In the default configuration, the Litex ethernet peripheral contains two RX and two TX buffers. The active buffer for the peripheral should be swapped as soon as possible, in order to reduce packet loss.
This modification acknowledges the receive buffer as soon as the pending data is copied into the NuttX device data buffer. Improving reliability under heavy load.
since symbols defined in arch/elf.h is also used in other case, for example:
CC: pthread/pthread_testcancel.c machine/arm/gnu_unwind_find_exidx.c:32:8: error: unknown type name '__EIT_entry'
32 | static __EIT_entry *__exidx_start_elf;
| ^~~~~~~~~~~
Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
The following macros
__ARCH_ARM_SRC_STM32F7_HARDWARE_STM32F74XX75XX_FLASH_H
__ARCH_ARM_SRC_STM32L4_HARDWARE_STM32L4X6XX_RCC_H
are used in other header files.
Signed-off-by: Mingjie Shen <shen497@purdue.edu>
When asserting, automatically analyze whether
there is a deadlock in the thread, and if there
is a deadlock, print out the deadlocked thread.
The principle is to analyze whether there is
a lock ring through the tcb holder.
Signed-off-by: anjiahao <anjiahao@xiaomi.com>
- Save the FPU registers into the tcb so they don't get lost if the stack
frame for xcp.regs moves (as it does)
- Handle interger and FPU register save/load separately
- Integer registers are saved/loaded always, like before
- FPU registers are only saved during a context switch:
- Save ONLY if FPU is dirty
- Restore always if FPU has been used (not in FSTATE_OFF, FSTATE_INIT)
- Remove all lazy-FPU related logic from the macros, it is not needed
Why? The tcb can contain info that is needed by the context switch
routine. One example is lazy-FPU handling; the integer registers can
be stored into the stack, because they are always stored & restored.
Lazy-FPU however needs a non-volatile location to store the FPU registers
as the save feature will skip saving a clean FPU, but the restore must
always restore the FPU registers if the thread uses FPU.
This adds support for the CoreMMC v3.1 FPGA driver as described
in Microchip Handbook HB0510. The driver doesn't support DMA.
Signed-off-by: Eero Nurkkala <eero.nurkkala@offcode.fi>
USBD has many limitation that make it hard to work properly:
- only one EasyDMA channel which must be shared for all EPs
- only one DMA transfer can take place at a time
- some registers are unavailable during DMA transfer
- in case of any problems, the peripheral silently blocks,
or lose the transmitted bytes without information for the user
This commit is trying to fix these problem and makes the USBS stack more reliable.
Tested with high-speed CDCACM data transfers and that's the best I've been able to get in terms of stability.
if config_walltime_signal is enabled, NuttX_sim will receive a lot of
signals, the socket api will break and errno will be EINTR, masking irq
before calling the host socket api will avoid this problem.
Signed-off-by: zhanghongyu <zhanghongyu@xiaomi.com>
In SMP mode, the fpu owner may switch from core0 to core1,
so it is necessary to force saving the FPU context when a
context switch occurs.
This PR fixed the crash issue mentioned in #8799.
Signed-off-by: zhangyuan21 <zhangyuan21@xiaomi.com>
If a kernel stack exists, use that whenever the user process is in
privileged mode, i.e. running an exception or in system call. Previously
the exception context was stored into the user's stack, which is not ideal.
Why?
1. Because the exception entry status (REG_INT_CTX) is needed by the
kernel, and this is now in user memory which requires that the correct
user mappings are active when it is accessed.
2. The user must currently account for the exception stack frame (which
is BIG) in its own stack allocation. Moving the exception context save
to the kernel stack offloads this responsibility from the user to the
kernel, which is IMO the correct behavior.
3. The kernel access to user memory is currently allowed without condition,
however this is not ideal either. The privileged mode status CSR allows
blocking access to user memory via the STATUS_SUM-bit, which should be
disabled by default and only enabled when access to user space is really
needed. This patch allows implementing such features.
This is preparation to use kernel stack for everything when the user
process enters the kernel. Now the user stack is in use when the user
process runs a system call, which might not be the safest option.