nuttx/arch/arm/src/stm32/stm32_can.c
2016-05-25 16:11:18 -04:00

1756 lines
48 KiB
C

/************************************************************************************
* arch/arm/src/stm32/stm32_can.c
*
* Copyright (C) 2011, 2016 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* Copyright (C) 2016 Omni Hoverboards Inc. All rights reserved.
* Author: Paul Alexander Patience <paul-a.patience@polymtl.ca>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
************************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <stdio.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <semaphore.h>
#include <errno.h>
#include <debug.h>
#include <arch/board/board.h>
#include <nuttx/irq.h>
#include <nuttx/arch.h>
#include <nuttx/can.h>
#include "up_internal.h"
#include "up_arch.h"
#include "chip.h"
#include "stm32.h"
#include "stm32_can.h"
#if defined(CONFIG_CAN) && (defined(CONFIG_STM32_CAN1) || defined(CONFIG_STM32_CAN2))
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Delays *******************************************************************/
/* Time out for INAK bit */
#define INAK_TIMEOUT 65535
/* Mailboxes ****************************************************************/
#define CAN_ALL_MAILBOXES (CAN_TSR_TME0 | CAN_TSR_TME1 | CAN_TSR_TME2)
/* Bit timing ***************************************************************/
#define CAN_BIT_QUANTA (CONFIG_CAN_TSEG1 + CONFIG_CAN_TSEG2 + 1)
/* Debug ********************************************************************/
/* Non-standard debug that may be enabled just for testing CAN */
#ifdef CONFIG_DEBUG_CAN
# define candbg dbg
# define canvdbg vdbg
# define canlldbg lldbg
# define canllvdbg llvdbg
#else
# define candbg(x...)
# define canvdbg(x...)
# define canlldbg(x...)
# define canllvdbg(x...)
#endif
#if !defined(CONFIG_DEBUG) || !defined(CONFIG_DEBUG_CAN)
# undef CONFIG_CAN_REGDEBUG
#endif
/****************************************************************************
* Private Types
****************************************************************************/
struct stm32_can_s
{
uint8_t port; /* CAN port number (1 or 2) */
uint8_t canrx[2]; /* CAN RX FIFO 0/1 IRQ number */
uint8_t cantx; /* CAN TX IRQ number */
uint8_t filter; /* Filter number */
uint32_t base; /* Base address of the CAN control registers */
uint32_t fbase; /* Base address of the CAN filter registers */
uint32_t baud; /* Configured baud */
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* CAN Register access */
static uint32_t can_getreg(FAR struct stm32_can_s *priv, int offset);
static uint32_t can_getfreg(FAR struct stm32_can_s *priv, int offset);
static void can_putreg(FAR struct stm32_can_s *priv, int offset,
uint32_t value);
static void can_putfreg(FAR struct stm32_can_s *priv, int offset,
uint32_t value);
#ifdef CONFIG_CAN_REGDEBUG
static void can_dumpctrlregs(FAR struct stm32_can_s *priv,
FAR const char *msg);
static void can_dumpmbregs(FAR struct stm32_can_s *priv,
FAR const char *msg);
static void can_dumpfiltregs(FAR struct stm32_can_s *priv,
FAR const char *msg);
#else
# define can_dumpctrlregs(priv,msg)
# define can_dumpmbregs(priv,msg)
# define can_dumpfiltregs(priv,msg)
#endif
/* CAN driver methods */
static void can_reset(FAR struct can_dev_s *dev);
static int can_setup(FAR struct can_dev_s *dev);
static void can_shutdown(FAR struct can_dev_s *dev);
static void can_rxint(FAR struct can_dev_s *dev, bool enable);
static void can_txint(FAR struct can_dev_s *dev, bool enable);
static int can_ioctl(FAR struct can_dev_s *dev, int cmd, unsigned long arg);
static int can_remoterequest(FAR struct can_dev_s *dev, uint16_t id);
static int can_send(FAR struct can_dev_s *dev, FAR struct can_msg_s *msg);
static bool can_txready(FAR struct can_dev_s *dev);
static bool can_txempty(FAR struct can_dev_s *dev);
/* CAN interrupt handling */
static int can_rxinterrupt(int irq, FAR void *context, int rxmb);
static int can_rx0interrupt(int irq, FAR void *context);
static int can_rx1interrupt(int irq, FAR void *context);
static int can_txinterrupt(int irq, FAR void *context);
/* Initialization */
static int can_bittiming(FAR struct stm32_can_s *priv);
static int can_cellinit(FAR struct stm32_can_s *priv);
static int can_filterinit(FAR struct stm32_can_s *priv);
/****************************************************************************
* Private Data
****************************************************************************/
static const struct can_ops_s g_canops =
{
.co_reset = can_reset,
.co_setup = can_setup,
.co_shutdown = can_shutdown,
.co_rxint = can_rxint,
.co_txint = can_txint,
.co_ioctl = can_ioctl,
.co_remoterequest = can_remoterequest,
.co_send = can_send,
.co_txready = can_txready,
.co_txempty = can_txempty,
};
#ifdef CONFIG_STM32_CAN1
static struct stm32_can_s g_can1priv =
{
.port = 1,
.canrx =
{
STM32_IRQ_CAN1RX0,
STM32_IRQ_CAN1RX1,
},
.cantx = STM32_IRQ_CAN1TX,
.filter = 0,
.base = STM32_CAN1_BASE,
.fbase = STM32_CAN1_BASE,
.baud = CONFIG_CAN1_BAUD,
};
static struct can_dev_s g_can1dev =
{
.cd_ops = &g_canops,
.cd_priv = &g_can1priv,
};
#endif
#ifdef CONFIG_STM32_CAN2
static struct stm32_can_s g_can2priv =
{
.port = 2,
.canrx =
{
STM32_IRQ_CAN2RX0,
STM32_IRQ_CAN2RX1,
},
.cantx = STM32_IRQ_CAN2TX,
.filter = CAN_NFILTERS / 2,
.base = STM32_CAN2_BASE,
.fbase = STM32_CAN1_BASE,
.baud = CONFIG_CAN2_BAUD,
};
static struct can_dev_s g_can2dev =
{
.cd_ops = &g_canops,
.cd_priv = &g_can2priv,
};
#endif
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: can_getreg
* Name: can_getfreg
*
* Description:
* Read the value of a CAN register or filter block register.
