nuttx/arch/arm/src/samv7/sam_qspi.c

1866 lines
52 KiB
C
Raw Normal View History

/****************************************************************************
* arch/arm/src/samv7/sam_qspi.c
*
* Copyright (C) 2015 Gregory Nutt. All rights reserved.
* Authors: Gregory Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <semaphore.h>
#include <errno.h>
#include <assert.h>
#include <debug.h>
#include <arch/board/board.h>
#include <nuttx/arch.h>
#include <nuttx/wdog.h>
#include <nuttx/clock.h>
#include <nuttx/kmalloc.h>
#include <nuttx/semaphore.h>
#include <nuttx/spi/qspi.h>
#include "up_internal.h"
#include "up_arch.h"
#include "cache.h"
#include "sam_gpio.h"
#include "sam_xdmac.h"
#include "sam_periphclks.h"
#include "sam_qspi.h"
#include "chip/sam_pmc.h"
#include "chip/sam_xdmac.h"
#include "chip/sam_qspi.h"
#include "chip/sam_pinmap.h"
#ifdef CONFIG_SAMV7_QSPI
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Configuration ************************************************************/
#ifndef CONFIG_SAMV7_QSPI_DLYBS
# define CONFIG_SAMV7_QSPI_DLYBS 0
#endif
#ifndef CONFIG_SAMV7_QSPI_DLYBCT
# define CONFIG_SAMV7_QSPI_DLYBCT 0
#endif
#ifndef CONFIG_DEBUG_SPI_INFO
# undef CONFIG_SAMV7_QSPI_REGDEBUG
#endif
/* When QSPI DMA is enabled, small DMA transfers will still be performed by
* polling logic. But we need a threshold value to determine what is small.
* That value is provided by CONFIG_SAMV7_QSPI_DMATHRESHOLD.
*/
#ifndef CONFIG_SAMV7_QSPI_DMATHRESHOLD
# define CONFIG_SAMV7_QSPI_DMATHRESHOLD 4
#endif
2015-08-29 18:02:59 +02:00
#ifndef CONFIG_SAMV7_XDMAC
# undef CONFIG_SAMV7_QSPI_DMA
#endif
#ifdef CONFIG_SAMV7_QSPI_DMA
2015-08-29 18:02:59 +02:00
# define SAMV7_QSPI0_DMA true
#endif
#ifndef CONFIG_SAMV7_QSPI_DMA
# undef CONFIG_SAMV7_QSPI_DMADEBUG
#endif
2015-08-29 18:02:59 +02:00
/* QSPI interrupts are not used */
#undef QSPI_USE_INTERRUPTS
/* Clocking *****************************************************************/
/* The QSPI Baud rate clock is generated by dividing the peripheral clock by
* a value between 1 and 255
*/
#define SAM_QSPI_CLOCK BOARD_MCK_FREQUENCY /* Frequency of the main clock */
/* DMA timeout. The value is not critical; we just don't want the system to
* hang in the event that a DMA does not finish. This is set to
*/
#define DMA_TIMEOUT_MS (800)
#define DMA_TIMEOUT_TICKS MSEC2TICK(DMA_TIMEOUT_MS)
2015-08-29 18:02:59 +02:00
/* QSPI memory synchronization */
2015-11-05 22:03:53 +01:00
#define MEMORY_SYNC() do { ARM_DSB(); ARM_ISB(); } while (0)
2015-08-29 18:02:59 +02:00
/* The SAMV7x QSPI driver insists that transfers be performed in multiples
* of 32-bits. The alignment requirement only applies to RX DMA data.
*/
#define ALIGN_SHIFT 2
#define ALIGN_MASK 3
#define ALIGN_UP(n) (((n)+ALIGN_MASK) & ~ALIGN_MASK)
#define IS_ALIGNED(n) (((uint32_t)(n) & ALIGN_MASK) == 0)
/* Debug *******************************************************************/
2016-06-13 22:01:32 +02:00
/* Check if QSPI debug is enabled */
#ifndef CONFIG_DEBUG_DMA
# undef CONFIG_SAMV7_QSPI_DMADEBUG
#endif
#define DMA_INITIAL 0
#define DMA_AFTER_SETUP 1
#define DMA_AFTER_START 2
#define DMA_CALLBACK 3
#define DMA_TIMEOUT 3
#define DMA_END_TRANSFER 4
#define DMA_NSAMPLES 5
/****************************************************************************
* Private Types
****************************************************************************/
/* The state of the QSPI controller.
*
* NOTE: Currently the SAMV7 supports only a single QSPI peripheral. Logic
* here is designed to support multiple QSPI peripherals.
*/
struct sam_qspidev_s
{
struct qspi_dev_s qspi; /* Externally visible part of the QSPI interface */
2015-08-29 18:02:59 +02:00
#ifdef QSPI_USE_INTERRUPTS
xcpt_t handler; /* Interrupt handler */
2015-08-29 18:02:59 +02:00
#endif
uint32_t base; /* QSPI controller register base address */
uint32_t frequency; /* Requested clock frequency */
uint32_t actual; /* Actual clock frequency */
uint8_t mode; /* Mode 0,1,2,3 */
uint8_t nbits; /* Width of word in bits (8 to 16) */
uint8_t intf; /* QSPI controller number (0) */
2015-08-29 18:02:59 +02:00
#ifdef QSPI_USE_INTERRUPTS
uint8_t irq; /* Interrupt number */
2015-08-29 18:02:59 +02:00
#endif
bool initialized; /* TRUE: Controller has been initialized */
sem_t exclsem; /* Assures mutually exclusive access to QSPI */
#ifdef CONFIG_SAMV7_QSPI_DMA
bool candma; /* DMA is supported */
uint8_t rxintf; /* RX hardware interface number */
uint8_t txintf; /* TX hardware interface number */
sem_t dmawait; /* Used to wait for DMA completion */
WDOG_ID dmadog; /* Watchdog that handles DMA timeouts */
int result; /* DMA result */
2015-08-29 18:02:59 +02:00
DMA_HANDLE dmach; /* QSPI DMA handle */
#endif
/* Debug stuff */
#ifdef CONFIG_SAMV7_QSPI_DMADEBUG
2015-08-29 18:02:59 +02:00
struct sam_dmaregs_s dmaregs[DMA_NSAMPLES];
#endif
#ifdef CONFIG_SAMV7_QSPI_REGDEBUG
bool wrlast; /* Last was a write */
uint32_t addresslast; /* Last address */
uint32_t valuelast; /* Last value */
int ntimes; /* Number of times */
#endif
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Helpers */
#ifdef CONFIG_SAMV7_QSPI_REGDEBUG
static bool qspi_checkreg(struct sam_qspidev_s *priv, bool wr,
uint32_t value, uint32_t address);
#else
# define qspi_checkreg(priv,wr,value,address) (false)
#endif
static inline uint32_t qspi_getreg(struct sam_qspidev_s *priv,
unsigned int offset);
static inline void qspi_putreg(struct sam_qspidev_s *priv, uint32_t value,
unsigned int offset);
#ifdef CONFIG_DEBUG_SPI_INFO
static void qspi_dumpregs(struct sam_qspidev_s *priv, const char *msg);
#else
# define qspi_dumpregs(priv,msg)
#endif
/* DMA support */
#ifdef CONFIG_SAMV7_QSPI_DMA
#ifdef CONFIG_SAMV7_QSPI_DMADEBUG
2015-08-29 18:02:59 +02:00
# define qspi_dma_sample(s,i) sam_dmasample((s)->dmach, &(s)->dmaregs[i])
static void qspi_dma_sampleinit(struct sam_qspidev_s *priv);
static void qspi_dma_sampledone(struct sam_qspidev_s *priv);
#else
2015-08-29 18:02:59 +02:00
# define qspi_dma_sample(s,i)
# define qspi_dma_sampleinit(s)
# define qspi_dma_sampledone(s)
#endif
2015-08-29 18:02:59 +02:00
static void qspi_dma_callback(DMA_HANDLE handle, void *arg, int result);
static inline uintptr_t qspi_regaddr(struct sam_qspidev_s *priv,
unsigned int offset);
#endif
static int qspi_memory_enable(struct sam_qspidev_s *priv,
struct qspi_meminfo_s *meminfo);
#ifdef CONFIG_SAMV7_QSPI_DMA
static int qspi_memory_dma(struct sam_qspidev_s *priv,
struct qspi_meminfo_s *meminfo);
#endif
static int qspi_memory_nodma(struct sam_qspidev_s *priv,
struct qspi_meminfo_s *meminfo);
static void qspi_memcpy(uint8_t *dest, const uint8_t *src,
size_t buflen);
/* Interrupts */
2015-08-29 18:02:59 +02:00
#ifdef QSPI_USE_INTERRUPTS
static int qspi_interrupt(struct sam_qspidev_s *priv);
#ifdef CONFIG_SAMV7_QSPI
static int qspi0_interrupt(int irq, void *context, FAR void *arg);
#endif
2015-08-29 18:02:59 +02:00
#endif
/* QSPI methods */
static int qspi_lock(struct qspi_dev_s *dev, bool lock);
