When the PSRAM is enabled, we should not allocate the TX/RX
buffers there, so we use kmm_calloc here, to make it into IRAM,
so the ethernet controller can read bytes from it.
Squashed:
Initial settings for MCPWM Capture on board level
Created lower half files - compilation ok
Using capture debug features. Simple example on fops works
Successful duty and freq calculation
Documentation update
Fixed and added interupt capabilities for all 3 capture channels
Cleaned defconfig
Renamed macros, added S3 options and moved arch source to common dir
Added support for ESP32S3
Added capture example to defconfig and renamed
For now, IOB off-loading in the wireless driver was removed because
it is not compatible with SMP-enabled devices, which is valid for
ESP32-S3. The performance gain by keeping the IOB off-loading in
the wireless drivers is not exceeded by keeping the flat buffer
approach and enabling `CONFIG_SMP=y`.
Use `nxsched_gettid` instead of `nxsched_getpid`. Previously each
kernel thread was modelled as a task, so the pid is the same of the
kthread id. Now, with shared kthread group (introduced by #12320),
the pid of all kthreads will be 0 by design in shared group.
cpu0 cpu1:
user_main
signest_test
sched_unlock
nxsched_merge_pending
nxsched_add_readytorun
up_cpu_pause
arm_sigdeliver
enter_critical_section
Reason:
In the SMP, cpu0 is already in the critical section and waiting for cpu1 to enter the suspended state.
However, when cpu1 executes arm_sigdeliver, it is in the irq-disabled state but not in the critical section.
At this point, cpu1 is unable to respond to interrupts and
is continuously attempting to enter the critical section, resulting in a deadlock.
Resolve:
adjust the logic, do not entering the critical section when interrupt-disabled.
test:
We can use qemu for testing.
compiling
make distclean -j20; ./tools/configure.sh -l qemu-armv8a:nsh_smp ;make -j20
running
qemu-system-aarch64 -cpu cortex-a53 -smp 4 -nographic -machine virt,virtualization=on,gic-version=3 -net none -chardev stdio,id=con,mux=on -serial chardev:con -mon chardev=con,mode=readline -kernel ./nuttx
Signed-off-by: hujun5 <hujun5@xiaomi.com>
As suggested in PR:12530, changed the default names of ESP32S3WROOM chips to ESP32S3WROOM1N4,
ESP32S3WROOM2N16R8, ESP32S3WROOM2N32R8, ESP32S3MINI1N8.
Also regenerated all the defconfigs for board configurations.
Added a custom ESP32S3 module for custom flash configurations.
Declared ESP32S3_PSRAM_8M variable with prompt
* arch/risc-v/src/common/Toolchain.defs
arch/xtensa/src/lx6/Toolchain.defs
arch/xtensa/src/lx7/Toolchain.defs
- Define SHMODULEFLAGS etc. for sotest/dynload
- Add --entry=__start to SHMODULEFLAGS
* boards/arm64/qemu/qemu-armv8a/scripts/Make.defs
boards/sim/sim/sim/scripts/Make.defs
- Define SHMODULEFLAGS etc. for sotest/dynload
This commit enables users to select the legacy bootloader (IDF
bootloader) in `menuconfig` directly. Please note, that this is a
legacy option intended to support devices already deployed and it
isn't recommended for new designs.
The Simple Boot feature for Espressif chips is a method of booting
that doesn't depend on a 2nd stage bootloader. Its not the
intention to replace a 2nd stage bootloader such as MCUboot and
ESP-IDF bootloader, but to have a minimal and straight-forward way
of booting, and also simplify the building.
This commit also removes deprecated code and makes this bootloader
configuration as default for esp32s2 targets and removes the need
for running 'make bootloader' command for it.
Signed-off-by: Almir Okato <almir.okato@espressif.com>
By default, submodules are cloned with `--depth=1`. This continues
to be true if `DISABLE_GIT_DEPTH` environment variable is not
defined (and it is not defined by default). But, if defined the
submodules will be fully cloned (without the `--depth` parameter).
This commits replicates some changes on files that were originally
written for other Espressif SoCs and inspired new implementations.
Eventually, these new implementations were improved and this commit
replicates these changes on the original sources.
It seems like a wrong copy-and-paste from esp32c3.
Actually, internal memory mapping varies among processors.
esp32s3: lightly tested with wamr aot
esp32s2: not tested (i have no hardware access)
1. Adjust code to avoid PM wakelock->count less than or equal to 0.
2. Fix some document format issues.
Signed-off-by: chenwen@espressif.com <chenwen@espressif.com>
Most of the functions used to describe the SoCs capabilities are
available for all Espressif's chips. This commit uses this set of
common functions and remove outdated functions that perform the
same operations in a chip level.
1. pm configuration demonstrates the use of power management present on the ESP32-S3.
2. You can use the pmconfig command to test the power management, for details look at
``Documentation/platforms/xtensa/esp32s3/boards/esp32s3-devkit/index.rst``
Signed-off-by: chenwen@espressif.com <chenwen@espressif.com>
The Simple Boot feature for Espressif chips is a method of booting
that doesn't depend on a 2nd stage bootloader. Its not the
intention to replace a 2nd stage bootloader such as MCUboot and
ESP-IDF bootloader, but to have a minimal and straight-forward way
of booting, and also simplify the building.
This commit also removes deprecated code and makes this bootloader
configuration as default for esp32s3 targets and removes the need
for running 'make bootloader' command for it.
Other related fix, but not directly to Simple Boot:
- Instrumentation is required to run from IRAM to support it during
initialization. `is_eco0` function also needs to run from IRAM.
- `rtc.data` section placement was fixed.
- Provide arch-defined interfaces for efuses, in order to decouple
board config level from arch-defined values.
Signed-off-by: Almir Okato <almir.okato@espressif.com>
This commit implements the common RMT driver (already available for
the other Espressif's xtensa-based devices) for ESP32.
This allows us to have a proper separation between the lower and
upper-half drivers and use the 'ws2812' example to drive WS2812 RGB
LEDs.