*
* Input Parameters:
* priv - A reference to the CAN block status
* offset - The offset to the register to read
*
* Returned Value:
*
****************************************************************************/
#ifdef CONFIG_CAN_REGDEBUG
static uint32_t can_vgetreg(uint32_t addr)
{
static uint32_t prevaddr = 0;
static uint32_t preval = 0;
static uint32_t count = 0;
/* Read the value from the register */
uint32_t val = getreg32(addr);
/* Is this the same value that we read from the same register last time?
* Are we polling the register? If so, suppress some of the output.
*/
if (addr == prevaddr && val == preval)
{
if (count == 0xffffffff || ++count > 3)
{
if (count == 4)
{
lldbg("...\n");
}
return val;
}
}
/* No this is a new address or value */
else
{
/* Did we print "..." for the previous value? */
if (count > 3)
{
/* Yes.. then show how many times the value repeated */
lldbg("[repeats %d more times]\n", count-3);
}
/* Save the new address, value, and count */
prevaddr = addr;
preval = val;
count = 1;
}
/* Show the register value read */
lldbg("%08x->%08x\n", addr, val);
return val;
}
static uint32_t can_getreg(FAR struct stm32_can_s *priv, int offset)
{
return can_vgetreg(priv->base + offset);
}
static uint32_t can_getfreg(FAR struct stm32_can_s *priv, int offset)
{
return can_vgetreg(priv->fbase + offset);
}
#else
static uint32_t can_getreg(FAR struct stm32_can_s *priv, int offset)
{
return getreg32(priv->base + offset);
}
static uint32_t can_getfreg(FAR struct stm32_can_s *priv, int offset)
{
return getreg32(priv->fbase + offset);
}
#endif
/****************************************************************************
* Name: can_putreg
* Name: can_putfreg
*
* Description:
* Set the value of a CAN register or filter block register.
*
* Input Parameters:
* priv - A reference to the CAN block status
* offset - The offset to the register to write
* value - The value to write to the register
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef CONFIG_CAN_REGDEBUG
static void can_vputreg(uint32_t addr, uint32_t value)
{
/* Show the register value being written */
lldbg("%08x<-%08x\n", addr, value);
/* Write the value */
putreg32(value, addr);
}
static void can_putreg(FAR struct stm32_can_s *priv, int offset,
uint32_t value)
{
can_vputreg(priv->base + offset, value);
}
static void can_putfreg(FAR struct stm32_can_s *priv, int offset,
uint32_t value)
{
can_vputreg(priv->fbase + offset, value);
}
#else
static void can_putreg(FAR struct stm32_can_s *priv, int offset,
uint32_t value)
{
putreg32(value, priv->base + offset);
}
static void can_putfreg(FAR struct stm32_can_s *priv, int offset,
uint32_t value)
{
putreg32(value, priv->fbase + offset);
}
#endif
/****************************************************************************
* Name: can_dumpctrlregs
*
* Description:
* Dump the contents of all CAN control registers
*
* Input Parameters:
* priv - A reference to the CAN block status
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef CONFIG_CAN_REGDEBUG
static void can_dumpctrlregs(FAR struct stm32_can_s *priv,
FAR const char *msg)
{
if (msg)
{
canlldbg("Control Registers: %s\n", msg);
}
else
{
canlldbg("Control Registers:\n");
}
/* CAN control and status registers */
lldbg(" MCR: %08x MSR: %08x TSR: %08x\n",
getreg32(priv->base + STM32_CAN_MCR_OFFSET),
getreg32(priv->base + STM32_CAN_MSR_OFFSET),
getreg32(priv->base + STM32_CAN_TSR_OFFSET));
lldbg(" RF0R: %08x RF1R: %08x\n",
getreg32(priv->base + STM32_CAN_RF0R_OFFSET),
getreg32(priv->base + STM32_CAN_RF1R_OFFSET));
lldbg(" IER: %08x ESR: %08x BTR: %08x\n",
getreg32(priv->base + STM32_CAN_IER_OFFSET),
getreg32(priv->base + STM32_CAN_ESR_OFFSET),
getreg32(priv->base + STM32_CAN_BTR_OFFSET));
}
#endif
/****************************************************************************