static uint32_t qspi_setfrequency(struct qspi_dev_s *dev, uint32_t frequency);
static void qspi_setmode(struct qspi_dev_s *dev, enum qspi_mode_e mode);
static void qspi_setbits(struct qspi_dev_s *dev, int nbits);
static int qspi_command(struct qspi_dev_s *dev,
struct qspi_cmdinfo_s *cmdinfo);
static int qspi_memory(struct qspi_dev_s *dev,
struct qspi_meminfo_s *meminfo);
static FAR void *qspi_alloc(FAR struct qspi_dev_s *dev, size_t buflen);
static void qspi_free(FAR struct qspi_dev_s *dev, FAR void *buffer);
/* Initialization */
static int qspi_hw_initialize(struct sam_qspidev_s *priv);
/****************************************************************************
* Private Data
****************************************************************************/
#ifdef CONFIG_SAMV7_QSPI
/* QSPI0 driver operations */
static const struct qspi_ops_s g_qspi0ops =
{
.lock = qspi_lock,
.setfrequency = qspi_setfrequency,
.setmode = qspi_setmode,
.setbits = qspi_setbits,
.command = qspi_command,
.memory = qspi_memory,
.alloc = qspi_alloc,
.free = qspi_free,
};
/* This is the overall state of the QSPI0 controller */
static struct sam_qspidev_s g_qspi0dev =
{
.qspi =
{
.ops = &g_qspi0ops,
},
.base = SAM_QSPI_BASE,
2015-08-29 18:02:59 +02:00
#ifdef QSPI_USE_INTERRUPTS
.handler = qspi0_interrupt,
2015-08-29 18:02:59 +02:00
#endif
.intf = 0,
2015-08-29 18:02:59 +02:00
#ifdef QSPI_USE_INTERRUPTS
.irq = SAM_IRQ_QSPI,
2015-08-29 18:02:59 +02:00
#endif
#ifdef CONFIG_SAMV7_QSPI_DMA
.candma = SAMV7_QSPI0_DMA,
.rxintf = XDMACH_QSPI_RX,
.txintf = XDMACH_QSPI_TX,
#endif
};
#endif /* CONFIG_SAMV7_QSPI */
/****************************************************************************
* Public Data
****************************************************************************/
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: qspi_checkreg
*
* Description:
* Check if the current register access is a duplicate of the preceding.
*
* Input Parameters:
* value - The value to be written
* address - The address of the register to write to
*
* Returned Value:
* true: This is the first register access of this type.
* flase: This is the same as the preceding register access.
*
****************************************************************************/
#ifdef CONFIG_SAMV7_QSPI_REGDEBUG
static bool qspi_checkreg(struct sam_qspidev_s *priv, bool wr, uint32_t value,
uint32_t address)
{
if (wr == priv->wrlast && /* Same kind of access? */
value == priv->valuelast && /* Same value? */
address == priv->addresslast) /* Same address? */
{
/* Yes, then just keep a count of the number of times we did this. */
priv->ntimes++;
return false;
}
else
{
/* Did we do the previous operation more than once? */
if (priv->ntimes > 0)
{
/* Yes... show how many times we did it */
spiinfo("...[Repeats %d times]...\n", priv->ntimes);
}
/* Save information about the new access */
priv->wrlast = wr;
priv->valuelast = value;
priv->addresslast = address;
priv->ntimes = 0;
}
/* Return true if this is the first time that we have done this operation */
return true;
}
#endif
/****************************************************************************
* Name: qspi_getreg
*
* Description:
* Read an QSPI register
*
****************************************************************************/
static inline uint32_t qspi_getreg(struct sam_qspidev_s *priv,
unsigned int offset)
{
uint32_t address = priv->base + offset;
uint32_t value = getreg32(address);
#ifdef CONFIG_SAMV7_QSPI_REGDEBUG
if (qspi_checkreg(priv, false, value, address))
{
spiinfo("%08x->%08x\n", address, value);
}
#endif
return value;
}
/****************************************************************************
* Name: qspi_putreg
*
* Description:
* Write a value to an QSPI register
*
****************************************************************************/
static inline void qspi_putreg(struct sam_qspidev_s *priv, uint32_t value,
unsigned int offset)
{
uint32_t address = priv->base + offset;
#ifdef CONFIG_SAMV7_QSPI_REGDEBUG
if (qspi_checkreg(priv, true, value, address))
{
spiinfo("%08x<-%08x\n", address, value);
}
#endif
putreg32(value, address);
}
/****************************************************************************
* Name: qspi_dumpregs
*
* Description:
* Dump the contents of all QSPI registers
*
* Input Parameters:
* priv - The QSPI controller to dump
* msg - Message to print before the register data
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef CONFIG_DEBUG_SPI_INFO
static void qspi_dumpregs(struct sam_qspidev_s *priv, const char *msg)
{
2016-06-15 22:30:54 +02:00
spiinfo("%s:\n", msg);
spiinfo(" MR:%08x SR:%08x IMR:%08x SCR:%08x\n",
getreg32(priv->base + SAM_QSPI_MR_OFFSET),
getreg32(priv->base + SAM_QSPI_SR_OFFSET),
getreg32(priv->base + SAM_QSPI_IMR_OFFSET),
getreg32(priv->base + SAM_QSPI_SCR_OFFSET));
spiinfo(" IAR:%08x ICR:%08x IFR:%08x SMR:%08x\n",
getreg32(priv->base + SAM_QSPI_IAR_OFFSET),
getreg32(priv->base + SAM_QSPI_ICR_OFFSET),
getreg32(priv->base + SAM_QSPI_IFR_OFFSET),
getreg32(priv->base + SAM_QSPI_SMR_OFFSET));
spiinfo(" WPCR:%08x WPSR:%08x\n",
getreg32(priv->base + SAM_QSPI_WPCR_OFFSET),
getreg32(priv->base + SAM_QSPI_WPSR_OFFSET));
}
#endif
/****************************************************************************
* Name: qspi_dma_sampleinit
*
* Description:
* Initialize sampling of DMA registers (if CONFIG_SAMV7_QSPI_DMADEBUG)
*
* Input Parameters:
* priv - QSPI driver instance
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef CONFIG_SAMV7_QSPI_DMADEBUG
static void qspi_dma_sampleinit(struct sam_qspidev_s *priv)
{
/* Put contents of register samples into a known state */
2015-08-29 18:02:59 +02:00
memset(priv->dmaregs, 0xff, DMA_NSAMPLES * sizeof(struct sam_dmaregs_s));
/* Then get the initial samples */
2015-08-29 18:02:59 +02:00
sam_dmasample(priv->dmach, &priv->dmaregs[DMA_INITIAL]);
}
#endif
/****************************************************************************
* Name: qspi_dma_sampledone
*
* Description:
* Dump sampled DMA registers
*
* Input Parameters:
* priv - QSPI driver instance
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef CONFIG_SAMV7_QSPI_DMADEBUG
static void qspi_dma_sampledone(struct sam_qspidev_s *priv)
{
/* Sample the final registers */
2015-08-29 18:02:59 +02:00
sam_dmasample(priv->dmach, &priv->dmaregs[DMA_END_TRANSFER]);
/* Then dump the sampled DMA registers */
/* Initial register values */
2015-08-29 18:02:59 +02:00
sam_dmadump(priv->dmach, &priv->dmaregs[DMA_INITIAL],
2015-11-10 18:31:00 +01:00
"Initial Registers");
/* Register values after DMA setup */
2015-08-29 18:02:59 +02:00
sam_dmadump(priv->dmach, &priv->dmaregs[DMA_AFTER_SETUP],
2015-11-10 18:31:00 +01:00
"After DMA Setup");
/* Register values after DMA start */
2015-08-29 18:02:59 +02:00
sam_dmadump(priv->dmach, &priv->dmaregs[DMA_AFTER_START],
2015-11-10 18:31:00 +01:00
"After DMA Start");
/* Register values at the time of the TX and RX DMA callbacks
* -OR- DMA timeout.
