filep, int cmd, unsigned long arg)
{
#if 0 /* Reserved for future growth */
struct inode *inode;
struct uart_dev_s *dev;
struct up_dev_s *priv;
int ret = OK;
DEBUGASSERT(filep, filep->f_inode);
inode = filep->f_inode;
dev = inode->i_private;
DEBUGASSERT(dev, dev->priv)
priv = (struct up_dev_s*)dev->priv;
switch (cmd)
{
case xxx: /* Add commands here */
break;
default:
ret = -ENOTTY;
break;
}
return ret;
#else
return -ENOTTY;
#endif
}
/****************************************************************************
* Name: up_receive
*
* Description:
* Called (usually) from the interrupt level to receive one
* character from the UART. Error bits associated with the
* receipt are provided in the return 'status'.
*
****************************************************************************/
static int up_receive(struct uart_dev_s *dev, uint32_t *status)
{
struct up_dev_s *priv = (struct up_dev_s*)dev->priv;
uint8_t s1;
/* Get error status information:
*
* FE: Framing error. To clear FE, read S1 with FE set and then read
* read UART data register (D).
* NF: Noise flag. To clear NF, read S1 and then read the UART data
* register (D).
* PF: Parity error flag. To clear PF, read S1 and then read the UART
* data register (D).
*/
s1 = up_serialin(priv, KL_UART_S1_OFFSET);
/* Return status information */
if (status)
{
*status = (uint32_t)s1;
}
/* Then return the actual received byte. Reading S1 then D clears all
* RX errors.
*/
return (int)up_serialin(priv, KL_UART_D_OFFSET);
}
/****************************************************************************
* Name: up_rxint
*
* Description:
* Call to enable or disable RX interrupts
*
****************************************************************************/
static void up_rxint(struct uart_dev_s *dev, bool enable)
{
struct up_dev_s *priv = (struct up_dev_s*)dev->priv;
irqstate_t flags;
flags = irqsave();
if (enable)
{
/* Receive an interrupt when their is anything in the Rx data register (or an Rx
* timeout occurs).
*/
#ifndef CONFIG_SUPPRESS_SERIAL_INTS
priv->ie |= UART_C2_RIE;
up_setuartint(priv);
#endif
}
else
{
#ifdef CONFIG_DEBUG
# warning "Revisit: How are errors enabled?"
priv->ie |= UART_C2_RIE;
#else
priv->ie |= UART_C2_RIE;
#endif
up_setuartint(priv);
}
irqrestore(flags);
}
/****************************************************************************
* Name: up_rxavailable
*
* Description:
* Return true if the receive register is not empty
*
****************************************************************************/
static bool up_rxavailable(struct uart_dev_s *dev)
{
struct up_dev_s *priv = (struct up_dev_s*)dev->priv;
#ifdef CONFIG_KL_UARTFIFOS
unsigned int count;
/* Return true if there are any bytes in the RX FIFO */
count = up_serialin(priv, KL_UART_RCFIFO_OFFSET);
return count > 0;
#else
/* Return true if the receive data register is full (RDRF). NOTE: If
* FIFOS are enabled, this does not mean that the the FIFO is full,
* rather, it means that the the number of bytes in the RX FIFO has
* exceeded the watermark setting. There may actually be RX data
* available!
*/
return (up_serialin(priv, KL_UART_S1_OFFSET) & UART_S1_RDRF) != 0;
#endif
}
/****************************************************************************
* Name: up_send
*
* Description:
* This method will send one byte on the UART.
*
****************************************************************************/
static void up_send(struct uart_dev_s *dev, int ch)
{
struct up_dev_s *priv = (struct up_dev_s*)dev->priv;
up_serialout(priv, KL_UART_D_OFFSET, (uint8_t)ch);
}
/****************************************************************************
* Name: up_txint
*
* Description:
* Call to enable or disable TX interrupts
*
****************************************************************************/
static void up_txint(struct uart_dev_s *dev, bool enable)
{
struct up_dev_s *priv = (struct up_dev_s*)dev->priv;
irqstate_t flags;
flags = irqsave();
if (enable)
{
/* Enable the TX interrupt */
#ifndef CONFIG_SUPPRESS_SERIAL_INTS
priv->ie |= UART_C2_TIE;
up_setuartint(priv);
/* Fake a TX interrupt here by just calling uart_xmitchars() with
* interrupts disabled (note this may recurse).
*/
uart_xmitchars(dev);
#endif
}
else
{
/* Disable the TX interrupt */
priv->ie &= ~UART_C2_TIE;
up_setuartint(priv);
}
irqrestore(flags);
}
/****************************************************************************
* Name: up_txready
*
* Description:
* Return true if the tranmsit data register is empty
*
****************************************************************************/
static bool up_txready(struct uart_dev_s *dev)
{
struct up_dev_s *priv = (struct up_dev_s*)dev->priv;
#ifdef CONFIG_KL_UARTFIFOS
/* Read the number of bytes currently in the FIFO and compare that to the
* size of the FIFO. If there are fewer bytes in the FIFO than the size
* of the FIFO, then we are able to transmit.
