7deb24484c
This conversion is unfortunate in the sense that Unix local domain sockets are relatively lightweight. LocalHost UDP sockets are much heavier weight since they rely on the full UDP stack. If anyone is up for a complete redesign, then using some shared memory and a POSIX message queue would be lightweight again. This commit also fixes several bugs that were not testable before the inode tree deadlock. I cannot say that the logic is 100% stable but it does not have basic functionality. Squashed commit of the following: fs/userfs: Order locking so that access to the shared I/O buffer is also locked. fs/userfs: Converts to use LocalHost UDP loopback for IPC. |
||
---|---|---|
.. | ||
aio | ||
audio | ||
bin | ||
dirent | ||
dllfcn | ||
fixedmath | ||
hex2bin | ||
inttypes | ||
kbin | ||
libgen | ||
locale | ||
machine | ||
math | ||
misc | ||
modlib | ||
net | ||
netdb | ||
pthread | ||
queue | ||
sched | ||
semaphore | ||
signal | ||
spawn | ||
stdio | ||
stdlib | ||
string | ||
symtab | ||
syslog | ||
termios | ||
time | ||
tls | ||
ubin | ||
unistd | ||
userfs | ||
wchar | ||
wctype | ||
wqueue | ||
zoneinfo | ||
.gitignore | ||
Kconfig | ||
libc.csv | ||
libc.h | ||
Makefile | ||
math.csv | ||
README.txt |
lib === This directory contains numerous, small functions typically associated with what you would expect to find in a standard C library. The sub-directories in this directory contain standard interface that can be executed by user- mode programs. Normally, NuttX is built with no protection and all threads running in kerne- mode. In that model, there is no real architectural distinction between what is a kernel-mode program and what is a user-mode program; the system is more like on multi-threaded program that all runs in kernel-mode. But if the CONFIG_BUILD_PROTECTED option is selected, NuttX will be built into distinct user-mode and kernel-mode sections. In that case, most of the code in the nuttx/ directory will run in kernel-mode with with exceptions of (1) the user-mode "proxies" found in syscall/proxies, and (2) the standard C library functions found in this directory. In this build model, it is critical to separate the user-mode OS interfaces in this way. If CONFIG_BUILD_KERNEL is selected, then only a NuttX kernel will be built with no applications. Sub-Directories =============== The files in the libc/ directory are organized (mostly) according which file in the include/ directory provides the prototype for library functions. So we have: audio - This part of the audio system: nuttx/audio/audio.h dllfcn - dllfcn.h hex2bin - hex2bin.h libgen - libgen.h locale - locale.h fixedmath - fixedmath.h inttypes - inttypes.h machine - Various architecture-specifica implementations. math - math.h modlib - Part of module and shared libary logic: nuttx/lib/modlib.h net - Various network-related header files: netinet/ether.h, arpa/inet.h pthread - pthread.h queue - queue.h sched - sched.h semaphore - semaphore.h stdio - stdio.h stdlib - stdlib.h string - string.h (and legacy strings.h) time - time.h unistd - unistd.h wchar - wchar.h wctype - wctype.h Most of these are "standard" header files; some are not: hex2bin.h and fixemath.h are non-standard. There is also a misc/ subdirectory that contains various internal functions and interfaces from header files that are too few to warrant their own sub- directory: misc - Nonstandard "glue" logic, debug.h, crc32.h, dirent.h Library Database ================ Information about functions available in the NuttX C library information is maintained in a database. That "database" is implemented as a simple comma- separated-value file, libc.csv. Most spreadsheets programs will accept this format and can be used to maintain the library database. This library database will (eventually) be used to generate symbol library symbol table information that can be exported to external applications. The format of the CSV file for each line is: Field 1: Function name Field 2: The header file that contains the function prototype Field 3: Condition for compilation Field 4: The type of function return value. Field 5 - N+5: The type of each of the N formal parameters of the function Each type field has a format as follows: type name: For all simpler types formal type | actual type: For array types where the form of the formal (eg. int parm[2]) differs from the type of actual passed parameter (eg. int*). This is necessary because you cannot do simple casts to array types. formal type | union member actual type | union member fieldname: A similar situation exists for unions. For example, the formal parameter type union sigval -- You cannot cast a uintptr_t to a union sigval, but you can cast to the type of one of the union member types when passing the actual parameter. Similarly, we cannot cast a union sigval to a uinptr_t either. Rather, we need to cast a specific union member fieldname to uintptr_t. NOTE: The tool mksymtab can be used to generate a symbol table from this CSV file. See nuttx/tools/README.txt for further details about the use of mksymtab.