*
* If the DMA timed out, then there will not be any RX DMA
* callback samples. There is probably no TX DMA callback
* samples either, but we don't know for sure.
*/
if (priv->result == -ETIMEDOUT)
{
2015-08-29 18:02:59 +02:00
sam_dmadump(priv->dmach, &priv->dmaregs[DMA_TIMEOUT],
2015-11-10 18:31:00 +01:00
"At DMA timeout");
}
else
{
2015-08-29 18:02:59 +02:00
sam_dmadump(priv->dmach, &priv->dmaregs[DMA_CALLBACK],
2015-11-10 18:31:00 +01:00
"At DMA callback");
}
2015-08-29 18:02:59 +02:00
sam_dmadump(priv->dmach, &priv->dmaregs[DMA_END_TRANSFER],
2015-11-10 18:31:00 +01:00
"At End-of-Transfer");
}
#endif
/****************************************************************************
2015-08-29 18:02:59 +02:00
* Name: qspi_dma_timeout
*
* Description:
* The watchdog timeout setup when a has expired without completion of a
* DMA.
*
* Input Parameters:
* argc - The number of arguments (should be 1)
* arg - The argument (state structure reference cast to uint32_t)
*
* Returned Value:
* None
*
* Assumptions:
* Always called from the interrupt level with interrupts disabled.
*
****************************************************************************/
#ifdef CONFIG_SAMV7_QSPI_DMA
2015-08-29 18:02:59 +02:00
static void qspi_dma_timeout(int argc, uint32_t arg)
{
struct sam_qspidev_s *priv = (struct sam_qspidev_s *)arg;
DEBUGASSERT(priv != NULL);
/* Sample DMA registers at the time of the timeout */
2015-08-29 18:02:59 +02:00
qspi_dma_sample(priv, DMA_CALLBACK);
/* Report timeout result, perhaps overwriting any failure reports from
* the TX callback.
*/
priv->result = -ETIMEDOUT;
/* Then wake up the waiting thread */
sem_post(&priv->dmawait);
}
#endif
/****************************************************************************
2015-08-29 18:02:59 +02:00
* Name: qspi_dma_callback
*
* Description:
* This callback function is invoked at the completion of the QSPI RX DMA.
*
* Input Parameters:
* handle - The DMA handler
* arg - A pointer to the chip select structure
* result - The result of the DMA transfer
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef CONFIG_SAMV7_QSPI_DMA
2015-08-29 18:02:59 +02:00
static void qspi_dma_callback(DMA_HANDLE handle, void *arg, int result)
{
struct sam_qspidev_s *priv = (struct sam_qspidev_s *)arg;
DEBUGASSERT(priv != NULL);
/* Cancel the watchdog timeout */
(void)wd_cancel(priv->dmadog);
/* Sample DMA registers at the time of the callback */
2015-08-29 18:02:59 +02:00
qspi_dma_sample(priv, DMA_CALLBACK);
/* Report the result of the transfer only if the TX callback has not already
* reported an error.
*/
if (priv->result == -EBUSY)
{
/* Save the result of the transfer if no error was previously reported */
priv->result = result;
}
/* Then wake up the waiting thread */
sem_post(&priv->dmawait);
}
#endif
/****************************************************************************
* Name: qspi_regaddr
*
* Description:
* Return the address of an QSPI register
*
****************************************************************************/
#ifdef CONFIG_SAMV7_QSPI_DMA
static inline uintptr_t qspi_regaddr(struct sam_qspidev_s *priv,
unsigned int offset)
{
return priv->base + offset;
}
#endif
/****************************************************************************
* Name: qspi_memory_enable
*
* Description:
* Enable the QSPI memory transfer
*
* Input Parameters:
* priv - Device-specific state data
* meminfo - Describes the memory transfer to be performed.
*
* Returned Value:
* Zero (OK) on SUCCESS, a negated errno on value of failure
*
****************************************************************************/
static int qspi_memory_enable(struct sam_qspidev_s *priv,
struct qspi_meminfo_s *meminfo)
{
uint32_t regval;
/* Write the Instruction code register:
*
* QSPI_ICR_INST(cmd) 8-bit command
* QSPI_ICR_OPT(0) No option
*/
2015-11-05 22:03:53 +01:00
regval = QSPI_ICR_INST(meminfo->cmd) | QSPI_ICR_OPT(0);
qspi_putreg(priv, regval, SAM_QSPI_ICR_OFFSET);
/* Is memory data scrambled? */
if (QSPIMEM_ISSCRAMBLE(meminfo->flags))
{
/* Yes.. set the scramble key */
qspi_putreg(priv, meminfo->key, SAM_QSPI_SKR_OFFSET);
/* Enable the scrambler and enable/disable the random value in the
* key.