*/
# error "Missing logic"
#else
/* Return true if the transmit data register is "empty." NOTE: If
* FIFOS are enabled, this does not mean that the the FIFO is empty,
* rather, it means that the the number of bytes in the TX FIFO is
* below the watermark setting. There may actually be space for
* additional TX data.
*/
return (up_serialin(priv, KL_UART_S1_OFFSET) & UART_S1_TDRE) != 0;
#endif
}
/****************************************************************************
* Name: up_txempty
*
* Description:
* Return true if the tranmsit data register is empty
*
****************************************************************************/
#ifdef CONFIG_KL_UARTFIFOS
static bool up_txempty(struct uart_dev_s *dev)
{
struct up_dev_s *priv = (struct up_dev_s*)dev->priv;
/* Return true if the transmit buffer/fifo is "empty." */
return (up_serialin(priv, KL_UART_SFIFO_OFFSET) & UART_SFIFO_TXEMPT) != 0;
}
#endif
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: up_earlyserialinit
*
* Description:
* Performs the low level UART initialization early in debug so that the
* serial console will be available during bootup. This must be called
* before up_serialinit. NOTE: This function depends on GPIO pin
* configuration performed in up_consoleinit() and main clock iniialization
* performed in up_clkinitialize().
*
****************************************************************************/
void up_earlyserialinit(void)
{
/* Disable interrupts from all UARTS. The console is enabled in
* pic32mx_consoleinit()
*/
up_restoreuartint(TTYS0_DEV.priv, 0);
#ifdef TTYS1_DEV
up_restoreuartint(TTYS1_DEV.priv, 0);
#endif
#ifdef TTYS2_DEV
up_restoreuartint(TTYS2_DEV.priv, 0);
#endif
#ifdef TTYS3_DEV
up_restoreuartint(TTYS3_DEV.priv, 0);
#endif
#ifdef TTYS4_DEV
up_restoreuartint(TTYS4_DEV.priv, 0);
#endif
#ifdef TTYS5_DEV
up_restoreuartint(TTYS5_DEV.priv, 0);
#endif
/* Configuration whichever one is the console */
#ifdef HAVE_SERIAL_CONSOLE
CONSOLE_DEV.isconsole = true;
up_setup(&CONSOLE_DEV);
#endif
}
/****************************************************************************
* Name: up_serialinit
*
* Description:
* Register serial console and serial ports. This assumes
* that up_earlyserialinit was called previously.
*
****************************************************************************/
void up_serialinit(void)
{
/* Register the console */
#ifdef HAVE_SERIAL_CONSOLE
(void)uart_register("/dev/console", &CONSOLE_DEV);
#endif
/* Register all UARTs */
(void)uart_register("/dev/ttyS0", &TTYS0_DEV);
#ifdef TTYS1_DEV
(void)uart_register("/dev/ttyS1", &TTYS1_DEV);
#endif
#ifdef TTYS2_DEV
(void)uart_register("/dev/ttyS2", &TTYS2_DEV);
#endif
#ifdef TTYS3_DEV
(void)uart_register("/dev/ttyS3", &TTYS3_DEV);
#endif
#ifdef TTYS4_DEV
(void)uart_register("/dev/ttyS4", &TTYS4_DEV);
#endif
#ifdef TTYS5_DEV
(void)uart_register("/dev/ttyS5", &TTYS5_DEV);
#endif
}
/****************************************************************************
* Name: up_putc
*
* Description:
* Provide priority, low-level access to support OS debug writes
*
****************************************************************************/
int up_putc(int ch)
{
#ifdef HAVE_SERIAL_CONSOLE
struct up_dev_s *priv = (struct up_dev_s*)CONSOLE_DEV.priv;
uint8_t ie;
up_disableuartint(priv, &ie);
/* Check for LF */
if (ch == '\n')
{
/* Add CR */
kl_lowputc('\r');
}
kl_lowputc(ch);
up_restoreuartint(priv, ie);
#endif
return ch;
}
#else /* USE_SERIALDRIVER */
/****************************************************************************
* Name: up_putc
*
* Description:
* Provide priority, low-level access to support OS debug writes
*
****************************************************************************/
int up_putc(int ch)
{
#ifdef HAVE_SERIAL_CONSOLE
/* Check for LF */
if (ch == '\n')
{
/* Add CR */
kl_lowputc('\r');
}
kl_lowputc(ch);
#endif
return ch;
}
#endif /* USE_SERIALDRIVER */