* Name: can_dumpmbregs
*
* Description:
* Dump the contents of all CAN mailbox registers
*
* Input Parameters:
* priv - A reference to the CAN block status
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef CONFIG_CAN_REGDEBUG
static void can_dumpmbregs(FAR struct stm32_can_s *priv,
FAR const char *msg)
{
if (msg)
{
canlldbg("Mailbox Registers: %s\n", msg);
}
else
{
canlldbg("Mailbox Registers:\n");
}
/* CAN mailbox registers (3 TX and 2 RX) */
lldbg(" TI0R: %08x TDT0R: %08x TDL0R: %08x TDH0R: %08x\n",
getreg32(priv->base + STM32_CAN_TI0R_OFFSET),
getreg32(priv->base + STM32_CAN_TDT0R_OFFSET),
getreg32(priv->base + STM32_CAN_TDL0R_OFFSET),
getreg32(priv->base + STM32_CAN_TDH0R_OFFSET));
lldbg(" TI1R: %08x TDT1R: %08x TDL1R: %08x TDH1R: %08x\n",
getreg32(priv->base + STM32_CAN_TI1R_OFFSET),
getreg32(priv->base + STM32_CAN_TDT1R_OFFSET),
getreg32(priv->base + STM32_CAN_TDL1R_OFFSET),
getreg32(priv->base + STM32_CAN_TDH1R_OFFSET));
lldbg(" TI2R: %08x TDT2R: %08x TDL2R: %08x TDH2R: %08x\n",
getreg32(priv->base + STM32_CAN_TI2R_OFFSET),
getreg32(priv->base + STM32_CAN_TDT2R_OFFSET),
getreg32(priv->base + STM32_CAN_TDL2R_OFFSET),
getreg32(priv->base + STM32_CAN_TDH2R_OFFSET));
lldbg(" RI0R: %08x RDT0R: %08x RDL0R: %08x RDH0R: %08x\n",
getreg32(priv->base + STM32_CAN_RI0R_OFFSET),
getreg32(priv->base + STM32_CAN_RDT0R_OFFSET),
getreg32(priv->base + STM32_CAN_RDL0R_OFFSET),
getreg32(priv->base + STM32_CAN_RDH0R_OFFSET));
lldbg(" RI1R: %08x RDT1R: %08x RDL1R: %08x RDH1R: %08x\n",
getreg32(priv->base + STM32_CAN_RI1R_OFFSET),
getreg32(priv->base + STM32_CAN_RDT1R_OFFSET),
getreg32(priv->base + STM32_CAN_RDL1R_OFFSET),
getreg32(priv->base + STM32_CAN_RDH1R_OFFSET));
}
#endif
/****************************************************************************
* Name: can_dumpfiltregs
*
* Description:
* Dump the contents of all CAN filter registers
*
* Input Parameters:
* priv - A reference to the CAN block status
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef CONFIG_CAN_REGDEBUG
static void can_dumpfiltregs(FAR struct stm32_can_s *priv,
FAR const char *msg)
{
int i;
if (msg)
{
canlldbg("Filter Registers: %s\n", msg);
}
else
{
canlldbg("Filter Registers:\n");
}
lldbg(" FMR: %08x FM1R: %08x FS1R: %08x FFA1R: %08x FA1R: %08x\n",
getreg32(priv->base + STM32_CAN_FMR_OFFSET),
getreg32(priv->base + STM32_CAN_FM1R_OFFSET),
getreg32(priv->base + STM32_CAN_FS1R_OFFSET),
getreg32(priv->base + STM32_CAN_FFA1R_OFFSET),
getreg32(priv->base + STM32_CAN_FA1R_OFFSET));
for (i = 0; i < CAN_NFILTERS; i++)
{
lldbg(" F%dR1: %08x F%dR2: %08x\n",
i, getreg32(priv->base + STM32_CAN_FIR_OFFSET(i, 1)),
i, getreg32(priv->base + STM32_CAN_FIR_OFFSET(i, 2)));
}
}
#endif
/****************************************************************************
* Name: can_reset
*
* Description:
* Reset the CAN device. Called early to initialize the hardware. This
* function is called, before can_setup() and on error conditions.
*
* Input Parameters:
* dev - An instance of the "upper half" can driver state structure.
*
* Returned Value:
* None
*
****************************************************************************/
static void can_reset(FAR struct can_dev_s *dev)
{
FAR struct stm32_can_s *priv = dev->cd_priv;
uint32_t regval;
uint32_t regbit = 0;
irqstate_t flags;
canllvdbg("CAN%d\n", priv->port);
/* Get the bits in the AHB1RSTR register needed to reset this CAN device */
#ifdef CONFIG_STM32_CAN1
if (priv->port == 1)
{
regbit = RCC_APB1RSTR_CAN1RST;
}
else
#endif
#ifdef CONFIG_STM32_CAN2
if (priv->port == 2)
{
regbit = RCC_APB1RSTR_CAN2RST;
}
else
#endif
{
canlldbg("Unsupported port %d\n", priv->port);
return;
}
/* Disable interrupts momentarily to stop any ongoing CAN event processing
* and to prevent any concurrent access to the AHB1RSTR register.