*/
regval = QSPI_SMR_SCREN;
if (!QSPIMEM_ISRANDOM(meminfo->flags))
{
/* Disable random value in key */
regval |= QSPI_SMR_RVDIS;
}
qspi_putreg(priv, 0, SAM_QSPI_SMR_OFFSET);
}
else
{
/* Disable the scrambler */
qspi_putreg(priv, 0, SAM_QSPI_SKR_OFFSET);
qspi_putreg(priv, 0, SAM_QSPI_SMR_OFFSET);
}
/* Write Instruction Frame Register:
*
* QSPI_IFR_WIDTH_? Instruction=single bit/Data depends on meminfo->flags
* QSPI_IFR_INSTEN=1 Instruction Enable
* QSPI_IFR_ADDREN=1 Address Enable
* QSPI_IFR_OPTEN=0 Option Disable
* QSPI_IFR_DATAEN=1 Data Enable
* QSPI_IFR_OPTL_* Not used (zero)
* QSPI_IFR_ADDRL=0/1 Depends on meminfo->addrlen;
* QSPI_IFR_TFRTYP_RD/WRMEM Depends on meminfo->flags
* QSPI_IFR_CRM=0 Not continuous read
* QSPI_IFR_NBDUM Depends on meminfo->dummies
*/
regval = QSPI_IFR_INSTEN | QSPI_IFR_ADDREN | QSPI_IFR_DATAEN |
QSPI_IFR_NBDUM(meminfo->dummies);
if (QSPIMEM_ISWRITE(meminfo->flags))
{
regval |= QSPI_IFR_TFRTYP_WRMEM | QSPI_IFR_WIDTH_SINGLE;
}
else
{
if (QSPIMEM_ISQUADIO(meminfo->flags))
{
regval |= QSPI_IFR_TFRTYP_RDMEM | QSPI_IFR_WIDTH_QUADIO;
}
else if (QSPIMEM_ISDUALIO(meminfo->flags))
{
regval |= QSPI_IFR_TFRTYP_RDMEM | QSPI_IFR_WIDTH_DUALIO;
}
else
{
regval |= QSPI_IFR_TFRTYP_RDMEM | QSPI_IFR_WIDTH_SINGLE;
}
}
if (meminfo->addrlen == 3)
{
regval |= QSPI_IFR_ADDRL_24BIT;
}
else if (meminfo->addrlen == 4)
{
regval |= QSPI_IFR_ADDRL_32BIT;
}
else
{
return -EINVAL;
}
/* Write the instruction frame value */
qspi_putreg(priv, regval, SAM_QSPI_IFR_OFFSET);
(void)qspi_getreg(priv, SAM_QSPI_IFR_OFFSET);
return OK;
}
/****************************************************************************
* Name: qspi_memory_dma
*
* Description:
* Perform one QSPI memory transfer using DMA
*
* Input Parameters:
* priv - Device-specific state data
* meminfo - Describes the memory transfer to be performed.
*
* Returned Value:
* Zero (OK) on SUCCESS, a negated errno on value of failure
*
****************************************************************************/
#ifdef CONFIG_SAMV7_QSPI_DMA
static int qspi_memory_dma(struct sam_qspidev_s *priv,
struct qspi_meminfo_s *meminfo)
{
2015-08-29 18:04:36 +02:00
uintptr_t qspimem = SAM_QSPIMEM_BASE + meminfo->addr;
2015-08-29 18:02:59 +02:00
uint32_t dmaflags;
int ret;
/* Initialize register sampling */
qspi_dma_sampleinit(priv);
/* Determine DMA flags and setup the DMA */
dmaflags = DMACH_FLAG_FIFOCFG_LARGEST | DMACH_FLAG_PERIPHAHB_AHB_IF1 |
DMACH_FLAG_PERIPHISMEMORY | DMACH_FLAG_PERIPHINCREMENT |
DMACH_FLAG_PERIPHCHUNKSIZE_1 | DMACH_FLAG_MEMPID_MAX |
DMACH_FLAG_MEMAHB_AHB_IF1 | DMACH_FLAG_MEMINCREMENT |
DMACH_FLAG_MEMCHUNKSIZE_1 | DMACH_FLAG_MEMBURST_16;
if (QSPIMEM_ISWRITE(meminfo->flags))
{
/* Configure TX DMA */
dmaflags |= ((uint32_t)priv->txintf << DMACH_FLAG_PERIPHPID_SHIFT) |
DMACH_FLAG_PERIPHWIDTH_8BITS | DMACH_FLAG_MEMWIDTH_8BITS;
sam_dmaconfig(priv->dmach, dmaflags);
/* Setup the TX DMA (peripheral-to-memory) */
2015-08-29 18:04:36 +02:00
ret = sam_dmatxsetup(priv->dmach, qspimem, (uint32_t)meminfo->buffer,
2015-08-29 18:02:59 +02:00
meminfo->buflen);
}
else
{
/* Configure RX DMA */
dmaflags |= ((uint32_t)priv->rxintf << DMACH_FLAG_PERIPHPID_SHIFT) |
DMACH_FLAG_PERIPHWIDTH_32BITS | DMACH_FLAG_MEMWIDTH_32BITS;
2015-08-29 18:02:59 +02:00
sam_dmaconfig(priv->dmach, dmaflags);
/* Setup the RX DMA (memory-to-peripheral) */
2015-08-29 18:04:36 +02:00
ret = sam_dmarxsetup(priv->dmach, qspimem, (uint32_t)meminfo->buffer,
2015-08-29 18:02:59 +02:00
meminfo->buflen);
}
if (ret < 0)
{
2016-06-15 22:30:54 +02:00
spierr("ERROR: DMA setup failed: %d\n", ret);
2015-08-29 18:02:59 +02:00
return ret;
}
qspi_dma_sample(priv, DMA_AFTER_SETUP);
/* Enable the memory transfer */
qspi_memory_enable(priv, meminfo);
/* Start the DMA */
priv->result = -EBUSY;
ret = sam_dmastart(priv->dmach, qspi_dma_callback, (void *)priv);
if (ret < 0)
{
2016-06-15 22:30:54 +02:00
spierr("ERROR: sam_dmastart failed: %d\n", ret);
2015-08-29 18:02:59 +02:00
return ret;
}
qspi_dma_sample(priv, DMA_AFTER_START);
/* Wait for DMA completion. This is done in a loop because there may be
* false alarm semaphore counts that cause sam_wait() not fail to wait
* or to wake-up prematurely (for example due to the receipt of a signal).
* We know that the DMA has completed when the result is anything other
* that -EBUSY.
*/
do
{
/* Start (or re-start) the watchdog timeout */
ret = wd_start(priv->dmadog, DMA_TIMEOUT_TICKS,
(wdentry_t)qspi_dma_timeout, 1, (uint32_t)priv);
if (ret != OK)
{
2016-06-15 22:30:54 +02:00
spierr("ERROR: wd_start failed: %d\n", ret);
2015-08-29 18:02:59 +02:00
}
/* Wait for the DMA complete */
ret = sem_wait(&priv->dmawait);
/* Cancel the watchdog timeout */
(void)wd_cancel(priv->dmadog);
/* Check if we were awakened by an error of some kind */
if (ret < 0)
{
/* EINTR is not a failure. That simply means that the wait
* was awakened by a signal.
*/
int errorcode = errno;
if (errorcode != EINTR)
{
DEBUGPANIC();
return -errorcode;
}
}
/* Not that we might be awakened before the wait is over due to
* residual counts on the semaphore. So, to handle, that case,
* we loop until something changes the DMA result to any value other
* than -EBUSY.
*/
}
while (priv->result == -EBUSY);
2015-08-29 23:57:20 +02:00
/* Wait until the transmission registers are empty. */
while ((qspi_getreg(priv, SAM_QSPI_SR_OFFSET) & QSPI_INT_TXEMPTY) == 0);
qspi_putreg(priv, QSPI_CR_LASTXFER, SAM_QSPI_CR_OFFSET);
while ((qspi_getreg(priv, SAM_QSPI_SR_OFFSET) & QSPI_SR_INSTRE) == 0);
MEMORY_SYNC();
2015-08-29 18:02:59 +02:00
/* Dump the sampled DMA registers */
qspi_dma_sampledone(priv);
/* Make sure that the DMA is stopped (it will be stopped automatically
* on normal transfers, but not necessarily when the transfer terminates
* on an error condition).
