nuttx/arch/arm/src/armv7-a/arm_sigdeliver.c

199 lines
6.6 KiB
C
Raw Normal View History

/****************************************************************************
* arch/arm/src/armv7-a/arm_sigdeliver.c
*
* Copyright (C) 2013, 2015-2016, 2018-2019 Gregory Nutt. All rights
* reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <stdint.h>
#include <sched.h>
#include <debug.h>
#include <nuttx/irq.h>
#include <nuttx/arch.h>
#include <nuttx/board.h>
#include <arch/board/board.h>
#include "sched/sched.h"
#include "arm_internal.h"
#include "arm_arch.h"
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: up_sigdeliver
*
* Description:
* This is the a signal handling trampoline. When a signal action was
* posted. The task context was mucked with and forced to branch to this
* location with interrupts disabled.
*
****************************************************************************/
void up_sigdeliver(void)
{
struct tcb_s *rtcb = this_task();
uint32_t regs[XCPTCONTEXT_REGS];
/* Save the errno. This must be preserved throughout the signal handling
* so that the user code final gets the correct errno value (probably
* EINTR).
*/
int saved_errno = rtcb->pterrno;
#ifdef CONFIG_SMP
/* In the SMP case, we must terminate the critical section while the signal
* handler executes, but we also need to restore the irqcount when the
* we resume the main thread of the task.
*/
int16_t saved_irqcount;
#endif
board_autoled_on(LED_SIGNAL);
sinfo("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n",
rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head);
DEBUGASSERT(rtcb->xcp.sigdeliver != NULL);
/* Save the return state on the stack. */
arm_copyfullstate(regs, rtcb->xcp.regs);
#ifdef CONFIG_SMP
/* In the SMP case, up_schedule_sigaction(0) will have incremented
* 'irqcount' in order to force us into a critical section. Save the
* pre-incremented irqcount.
*/
saved_irqcount = rtcb->irqcount - 1;
DEBUGASSERT(saved_irqcount >= 0);
/* Now we need call leave_critical_section() repeatedly to get the irqcount
* to zero, freeing all global spinlocks that enforce the critical section.
*/
do
{
leave_critical_section(regs[REG_CPSR]);
}
while (rtcb->irqcount > 0);
#endif /* CONFIG_SMP */
#ifndef CONFIG_SUPPRESS_INTERRUPTS
/* Then make sure that interrupts are enabled. Signal handlers must always
* run with interrupts enabled.
*/
up_irq_enable();
#endif
/* Deliver the signal */
((sig_deliver_t)rtcb->xcp.sigdeliver)(rtcb);
/* Output any debug messages BEFORE restoring errno (because they may
* alter errno), then disable interrupts again and restore the original
* errno that is needed by the user logic (it is probably EINTR).
*
* I would prefer that all interrupts are disabled when
* arm_fullcontextrestore() is called, but that may not be necessary.
*/
sinfo("Resuming\n");
/* Call enter_critical_section() to disable local interrupts before
* restoring local context.
*
* Here, we should not use up_irq_save() in SMP mode.
* For example, if we call up_irq_save() here and another CPU might
* have called up_cpu_pause() to this cpu, hence g_cpu_irqlock has
* been locked by the cpu, in this case, we would see a deadlock in
* later call of enter_critical_section() to restore irqcount.
* To avoid this situation, we need to call enter_critical_section().
*/
#ifdef CONFIG_SMP
enter_critical_section();
#else
up_irq_save();
#endif
/* Restore the saved errno value */
rtcb->pterrno = saved_errno;
/* Modify the saved return state with the actual saved values in the
* TCB. This depends on the fact that nested signal handling is
* not supported. Therefore, these values will persist throughout the
* signal handling action.
*
* Keeping this data in the TCB resolves a security problem in protected
* and kernel mode: The regs[] array is visible on the user stack and
* could be modified by a hostile program.
*/
regs[REG_PC] = rtcb->xcp.saved_pc;
regs[REG_CPSR] = rtcb->xcp.saved_cpsr;
rtcb->xcp.sigdeliver = NULL; /* Allows next handler to be scheduled */
#ifdef CONFIG_SMP
/* Restore the saved 'irqcount' and recover the critical section
* spinlocks.
*
* REVISIT: irqcount should be one from the above call to
* enter_critical_section(). Could the saved_irqcount be zero? That
* would be a problem.
*/
DEBUGASSERT(rtcb->irqcount == 1);
while (rtcb->irqcount < saved_irqcount)
{
enter_critical_section();
}
#endif
/* Then restore the correct state for this thread of execution. */
board_autoled_off(LED_SIGNAL);
arm_fullcontextrestore(regs);
}