*/
flags = enter_critical_section();
/* Reset the CAN */
regval = getreg32(STM32_RCC_APB1RSTR);
regval |= regbit;
putreg32(regval, STM32_RCC_APB1RSTR);
regval &= ~regbit;
putreg32(regval, STM32_RCC_APB1RSTR);
leave_critical_section(flags);
}
/****************************************************************************
* Name: can_setup
*
* Description:
* Configure the CAN. This method is called the first time that the CAN
* device is opened. This will occur when the port is first opened.
* This setup includes configuring and attaching CAN interrupts.
* All CAN interrupts are disabled upon return.
*
* Input Parameters:
* dev - An instance of the "upper half" can driver state structure.
*
* Returned Value:
* Zero on success; a negated errno on failure
*
****************************************************************************/
static int can_setup(FAR struct can_dev_s *dev)
{
FAR struct stm32_can_s *priv = dev->cd_priv;
int ret;
canllvdbg("CAN%d RX0 irq: %d RX1 irq: %d TX irq: %d\n",
priv->port, priv->canrx[0], priv->canrx[1], priv->cantx);
/* CAN cell initialization */
ret = can_cellinit(priv);
if (ret < 0)
{
canlldbg("CAN%d cell initialization failed: %d\n", priv->port, ret);
return ret;
}
can_dumpctrlregs(priv, "After cell initialization");
can_dumpmbregs(priv, NULL);
/* CAN filter initialization */
ret = can_filterinit(priv);
if (ret < 0)
{
canlldbg("CAN%d filter initialization failed: %d\n", priv->port, ret);
return ret;
}
can_dumpfiltregs(priv, "After filter initialization");
/* Attach the CAN RX FIFO 0/1 interrupts and TX interrupts.
* The others are not used.
*/
ret = irq_attach(priv->canrx[0], can_rx0interrupt);
if (ret < 0)
{
canlldbg("Failed to attach CAN%d RX0 IRQ (%d)",
priv->port, priv->canrx[0]);
return ret;
}
ret = irq_attach(priv->canrx[1], can_rx1interrupt);
if (ret < 0)
{
canlldbg("Failed to attach CAN%d RX1 IRQ (%d)",
priv->port, priv->canrx[1]);
return ret;
}
ret = irq_attach(priv->cantx, can_txinterrupt);
if (ret < 0)
{
canlldbg("Failed to attach CAN%d TX IRQ (%d)",
priv->port, priv->cantx);
return ret;
}
/* Enable the interrupts at the NVIC. Interrupts are still disabled in
* the CAN module. Since we coming out of reset here, there should be
* no pending interrupts.
*/
up_enable_irq(priv->canrx[0]);
up_enable_irq(priv->canrx[1]);
up_enable_irq(priv->cantx);
return OK;
}
/****************************************************************************
* Name: can_shutdown
*
* Description:
* Disable the CAN. This method is called when the CAN device is closed.
* This method reverses the operation the setup method.
*
* Input Parameters:
* dev - An instance of the "upper half" can driver state structure.
*
* Returned Value:
* None
*
****************************************************************************/
static void can_shutdown(FAR struct can_dev_s *dev)
{
FAR struct stm32_can_s *priv = dev->cd_priv;
canllvdbg("CAN%d\n", priv->port);
/* Disable the RX FIFO 0/1 and TX interrupts */
up_disable_irq(priv->canrx[0]);
up_disable_irq(priv->canrx[1]);
up_disable_irq(priv->cantx);
/* Detach the RX FIFO 0/1 and TX interrupts */
irq_detach(priv->canrx[0]);
irq_detach(priv->canrx[1]);
irq_detach(priv->cantx);
/* And reset the hardware */
can_reset(dev);
}
/****************************************************************************
* Name: can_rxint
*
* Description:
* Call to enable or disable RX interrupts.
*
* Input Parameters:
* dev - An instance of the "upper half" can driver state structure.
*
* Returned Value:
* None
*
****************************************************************************/
static void can_rxint(FAR struct can_dev_s *dev, bool enable)
{
FAR struct stm32_can_s *priv = dev->cd_priv;
uint32_t regval;
canllvdbg("CAN%d enable: %d\n", priv->port, enable);
/* Enable/disable the FIFO 0/1 message pending interrupt */
regval = can_getreg(priv, STM32_CAN_IER_OFFSET);
if (enable)
{
regval |= CAN_IER_FMPIE0 | CAN_IER_FMPIE1;
}
else
{
regval &= ~(CAN_IER_FMPIE0 | CAN_IER_FMPIE1);
}
can_putreg(priv, STM32_CAN_IER_OFFSET, regval);
}
/****************************************************************************
* Name: can_txint
*
* Description:
* Call to enable or disable TX interrupts.
*
* Input Parameters:
* dev - An instance of the "upper half" can driver state structure.