*/
sam_dmastop(priv->dmach);
/* Complain if the DMA fails */
if (priv->result)
{
2016-06-15 22:30:54 +02:00
spierr("ERROR: DMA failed with result: %d\n", priv->result);
2015-08-29 18:02:59 +02:00
}
return priv->result;
}
#endif
/****************************************************************************
* Name: qspi_memory_nodma
*
* Description:
* Perform one QSPI memory transfer without using DMA
*
* Input Parameters:
* priv - Device-specific state data
* meminfo - Describes the memory transfer to be performed.
*
* Returned Value:
* Zero (OK) on SUCCESS, a negated errno on value of failure
*
****************************************************************************/
static int qspi_memory_nodma(struct sam_qspidev_s *priv,
struct qspi_meminfo_s *meminfo)
{
2015-10-04 22:59:08 +02:00
uintptr_t qspimem = SAM_QSPIMEM_BASE + meminfo->addr;
/* Enable the memory transfer */
qspi_memory_enable(priv, meminfo);
/* Transfer data to/from QSPI memory */
2015-08-29 18:02:59 +02:00
if (QSPIMEM_ISWRITE(meminfo->flags))
{
qspi_memcpy((uint8_t *)qspimem, (const uint8_t *)meminfo->buffer,
meminfo->buflen);
}
else
{
qspi_memcpy((uint8_t *)meminfo->buffer, (const uint8_t *)qspimem,
meminfo->buflen);
}
MEMORY_SYNC();
/* Indicate the end of the transfer as soon as the transmission
* registers are empty.
*/
while ((qspi_getreg(priv, SAM_QSPI_SR_OFFSET) & QSPI_INT_TXEMPTY) == 0);
qspi_putreg(priv, QSPI_CR_LASTXFER, SAM_QSPI_CR_OFFSET);
2015-08-29 18:02:59 +02:00
/* Wait for the end of the transfer
*
* REVISIT: If DMA is not used then large transfers could come through
* this path. In that case, there would be a benefit to waiting for an
* interrupt to signal the end of the transfer.
*/
while ((qspi_getreg(priv, SAM_QSPI_SR_OFFSET) & QSPI_SR_INSTRE) == 0);
return OK;
}
/****************************************************************************
* Name: qspi_memcpy
*
* Description:
* 32-bit version of memcpy.
*
* Input Parameters:
* dest - Destination address of the copy
* src - Source address of the copy
* buflen - The number of 32-bit words to copy.
*
* Returned Value:
* None
*
****************************************************************************/
static void qspi_memcpy(uint8_t *dest, const uint8_t *src, size_t buflen)
{
/* The size of the SPI transfer is equal to the bus access width.
* 8-bit transfers should result in in 8-bit SPI accesses.
*/
for (; buflen > 0; buflen--)
{
*dest++ = *src++;
}
}
/****************************************************************************
* Name: qspi_lock
*
* Description:
* On QSPI buses where there are multiple devices, it will be necessary to
* lock QSPI to have exclusive access to the buses for a sequence of
* transfers. The bus should be locked before the chip is selected. After
* locking the QSPI bus, the caller should then also call the setfrequency,
* setbits, and setmode methods to make sure that the QSPI is properly
* configured for the device. If the QSPI bus is being shared, then it
* may have been left in an incompatible state.
*
* Input Parameters:
* dev - Device-specific state data
* lock - true: Lock QSPI bus, false: unlock QSPI bus
*
* Returned Value:
* None
*
****************************************************************************/
static int qspi_lock(struct qspi_dev_s *dev, bool lock)
{
struct sam_qspidev_s *priv = (struct sam_qspidev_s *)dev;
2016-06-15 22:30:54 +02:00
spiinfo("lock=%d\n", lock);
if (lock)
{
/* Take the semaphore (perhaps waiting) */
while (sem_wait(&priv->exclsem) != 0)
{
/* The only case that an error should occur here is if the wait was awakened
* by a signal.
*/
ASSERT(errno == EINTR);
}
}
else
{
(void)sem_post(&priv->exclsem);
}
return OK;
}
/****************************************************************************
* Name: qspi_setfrequency
*
* Description:
* Set the QSPI frequency.
*
* Input Parameters:
* dev - Device-specific state data
* frequency - The QSPI frequency requested
*
* Returned Value:
* Returns the actual frequency selected
*
****************************************************************************/
static uint32_t qspi_setfrequency(struct qspi_dev_s *dev, uint32_t frequency)
{
struct sam_qspidev_s *priv = (struct sam_qspidev_s *)dev;
uint32_t actual;
uint32_t scbr;
2015-09-01 21:35:16 +02:00
#if CONFIG_SAMV7_QSPI_DLYBS > 0
uint32_t dlybs;
2015-09-01 21:35:16 +02:00
#endif
#if CONFIG_SAMV7_QSPI_DLYBCT > 0
uint32_t dlybct;
2015-09-01 21:35:16 +02:00
#endif
uint32_t regval;
2016-06-15 22:30:54 +02:00
spiinfo("frequency=%d\n", frequency);
DEBUGASSERT(priv);
/* Check if the requested frequency is the same as the frequency selection */
if (priv->frequency == frequency)
{
/* We are already at this frequency. Return the actual. */
return priv->actual;
}
2015-11-05 22:03:53 +01:00
/* Configure QSPI to a frequency as close as possible to the requested
* frequency.
*
* QSCK frequency = QSPI_CLK / SCBR, or SCBR = QSPI_CLK / frequency
*
2015-11-05 22:03:53 +01:00
* Where SCBR can have the range 1 to 256 and the SCR register field holds
* SCBR - 1. NOTE that a "ceiling" type of calculation is performed.
* 'frequency' is treated as a not-to-exceed value.
*/
scbr = (frequency + SAM_QSPI_CLOCK - 1) / frequency;
/* Make sure that the divider is within range */
if (scbr < 1)
{
scbr = 1;
}
else if (scbr > 256)
{
scbr = 256;
}
/* Save the new SCBR value (minus one) */
regval = qspi_getreg(priv, SAM_QSPI_SCR_OFFSET);
regval &= ~(QSPI_SCR_SCBR_MASK | QSPI_SCR_DLYBS_MASK);
regval |= (scbr - 1) << QSPI_SCR_SCBR_SHIFT;
/* DLYBS: Delay Before QSCK. This field defines the delay from NPCS valid to the
* first valid QSCK transition. When DLYBS equals zero, the NPCS valid to QSCK
* transition is 1/2 the QSCK clock period. Otherwise, the following equations
* determine the delay:
*
* Delay Before QSCK = DLYBS / QSPI_CLK
*
* For a 100 nsec delay (assumes QSPI_CLK is an even multiple of MHz):
*
* DLYBS == 100 * QSPI_CLK / 1000000000
* == (100 * (QSPI_CLK / 1000000)) / 1000
*/
#if CONFIG_SAMV7_QSPI_DLYBS > 0
dlybs = (CONFIG_SAMV7_QSPI_DLYBS * (SAM_QSPI_CLOCK / 1000000)) / 1000;
regval |= dlybs << QSPI_SCR_DLYBS_SHIFT;
#endif
qspi_putreg(priv, regval, SAM_QSPI_SCR_OFFSET);
/* DLYBCT: Delay Between Consecutive Transfers. This field defines the delay
* between two consecutive transfers with the same peripheral without removing
* the chip select. The delay is always inserted after each transfer and
* before removing the chip select if needed.
