To avoid losing the first frame, the set_buf needs to excute first. At the same time, imgdata->start_capture should excuted before the imgsensor->start_capture.
Signed-off-by: yaojingwei <yaojingwei@xiaomi.com>
The divider should be rounded to the next full integer to ensure that
the resulting SPI frequency is <= target frequency, i.e. the SPI is
not overclocked.
After this, RISC-V fully supports the kmap interface.
Due to the current design limitations of having only a single L2 table
per process, the kernel kmap area cannot be mapped via any user page
directory, as they do not contain the page tables to address that range.
So a "kernel address environment" is added, which can do the mapping. The
mapping is reflected to every process as only the root page directory (L1)
is copied to users, which means every change to L2 / L3 tables will be
seen by every user.
Replace DEBUGASSERTs with sanity checks. DEBUGASSERT()s are
not necessarily enabled at all, thus risking the functionality
especially in that case. Remove PANICs as well.
Don't enable the ihc irq too early. If enabled, and the master
is already up, the irq is being issued so that the system gets
stuck or is severely slowed down. Master may be already up if
this NuttX hart only is rebooted, for example.
Signed-off-by: Eero Nurkkala <eero.nurkkala@offcode.fi>
When setting the essid that contains the special characters (\"'),
we need to add an escape (\) for them.
Signed-off-by: liqinhui <liqinhui@xiaomi.com>
Version 1.3.1 is the latest tagged version as of November
the 21st, 2023. This patch prepares the required changes
to make v1.3.1 work.
Signed-off-by: Eero Nurkkala <eero.nurkkala@offcode.fi>
Adds support for hardware timestamping of received Ethernet packets.
The timestamp is available to applications using socket option SO_TIMESTAMP.
Optionally, the Ethernet PTP timer can be used as system high-resolution RTC.
In this mode it supports fine resolution rate adjustment.
Alternatively other time source for CLOCK_REALTIME can be used, and the
PTP timestamps are converted by sampling the clocks and computing the
difference. This results in a few microseconds of uncertainty.
The halt operation may be causes the raw epread data segment lost, and
usb ep_queue can handle when the usb buffer is full. so remove the
relevant operations.
Signed-off-by: zhanghongyu <zhanghongyu@xiaomi.com>
Summary:
- Temporarily disables ARCH_HAVE_FORK for arm64 to address a crash issue,
as detailed in https://github.com/apache/nuttx/pull/9755.
- This is a precautionary measure until a more permanent solution is implemented.
Impact:
- Temporarily limits certain functionalities on arm64,
but necessary to ensure system stability.
Testing:
- Successfully tested on QEMU-8.1.2.
- Note: please apply the changes from https://github.com/apache/nuttx-apps/pull/1962.
Signed-off-by: Masayuki Ishikawa <Masayuki.Ishikawa@jp.sony.com>
1. If CONFIG_ESP32S3_PHY_INIT_DATA_IN_PARTITION and CONFIG_ESP32S3_SUPPORT_MULTIPLE_PHY_INIT_DATA are enabled,
PHY initialization data (PHY initialization data is used for RF calibration) will be loaded from a partition.
2. The corresponding PHY init data type can be automatically switched according to the country code,
China's PHY init data bin is used by default, country code can be modified through the wapi command: wapi country <ifname> <country code>.
Signed-off-by: chenwen@espressif.com <chenwen@espressif.com>
If using flow control with a high CTS the thread may be
blocked forever on the second transmit attempt due to waiting
on the txdma semaphore. The calling thread can then never
make progress and release any resources it has taken, thus
may cause a deadlock in other parts of the system.
The implementation differs in behavior from interrupt-driven
TX. It should not implicitly wait on a taken semaphore but
return immediately and let the upper layers decide on what to
do next.
If using flow control with a high CTS the thread may be
blocked forever on the second transmit attempt due to waiting
on the txdma semaphore. The calling thread can then never
make progress and release any resources it has taken, thus
may cause a deadlock in other parts of the system.
The implementation differs in behavior from interrupt-driven
TX. It should not implicitly wait on a taken semaphore but
return immediately and let the upper layers decide on what to
do next.
If using flow control with a high CTS the thread may be
blocked forever on the second transmit attempt due to waiting
on the txdma semaphore. The calling thread can then never
make progress and release any resources it has taken, thus
may cause a deadlock in other parts of the system.
The implementation differs in behavior from interrupt-driven
TX. It should not implicitly wait on a taken semaphore but
return immediately and let the upper layers decide on what to
do next.
This commit sets the BLE's interrupt as a IRAM-enabled interrupt,
which enables it to run during a SPI flash operation. This enables
us to create a cache to off-load semaphores and message queues
operations and treat them when the SPI flash operation is finished.
By doing that, we avoid packet losses during a SPI flash operation.
This commit provides an interface to register ISRs that run from
IRAM and keeps track of the non-IRAM interrupts. It enables, for
instance, to avoid disabling all the interrupts during a SPI flash
operation: IRAM-enabled ISRs are, then, able to run during these
operations.
It also makes the code look more similar to the ESP32-S3 SPI flash
implementation by creating a common `esp32_spiflash_init` that is
responsible to create the SPI flash operation tasks. The function
intended to initialize the SPI flash partions was, then, renamed to
`board_spiflash_init`.
Whenever we enter/leave a critical section, the interrupt status is
saved and, then, restored. However, for the ESP32's BLE adapter,
entering/leaving a critical section is done on separate functions
that need to be registered as a callback.
The status flag was being saved as a global variable. However,
calling nested enter_critical_section would overwrite this global
variable that was storing the previous flag and, when leaving the
last critical section, the restored status would be different from
the one expected. The proposed solution for this issue is to create
a global array to store the interrupt status flags for nested calls.