*
* Returned Value:
* None
*
****************************************************************************/
static void can_txint(FAR struct can_dev_s *dev, bool enable)
{
FAR struct stm32_can_s *priv = dev->cd_priv;
uint32_t regval;
canllvdbg("CAN%d enable: %d\n", priv->port, enable);
/* Support only disabling the transmit mailbox interrupt */
if (!enable)
{
regval = can_getreg(priv, STM32_CAN_IER_OFFSET);
regval &= ~CAN_IER_TMEIE;
can_putreg(priv, STM32_CAN_IER_OFFSET, regval);
}
}
/****************************************************************************
* Name: can_ioctl
*
* Description:
* All ioctl calls will be routed through this method
*
* Input Parameters:
* dev - An instance of the "upper half" can driver state structure.
*
* Returned Value:
* Zero on success; a negated errno on failure
*
****************************************************************************/
static int can_ioctl(FAR struct can_dev_s *dev, int cmd, unsigned long arg)
{
/* No CAN ioctls are supported */
return -ENOTTY;
}
/****************************************************************************
* Name: can_remoterequest
*
* Description:
* Send a remote request
*
* Input Parameters:
* dev - An instance of the "upper half" can driver state structure.
*
* Returned Value:
* Zero on success; a negated errno on failure
*
****************************************************************************/
static int can_remoterequest(FAR struct can_dev_s *dev, uint16_t id)
{
#warning "Remote request not implemented"
return -ENOSYS;
}
/****************************************************************************
* Name: can_send
*
* Description:
* Send one can message.
*
* One CAN-message consists of a maximum of 10 bytes. A message is
* composed of at least the first 2 bytes (when there are no data bytes).
*
* Byte 0: Bits 0-7: Bits 3-10 of the 11-bit CAN identifier
* Byte 1: Bits 5-7: Bits 0-2 of the 11-bit CAN identifier
* Bit 4: Remote Tranmission Request (RTR)
* Bits 0-3: Data Length Code (DLC)
* Bytes 2-10: CAN data
*
* Input Parameters:
* dev - An instance of the "upper half" can driver state structure.
*
* Returned Value:
* Zero on success; a negated errno on failure
*
****************************************************************************/
static int can_send(FAR struct can_dev_s *dev, FAR struct can_msg_s *msg)
{
FAR struct stm32_can_s *priv = dev->cd_priv;
FAR uint8_t *ptr;
uint32_t regval;
uint32_t tmp;
int dlc;
int txmb;
canllvdbg("CAN%d ID: %d DLC: %d\n",
priv->port, msg->cm_hdr.ch_id, msg->cm_hdr.ch_dlc);
/* Select one empty transmit mailbox */
regval = can_getreg(priv, STM32_CAN_TSR_OFFSET);
if ((regval & CAN_TSR_TME0) != 0 && (regval & CAN_TSR_RQCP0) == 0)
{
txmb = 0;
}
else if ((regval & CAN_TSR_TME1) != 0 && (regval & CAN_TSR_RQCP1) == 0)
{
txmb = 1;
}
else if ((regval & CAN_TSR_TME2) != 0 && (regval & CAN_TSR_RQCP2) == 0)
{
txmb = 2;
}
else
{
canlldbg("ERROR: No available mailbox\n");
return -EBUSY;
}
/* Clear TXRQ, RTR, IDE, EXID, and STID fields */
regval = can_getreg(priv, STM32_CAN_TIR_OFFSET(txmb));
regval &= ~(CAN_TIR_TXRQ | CAN_TIR_RTR | CAN_TIR_IDE |
CAN_TIR_EXID_MASK | CAN_TIR_STID_MASK);
can_putreg(priv, STM32_CAN_TIR_OFFSET(txmb), regval);
/* Set up the ID, standard 11-bit or extended 29-bit. */
#ifdef CONFIG_CAN_EXTID
regval &= ~CAN_TIR_EXID_MASK;
if (msg->cm_hdr.ch_extid)
{
DEBUGASSERT(msg->cm_hdr.ch_id < (1 << 29));
regval |= (msg->cm_hdr.ch_id << CAN_TIR_EXID_SHIFT) | CAN_TIR_IDE;
}
else
{
DEBUGASSERT(msg->cm_hdr.ch_id < (1 << 11));
regval |= msg->cm_hdr.ch_id << CAN_TIR_STID_SHIFT;
}
#else
regval &= ~CAN_TIR_STID_MASK;
regval |= (uint32_t)msg->cm_hdr.ch_id << CAN_TIR_STID_SHIFT;