*
* Delay Between Consecutive Transfers = (32 x DLYBCT) / QSPI_CLK
*
* For a 500 nsec delay (assumes QSPI_CLK is an even multiple of MHz):
*
* DLYBCT = 500 * QSPI_CLK / 1000000000 / 32
* = (500 * (QSPI_CLK / 1000000) / 1000 / 32
*/
regval = qspi_getreg(priv, SAM_QSPI_MR_OFFSET);
regval &= ~QSPI_MR_DLYBCT_MASK;
#if CONFIG_SAMV7_QSPI_DLYBCT > 0
dlybct = ((CONFIG_SAMV7_QSPI_DLYBCT * (SAM_QSPI_CLOCK /1000000)) / 1000 / 32;
regval |= dlybct << QSPI_MR_DLYBCT_SHIFT;
#endif
qspi_putreg(priv, regval, SAM_QSPI_MR_OFFSET);
/* Calculate the new actual frequency */
actual = SAM_QSPI_CLOCK / scbr;
2016-06-15 22:30:54 +02:00
spiinfo("SCBR=%d actual=%d\n", scbr, actual);
/* Save the frequency setting */
priv->frequency = frequency;
priv->actual = actual;
2016-06-15 22:30:54 +02:00
spiinfo("Frequency %d->%d\n", frequency, actual);
return actual;
}
/****************************************************************************
* Name: qspi_setmode
*
* Description:
* Set the QSPI mode. Optional. See enum qspi_mode_e for mode definitions
*
* Input Parameters:
* dev - Device-specific state data
* mode - The QSPI mode requested
*
* Returned Value:
* none
*
****************************************************************************/
static void qspi_setmode(struct qspi_dev_s *dev, enum qspi_mode_e mode)
{
struct sam_qspidev_s *priv = (struct sam_qspidev_s *)dev;
uint32_t regval;
2016-06-15 22:30:54 +02:00
spiinfo("mode=%d\n", mode);
/* Has the mode changed? */
if (mode != priv->mode)
{
/* Yes... Set the mode appropriately:
*
* QSPI CPOL CPHA
* MODE
* 0 0 0
* 1 0 1
* 2 1 0
* 3 1 1
*/
regval = qspi_getreg(priv, SAM_QSPI_SCR_OFFSET);
regval &= ~(QSPI_SCR_CPOL | QSPI_SCR_CPHA);
switch (mode)
{
case QSPIDEV_MODE0: /* CPOL=0; CPHA=0 */
break;
case QSPIDEV_MODE1: /* CPOL=0; CPHA=1 */
regval |= QSPI_SCR_CPHA;
break;
case QSPIDEV_MODE2: /* CPOL=1; CPHA=0 */
regval |= QSPI_SCR_CPOL;
break;
case QSPIDEV_MODE3: /* CPOL=1; CPHA=1 */
regval |= (QSPI_SCR_CPOL | QSPI_SCR_CPHA);
break;
default:
DEBUGASSERT(FALSE);
return;
}
qspi_putreg(priv, regval, SAM_QSPI_SCR_OFFSET);
2016-06-15 22:30:54 +02:00
spiinfo("SCR=%08x\n", regval);
/* Save the mode so that subsequent re-configurations will be faster */
priv->mode = mode;
}
}
/****************************************************************************
* Name: qspi_setbits
*
* Description:
* Set the number if bits per word.
*
* Input Parameters:
* dev - Device-specific state data
* nbits - The number of bits requests
*
* Returned Value:
* none
*
****************************************************************************/
static void qspi_setbits(struct qspi_dev_s *dev, int nbits)
{
struct sam_qspidev_s *priv = (struct sam_qspidev_s *)dev;
uint32_t regval;
2016-06-15 22:30:54 +02:00
spiinfo("nbits=%d\n", nbits);
DEBUGASSERT(priv != NULL);
DEBUGASSERT(nbits >= SAM_QSPI_MINBITS && nbits <= SAM_QSPI_MAXBITS);
/* Has the number of bits changed? */
if (nbits != priv->nbits)
{
/* Yes... Set number of bits appropriately */
regval = qspi_getreg(priv, SAM_QSPI_MR_OFFSET);
regval &= ~QSPI_MR_NBBITS_MASK;
regval |= QSPI_MR_NBBITS(nbits);
qspi_putreg(priv, regval, SAM_QSPI_MR_OFFSET);
2016-06-15 22:30:54 +02:00
spiinfo("MR=%08x\n", regval);
/* Save the selection so the subsequence re-configurations will be faster */
priv->nbits = nbits;
}
}
/****************************************************************************
* Name: qspi_command
*
* Description:
* Perform one QSPI data transfer
*
* Input Parameters:
* dev - Device-specific state data
* cmdinfo - Describes the command transfer to be performed.
*
* Returned Value:
* Zero (OK) on SUCCESS, a negated errno on value of failure
*
****************************************************************************/
static int qspi_command(struct qspi_dev_s *dev,
struct qspi_cmdinfo_s *cmdinfo)
{
struct sam_qspidev_s *priv = (struct sam_qspidev_s *)dev;
uint32_t regval;
uint32_t ifr;
DEBUGASSERT(priv != NULL && cmdinfo != NULL);
#ifdef CONFIG_DEBUG_SPI_INFO
2016-06-15 22:30:54 +02:00
spiinfo("Transfer:\n");
spiinfo(" flags: %02x\n", cmdinfo->flags);
spiinfo(" cmd: %04x\n", cmdinfo->cmd);
if (QSPICMD_ISADDRESS(cmdinfo->flags))
{
2016-06-15 22:30:54 +02:00
spiinfo(" address/length: %08lx/%d\n",
(unsigned long)cmdinfo->addr, cmdinfo->addrlen);
}
if (QSPICMD_ISDATA(cmdinfo->flags))
{
2016-06-15 22:30:54 +02:00
spiinfo(" %s Data:\n", QSPICMD_ISWRITE(cmdinfo->flags) ? "Write" : "Read");
spiinfo(" buffer/length: %p/%d\n", cmdinfo->buffer, cmdinfo->buflen);
}
#endif
DEBUGASSERT(cmdinfo->cmd < 256);
/* Write the instruction address register */
ifr = 0;
if (QSPICMD_ISADDRESS(cmdinfo->flags))
{
DEBUGASSERT(cmdinfo->addrlen == 3 || cmdinfo->addrlen == 4);
2015-11-10 18:31:00 +01:00
/* Set the address in the IAR. This is required only if the
* instruction frame includes an address, but no data. When data is
* preset, the address of the instruction is determined by the address
* of QSPI memory accesses, and not by the content of the IAR.
*/
qspi_putreg(priv, cmdinfo->addr, SAM_QSPI_IAR_OFFSET);
/* Set/clear the address enable bit and the address size in the IFR */
ifr |= QSPI_IFR_ADDREN;
if (cmdinfo->addrlen == 3)
{
ifr |= QSPI_IFR_ADDRL_24BIT;
}
else if (cmdinfo->addrlen == 4)
{
ifr |= QSPI_IFR_ADDRL_32BIT;
}
else
{
return -EINVAL;
}
}
/* Write the Instruction code register:
*
* QSPI_ICR_INST(cmd) 8-bit command
* QSPI_ICR_OPT(0) No option
*/
regval = QSPI_ICR_INST(cmdinfo->cmd) | QSPI_ICR_OPT(0);
qspi_putreg(priv, regval, SAM_QSPI_ICR_OFFSET);
/* Does data accompany the command? */
if (QSPICMD_ISDATA(cmdinfo->flags))
{
DEBUGASSERT(cmdinfo->buffer != NULL && cmdinfo->buflen > 0);
DEBUGASSERT(IS_ALIGNED(cmdinfo->buffer));
/* Write Instruction Frame Register:
*
* QSPI_IFR_WIDTH_SINGLE Instruction=single bit/Data single bit
* QSPI_IFR_INSTEN=1 Instruction Enable
* QSPI_IFR_ADDREN=? (See logic above)
* QSPI_IFR_OPTEN=0 Option Disable
* QSPI_IFR_DATAEN=1 Data Enable
* QSPI_IFR_OPTL_* Not used (zero)
* QSPI_IFR_ADDRL=0 Not used (zero)
* QSPI_IFR_TFRTYP_WRITE Write transfer into serial memory, OR
* QSPI_IFR_TFRTYP_READ Read transfer from serial memory
* QSPI_IFR_CRM=0 Not continuous read
* QSPI_IFR_NBDUM(0) No dummy cycles
*/
ifr |= QSPI_IFR_WIDTH_SINGLE | QSPI_IFR_INSTEN | QSPI_IFR_DATAEN |
QSPI_IFR_NBDUM(0);
/* Read or write operation? */
if (QSPICMD_ISWRITE(cmdinfo->flags))
{
/* Set write data operation
*
* Write the IFR to the hardware. If the instructrion frame
* includes data, writing to the IFR does not trigger the
* instruction frame transfer. Rather, the instruction frame
* is triggered by the first access to QSPI memory.
*/
ifr |= QSPI_IFR_TFRTYP_WRITE;
qspi_putreg(priv, ifr, SAM_QSPI_IFR_OFFSET);
/* Read QSPI_IFR (dummy read) to synchronize APB and AHB
* accesses.
*/
(void)qspi_getreg(priv, SAM_QSPI_IFR_OFFSET);
/* Copy the data to write to QSPI_RAM */
qspi_memcpy((uint8_t *)SAM_QSPIMEM_BASE,
(const uint8_t *)cmdinfo->buffer, cmdinfo->buflen);
}
else
{
/* Set read data operation
*
* Write the IFR to the hardware. If the instructrion frame
* includes data, writing to the IFR does not trigger the
* instruction frame transfer. Rather, the instruction frame
* is triggered by the first access to QSPI memory.
*/
ifr |= QSPI_IFR_TFRTYP_READ;
qspi_putreg(priv, ifr, SAM_QSPI_IFR_OFFSET);
/* Read QSPI_IFR (dummy read) to synchronize APB and AHB
* accesses.
*/
(void)qspi_getreg(priv, SAM_QSPI_IFR_OFFSET);
/* Copy the data from QSPI memory into the user buffer */
qspi_memcpy((uint8_t *)cmdinfo->buffer,
(const uint8_t *)SAM_QSPIMEM_BASE, cmdinfo->buflen);
}
MEMORY_SYNC();
/* Indicate the end of the transfer as soon as the transmission
* registers are empty.
*/
while ((qspi_getreg(priv, SAM_QSPI_SR_OFFSET) & QSPI_INT_TXEMPTY) == 0);
qspi_putreg(priv, QSPI_CR_LASTXFER, SAM_QSPI_CR_OFFSET);
/* Fall through to INSTRE wait */
}
else
{
/* Write Instruction Frame Register:
*
* QSPI_IFR_WIDTH_SINGLE Instruction=single bit/Data single bit
* QSPI_IFR_INSTEN=1 Instruction Enable
* QSPI_IFR_ADDREN=? (See logic above)
* QSPI_IFR_OPTEN=0 Option Disable
* QSPI_IFR_DATAEN=0 Data Disable
* QSPI_IFR_OPTL_* Not used (zero)
* QSPI_IFR_ADDRL=0 Not used (zero)
* QSPI_IFR_TFRTYP_READ Shouldn't matter
* QSPI_IFR_CRM=0 Not continuous read
* QSPI_IFR_NBDUM(0) No dummy cycles
*/
ifr |= QSPI_IFR_WIDTH_SINGLE | QSPI_IFR_INSTEN | QSPI_IFR_TFRTYP_READ |
QSPI_IFR_NBDUM(0);
qspi_putreg(priv, ifr, SAM_QSPI_IFR_OFFSET);
MEMORY_SYNC();
/* If the insruction frame does not include data, writing to the IFR
* tiggers sending of the instruction frame. Fall through to INSTRE
* wait.
*/
}
/* When the command has been sent, Instruction End Status (INTRE) will be
* set in the QSPI status register.
*/
while ((qspi_getreg(priv, SAM_QSPI_SR_OFFSET) & QSPI_SR_INSTRE) == 0);
return OK;
}
/****************************************************************************
* Name: qspi_memory
*
* Description:
* Perform one QSPI memory transfer
*
* Input Parameters:
* dev - Device-specific state data
* meminfo - Describes the memory transfer to be performed.
*
* Returned Value:
* Zero (OK) on SUCCESS, a negated errno on value of failure
*
****************************************************************************/
static int qspi_memory(struct qspi_dev_s *dev,
struct qspi_meminfo_s *meminfo)
{
struct sam_qspidev_s *priv = (struct sam_qspidev_s *)dev;
DEBUGASSERT(priv != NULL && meminfo != NULL);
2016-06-15 22:30:54 +02:00
spiinfo("Transfer:\n");
spiinfo(" flags: %02x\n", meminfo->flags);
spiinfo(" cmd: %04x\n", meminfo->cmd);
spiinfo(" address/length: %08lx/%d\n",
(unsigned long)meminfo->addr, meminfo->addrlen);
spiinfo(" %s Data:\n", QSPIMEM_ISWRITE(meminfo->flags) ? "Write" : "Read");
spiinfo(" buffer/length: %p/%d\n", meminfo->buffer, meminfo->buflen);
2015-11-09 20:32:58 +01:00
#ifdef CONFIG_SAMV7_QSPI_DMA
/* Can we perform DMA? Should we perform DMA? */
if (priv->candma &&
meminfo->buflen > CONFIG_SAMV7_QSPI_DMATHRESHOLD &&
IS_ALIGNED((uintptr_t)meminfo->buffer) &&
IS_ALIGNED(meminfo->buflen))
{
return qspi_memory_dma(priv, meminfo);
}
else
#endif
{
return qspi_memory_nodma(priv, meminfo);
}
}
/****************************************************************************
* Name: qspi_alloc
*
* Description:
* Allocate a buffer suitable for DMA data transfer
*
* Input Parameters:
* dev - Device-specific state data
* buflen - Buffer length to allocate in bytes
*
* Returned Value:
* Address of tha allocated memory on success; NULL is returned on any
* failure.
*
****************************************************************************/
static FAR void *qspi_alloc(FAR struct qspi_dev_s *dev, size_t buflen)
{
/* Here we exploit the internal knowlege the kmm_malloc() will return memory
* aligned to 64-bit addresses. The buffer length must be large enough to
* hold the rested buflen in units a 32-bits.
*/
return kmm_malloc(ALIGN_UP(buflen));
}
/****************************************************************************
* Name: QSPI_FREE
*
* Description:
* Free memory returned by QSPI_ALLOC
*
* Input Parameters:
* dev - Device-specific state data
* buffer - Buffer previously allocated via QSPI_ALLOC
*
* Returned Value:
* None.