#endif
can_putreg(priv, STM32_CAN_TIR_OFFSET(txmb), regval);
/* Set up the DLC */
dlc = msg->cm_hdr.ch_dlc;
regval = can_getreg(priv, STM32_CAN_TDTR_OFFSET(txmb));
regval &= ~(CAN_TDTR_DLC_MASK | CAN_TDTR_TGT);
regval |= (uint32_t)dlc << CAN_TDTR_DLC_SHIFT;
can_putreg(priv, STM32_CAN_TDTR_OFFSET(txmb), regval);
/* Set up the data fields */
ptr = msg->cm_data;
regval = 0;
if (dlc > 0)
{
tmp = (uint32_t)*ptr++;
regval = tmp << CAN_TDLR_DATA0_SHIFT;
if (dlc > 1)
{
tmp = (uint32_t)*ptr++;
regval |= tmp << CAN_TDLR_DATA1_SHIFT;
if (dlc > 2)
{
tmp = (uint32_t)*ptr++;
regval |= tmp << CAN_TDLR_DATA2_SHIFT;
if (dlc > 3)
{
tmp = (uint32_t)*ptr++;
regval |= tmp << CAN_TDLR_DATA3_SHIFT;
}
}
}
}
can_putreg(priv, STM32_CAN_TDLR_OFFSET(txmb), regval);
regval = 0;
if (dlc > 4)
{
tmp = (uint32_t)*ptr++;
regval = tmp << CAN_TDHR_DATA4_SHIFT;
if (dlc > 5)
{
tmp = (uint32_t)*ptr++;
regval |= tmp << CAN_TDHR_DATA5_SHIFT;
if (dlc > 6)
{
tmp = (uint32_t)*ptr++;
regval |= tmp << CAN_TDHR_DATA6_SHIFT;
if (dlc > 7)
{
tmp = (uint32_t)*ptr++;
regval |= tmp << CAN_TDHR_DATA7_SHIFT;
}
}
}
}
can_putreg(priv, STM32_CAN_TDHR_OFFSET(txmb), regval);
/* Enable the transmit mailbox empty interrupt (may already be enabled) */
regval = can_getreg(priv, STM32_CAN_IER_OFFSET);
regval |= CAN_IER_TMEIE;
can_putreg(priv, STM32_CAN_IER_OFFSET, regval);
/* Request transmission */
regval = can_getreg(priv, STM32_CAN_TIR_OFFSET(txmb));
regval |= CAN_TIR_TXRQ; /* Transmit Mailbox Request */
can_putreg(priv, STM32_CAN_TIR_OFFSET(txmb), regval);
can_dumpmbregs(priv, "After send");
return OK;
}
/****************************************************************************
* Name: can_txready
*
* Description:
* Return true if the CAN hardware can accept another TX message.
*
* Input Parameters:
* dev - An instance of the "upper half" can driver state structure.
*
* Returned Value:
* True if the CAN hardware is ready to accept another TX message.
*
****************************************************************************/
static bool can_txready(FAR struct can_dev_s *dev)
{
FAR struct stm32_can_s *priv = dev->cd_priv;
uint32_t regval;
/* Return true if any mailbox is available */
regval = can_getreg(priv, STM32_CAN_TSR_OFFSET);
canllvdbg("CAN%d TSR: %08x\n", priv->port, regval);
return (regval & CAN_ALL_MAILBOXES) != 0;
}
/****************************************************************************
* Name: can_txempty
*
* Description:
* Return true if all message have been sent. If for example, the CAN
* hardware implements FIFOs, then this would mean the transmit FIFO is
* empty. This method is called when the driver needs to make sure that
* all characters are "drained" from the TX hardware before calling
* co_shutdown().
*
* Input Parameters:
* dev - An instance of the "upper half" can driver state structure.
*
* Returned Value:
* True if there are no pending TX transfers in the CAN hardware.
*
****************************************************************************/
static bool can_txempty(FAR struct can_dev_s *dev)
{
FAR struct stm32_can_s *priv = dev->cd_priv;
uint32_t regval;
/* Return true if all mailboxes are available */
regval = can_getreg(priv, STM32_CAN_TSR_OFFSET);
canllvdbg("CAN%d TSR: %08x\n", priv->port, regval);
return (regval & CAN_ALL_MAILBOXES) == CAN_ALL_MAILBOXES;
}
/****************************************************************************
* Name: can_rxinterrupt
*
* Description:
* CAN RX FIFO 0/1 interrupt handler
*
* Input Parameters:
* irq - The IRQ number of the interrupt.
* context - The register state save array at the time of the interrupt.
* rxmb - The RX mailbox number.
*
* Returned Value:
* Zero on success; a negated errno on failure
*
****************************************************************************/
static int can_rxinterrupt(int irq, FAR void *context, int rxmb)
{
FAR struct can_dev_s *dev = NULL;
FAR struct stm32_can_s *priv;
struct can_hdr_s hdr;
uint8_t data[CAN_MAXDATALEN];
uint32_t regval;
int npending;
int ret;
#if defined(CONFIG_STM32_CAN1) && defined(CONFIG_STM32_CAN2)
if (g_can1priv.canrx[rxmb] == irq)
{
dev = &g_can1dev;
}
else if (g_can2priv.canrx[rxmb] == irq)
{
dev = &g_can2dev;
}
else
{
PANIC();
}
#elif defined(CONFIG_STM32_CAN1)
dev = &g_can1dev;
#else /* defined(CONFIG_STM32_CAN2) */
dev = &g_can2dev;
#endif
priv = dev->cd_priv;
/* Verify that a message is pending in the FIFO */
regval = can_getreg(priv, STM32_CAN_RFR_OFFSET(rxmb));
npending = (regval & CAN_RFR_FMP_MASK) >> CAN_RFR_FMP_SHIFT;
if (npending < 1)
{
canlldbg("WARNING: No messages pending\n");
return OK;
}
if (rxmb == 0)
{
can_dumpmbregs(priv, "RX0 interrupt");
}
else
{
can_dumpmbregs(priv, "RX1 interrupt");
}
/* Get the CAN identifier. */
regval = can_getreg(priv, STM32_CAN_RIR_OFFSET(rxmb));
#ifdef CONFIG_CAN_EXTID
if ((regval & CAN_RIR_IDE) != 0)
{
hdr.ch_id = (regval & CAN_RIR_EXID_MASK) >> CAN_RIR_EXID_SHIFT;
hdr.ch_extid = true;
}
else
{
hdr.ch_id = (regval & CAN_RIR_STID_MASK) >> CAN_RIR_STID_SHIFT;
hdr.ch_extid = false;
}
#else
if ((regval & CAN_RIR_IDE) != 0)
{
canlldbg("ERROR: Received message with extended identifier. Dropped\n");
ret = -ENOSYS;
goto errout;
}
hdr.ch_id = (regval & CAN_RIR_STID_MASK) >> CAN_RIR_STID_SHIFT;
#endif
/* Clear the error indication and unused bits */
#ifdef CONFIG_CAN_ERRORS
hdr.ch_error = 0; /* Error reporting not supported */
#endif
hdr.ch_unused = 0;
/* Extract the RTR bit */
hdr.ch_rtr = (regval & CAN_RIR_RTR) != 0;
/* Get the DLC */
regval = can_getreg(priv, STM32_CAN_RDTR_OFFSET(rxmb));
hdr.ch_dlc = (regval & CAN_RDTR_DLC_MASK) >> CAN_RDTR_DLC_SHIFT;
/* Save the message data */
regval = can_getreg(priv, STM32_CAN_RDLR_OFFSET(rxmb));
data[0] = (regval & CAN_RDLR_DATA0_MASK) >> CAN_RDLR_DATA0_SHIFT;
data[1] = (regval & CAN_RDLR_DATA1_MASK) >> CAN_RDLR_DATA1_SHIFT;
data[2] = (regval & CAN_RDLR_DATA2_MASK) >> CAN_RDLR_DATA2_SHIFT;
data[3] = (regval & CAN_RDLR_DATA3_MASK) >> CAN_RDLR_DATA3_SHIFT;
regval = can_getreg(priv, STM32_CAN_RDHR_OFFSET(rxmb));
data[4] = (regval & CAN_RDHR_DATA4_MASK) >> CAN_RDHR_DATA4_SHIFT;
data[5] = (regval & CAN_RDHR_DATA5_MASK) >> CAN_RDHR_DATA5_SHIFT;
data[6] = (regval & CAN_RDHR_DATA6_MASK) >> CAN_RDHR_DATA6_SHIFT;
data[7] = (regval & CAN_RDHR_DATA7_MASK) >> CAN_RDHR_DATA7_SHIFT;
/* Provide the data to the upper half driver */
ret = can_receive(dev, &hdr, data);
/* Release the FIFO */
#ifndef CONFIG_CAN_EXTID
errout:
#endif
regval = can_getreg(priv, STM32_CAN_RFR_OFFSET(rxmb));
regval |= CAN_RFR_RFOM;
can_putreg(priv, STM32_CAN_RFR_OFFSET(rxmb), regval);
return ret;
}
/****************************************************************************
* Name: can_rx0interrupt
*
* Description:
* CAN RX FIFO 0 interrupt handler
*
* Input Parameters:
* irq - The IRQ number of the interrupt.
* context - The register state save array at the time of the interrupt.
*
* Returned Value:
* Zero on success; a negated errno on failure
*
****************************************************************************/
static int can_rx0interrupt(int irq, FAR void *context)
{
return can_rxinterrupt(irq, context, 0);
}
/****************************************************************************
* Name: can_rx1interrupt
*
* Description:
* CAN RX FIFO 1 interrupt handler
*
* Input Parameters:
* irq - The IRQ number of the interrupt.
* context - The register state save array at the time of the interrupt.
*
* Returned Value:
* Zero on success; a negated errno on failure
*
****************************************************************************/
static int can_rx1interrupt(int irq, FAR void *context)
{
return can_rxinterrupt(irq, context, 1);
}
/****************************************************************************
* Name: can_txinterrupt
*
* Description:
* CAN TX mailbox complete interrupt handler
*
* Input Parameters:
* irq - The IRQ number of the interrupt.
* context - The register state save array at the time of the interrupt.
*
* Returned Value:
* Zero on success; a negated errno on failure
*
****************************************************************************/
static int can_txinterrupt(int irq, FAR void *context)
{
FAR struct can_dev_s *dev = NULL;
FAR struct stm32_can_s *priv;
uint32_t regval;
#if defined(CONFIG_STM32_CAN1) && defined(CONFIG_STM32_CAN2)
if (g_can1priv.cantx == irq)
{
dev = &g_can1dev;
}
else if (g_can2priv.cantx == irq)
{
dev = &g_can2dev;
}
else
{
PANIC();
}
#elif defined(CONFIG_STM32_CAN1)
dev = &g_can1dev;
#else /* defined(CONFIG_STM32_CAN2) */
dev = &g_can2dev;
#endif
priv = dev->cd_priv;
/* Get the transmit status */
regval = can_getreg(priv, STM32_CAN_TSR_OFFSET);
/* Check for RQCP0: Request completed mailbox 0 */
if ((regval & CAN_TSR_RQCP0) != 0)
{
/* Writing '1' to RCP0 clears RCP0 and all the status bits (TXOK0,
* ALST0 and TERR0) for Mailbox 0.