*
****************************************************************************/
static void qspi_free(FAR struct qspi_dev_s *dev, FAR void *buffer)
{
if (buffer)
{
kmm_free(buffer);
}
}
/****************************************************************************
* Name: qspi_hw_initialize
*
* Description:
* Initialize the QSPI peripheral from hardware reset.
*
* Input Parameters:
* priv - Device state structure.
*
* Returned Value:
* Zero (OK) on SUCCESS, a negated errno on value of failure
*
****************************************************************************/
static int qspi_hw_initialize(struct sam_qspidev_s *priv)
{
uint32_t regval;
/* Disable the QSPI */
qspi_putreg(priv, QSPI_CR_QSPIDIS, SAM_QSPI_CR_OFFSET);
while ((qspi_getreg(priv, SAM_QSPI_SR_OFFSET) & QSPI_SR_QSPIENS) != 0);
/* Reset the QSPI (twice) */
qspi_putreg(priv, QSPI_CR_SWRST, SAM_QSPI_CR_OFFSET);
qspi_putreg(priv, QSPI_CR_SWRST, SAM_QSPI_CR_OFFSET);
/* Configure the QSPI
*
* QSPI_MR_SMM - Serial Memory Mode
* QSPI_MR_CSMODE_LASTXFER - CS de-asserted when LASTXFER transferred
*/
regval = QSPI_MR_SMM;
qspi_putreg(priv, regval, SAM_QSPI_MR_OFFSET);
regval |= QSPI_MR_CSMODE_LASTXFER;
qspi_putreg(priv, regval, SAM_QSPI_MR_OFFSET);
/* Set up the initial QSPI clock mode:
*
* Mode 0: CPOL=0; CPHA=0
*/
regval = qspi_getreg(priv, SAM_QSPI_SCR_OFFSET);
regval &= ~(QSPI_SCR_CPOL | QSPI_SCR_CPHA);
qspi_putreg(priv, regval, SAM_QSPI_SCR_OFFSET);
regval |= QSPI_SCR_SCBR(1);
qspi_putreg(priv, regval, SAM_QSPI_SCR_OFFSET);
/* 8-bit mode */
regval = qspi_getreg(priv, SAM_QSPI_MR_OFFSET);
regval &= ~QSPI_MR_NBBITS_MASK;
regval |= QSPI_MR_NBBITS_8BIT;
qspi_putreg(priv, regval, SAM_QSPI_MR_OFFSET);
priv->nbits = 8;
/* Enable QSPI */
qspi_putreg(priv, QSPI_CR_QSPIEN, SAM_QSPI_CR_OFFSET);
while ((qspi_getreg(priv, SAM_QSPI_SR_OFFSET) & QSPI_SR_QSPIENS) == 0);
/* Flush any pending transfers */
(void)qspi_getreg(priv, SAM_QSPI_SR_OFFSET);
(void)qspi_getreg(priv, SAM_QSPI_RDR_OFFSET);
qspi_dumpregs(priv, "After initialization");
return OK;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: sam_qspi_initialize
*
* Description:
* Initialize the selected QSPI port in master mode
*
* Input Parameter:
* intf - Interface number(must be zero)
*
* Returned Value:
* Valid QSPI device structure reference on success; a NULL on failure
*
****************************************************************************/
struct qspi_dev_s *sam_qspi_initialize(int intf)
{
struct sam_qspidev_s *priv;
int ret;
2015-11-05 22:03:53 +01:00
/* The supported SAM parts have only a single QSPI port */
2016-06-15 22:30:54 +02:00
spiinfo("intf: %d\n", intf);
DEBUGASSERT(intf >= 0 && intf < SAMV7_NQSPI);
/* Select the QSPI interface */
#ifdef CONFIG_SAMV7_QSPI
if (intf == 0)
{
/* If this function is called multiple times, the following operatinos
* will be performed multiple times.
*/
/* Select QSPI0 */
priv = &g_qspi0dev;
/* Enable clocking to the QSPI peripheral */
sam_qspi_enableclk();
/* Configure multiplexed pins as connected on the board. */
sam_configgpio(GPIO_QSPI_CS);
sam_configgpio(GPIO_QSPI_IO0);
sam_configgpio(GPIO_QSPI_IO1);
sam_configgpio(GPIO_QSPI_IO2);
sam_configgpio(GPIO_QSPI_IO3);
sam_configgpio(GPIO_QSPI_SCK);
}
else
#endif
{
2016-06-15 22:30:54 +02:00
spierr("ERROR: QSPI%d not supported\n", intf);
return NULL;
}
/* Has the QSPI hardware been initialized? */
if (!priv->initialized)
{
/* No perform one time initialization */
/* Initialize the QSPI semaphore that enforces mutually exclusive
* access to the QSPI registers.
*/
sem_init(&priv->exclsem, 0, 1);
#ifdef CONFIG_SAMV7_QSPI_DMA
/* Pre-allocate DMA channels. */
if (priv->candma)
{
2015-10-07 19:39:06 +02:00
priv->dmach = sam_dmachannel(0, 0);
2015-08-29 18:02:59 +02:00
if (!priv->dmach)
{
2016-06-15 22:30:54 +02:00
spierr("ERROR: Failed to allocate the DMA channel\n");
priv->candma = false;
}
}
/* Initialize the QSPI semaphore that is used to wake up the waiting
* thread when the DMA transfer completes. This semaphore is used for
* signaling and, hence, should not have priority inheritance enabled.
*/
sem_init(&priv->dmawait, 0, 0);
sem_setprotocol(&priv->dmawait, SEM_PRIO_NONE);
/* Create a watchdog time to catch DMA timeouts */
priv->dmadog = wd_create();
if (priv->dmadog == NULL)
{
2016-06-15 22:30:54 +02:00
spierr("ERROR: Failed to create wdog\n");
goto errout_with_dmahandles;
}
#endif
2015-08-29 18:02:59 +02:00
#ifdef QSPI_USE_INTERRUPTS
/* Attach the interrupt handler */
ret = irq_attach(priv->irq, priv->handler, NULL);
if (ret < 0)
{
2016-06-15 22:30:54 +02:00
spierr("ERROR: Failed to attach irq %d\n", priv->irq);
goto errout_with_dmadog;
}
2015-08-29 18:02:59 +02:00
#endif
/* Perform hardware initialization. Puts the QSPI into an active
* state.
*/
ret = qspi_hw_initialize(priv);
if (ret < 0)
{
2016-06-15 22:30:54 +02:00
spierr("ERROR: Failed to initialize QSPI hardware\n");
goto errout_with_irq;
}
/* Enable interrupts at the NVIC */
priv->initialized = true;
2015-08-29 18:02:59 +02:00
#ifdef QSPI_USE_INTERRUPTS
up_enable_irq(priv->irq);
2015-08-29 18:02:59 +02:00
#endif
}
return &priv->qspi;
errout_with_irq:
2015-08-29 18:02:59 +02:00
#ifdef QSPI_USE_INTERRUPTS
irq_detach(priv->irq);
errout_with_dmadog:
2015-08-29 23:57:20 +02:00
#endif
#ifdef CONFIG_SAMV7_QSPI_DMA
wd_delete(priv->dmadog);
errout_with_dmahandles:
sem_destroy(&priv->dmawait);
2015-08-29 18:02:59 +02:00
if (priv->dmach)
{
2015-08-29 18:02:59 +02:00
sam_dmafree(priv->dmach);
priv->dmach = NULL;
}
#endif
sem_destroy(&priv->exclsem);
return NULL;
}
#endif /* CONFIG_SAMV7_QSPI */