*/
can_putreg(priv, STM32_CAN_TSR_OFFSET, CAN_TSR_RQCP0);
/* Check for errors */
if ((regval & CAN_TSR_TXOK0) != 0)
{
/* Tell the upper half that the tansfer is finished. */
(void)can_txdone(dev);
}
}
/* Check for RQCP1: Request completed mailbox 1 */
if ((regval & CAN_TSR_RQCP1) != 0)
{
/* Writing '1' to RCP1 clears RCP1 and all the status bits (TXOK1,
* ALST1 and TERR1) for Mailbox 1.
*/
can_putreg(priv, STM32_CAN_TSR_OFFSET, CAN_TSR_RQCP1);
/* Check for errors */
if ((regval & CAN_TSR_TXOK1) != 0)
{
/* Tell the upper half that the tansfer is finished. */
(void)can_txdone(dev);
}
}
/* Check for RQCP2: Request completed mailbox 2 */
if ((regval & CAN_TSR_RQCP2) != 0)
{
/* Writing '1' to RCP2 clears RCP2 and all the status bits (TXOK2,
* ALST2 and TERR2) for Mailbox 2.
*/
can_putreg(priv, STM32_CAN_TSR_OFFSET, CAN_TSR_RQCP2);
/* Check for errors */
if ((regval & CAN_TSR_TXOK2) != 0)
{
/* Tell the upper half that the tansfer is finished. */
(void)can_txdone(dev);
}
}
return OK;
}
/****************************************************************************
* Name: can_bittiming
*
* Description:
* Set the CAN bit timing register (BTR) based on the configured BAUD.
*
* "The bit timing logic monitors the serial bus-line and performs sampling
* and adjustment of the sample point by synchronizing on the start-bit edge
* and resynchronizing on the following edges.
*
* "Its operation may be explained simply by splitting nominal bit time into
* three segments as follows:
*
* 1. "Synchronization segment (SYNC_SEG): a bit change is expected to occur
* within this time segment. It has a fixed length of one time quantum
* (1 x tCAN).
* 2. "Bit segment 1 (BS1): defines the location of the sample point. It
* includes the PROP_SEG and PHASE_SEG1 of the CAN standard. Its duration
* is programmable between 1 and 16 time quanta but may be automatically
* lengthened to compensate for positive phase drifts due to differences
* in the frequency of the various nodes of the network.
* 3. "Bit segment 2 (BS2): defines the location of the transmit point. It
* represents the PHASE_SEG2 of the CAN standard. Its duration is
* programmable between 1 and 8 time quanta but may also be automatically
* shortened to compensate for negative phase drifts."
*
* Pictorially:
*
* |<----------------- NOMINAL BIT TIME ----------------->|
* |<- SYNC_SEG ->|<------ BS1 ------>|<------ BS2 ------>|
* |<---- Tq ---->|<----- Tbs1 ------>|<----- Tbs2 ------>|
*
* Where
* Tbs1 is the duration of the BS1 segment
* Tbs2 is the duration of the BS2 segment
* Tq is the "Time Quantum"
*
* Relationships:
*
* baud = 1 / bit_time
* bit_time = Tq + Tbs1 + Tbs2
* Tbs1 = Tq * ts1
* Tbs2 = Tq * ts2
* Tq = brp * Tpclk1
*
* Where:
* Tpclk1 is the period of the APB1 clock (PCLK1).
*
* Input Parameter:
* priv - A reference to the CAN block status
*
* Returned Value:
* Zero on success; a negated errno on failure
*
****************************************************************************/
static int can_bittiming(FAR struct stm32_can_s *priv)
{
uint32_t tmp;
uint32_t brp;
uint32_t ts1;
uint32_t ts2;
canllvdbg("CAN%d PCLK1: %d baud: %d\n",
priv->port, STM32_PCLK1_FREQUENCY, priv->baud);
/* Try to get CAN_BIT_QUANTA quanta in one bit_time.
*
* bit_time = Tq*(ts1 + ts2 + 1)
* nquanta = bit_time / Tq
* nquanta = (ts1 + ts2 + 1)
*
* bit_time = brp * Tpclk1 * (ts1 + ts2 + 1)
* nquanta = bit_time / brp / Tpclk1
* = PCLK1 / baud / brp
* brp = PCLK1 / baud / nquanta;
*
* Example:
* PCLK1 = 42,000,000 baud = 1,000,000 nquanta = 14 : brp = 3
* PCLK1 = 42,000,000 baud = 700,000 nquanta = 14 : brp = 4
*/
tmp = STM32_PCLK1_FREQUENCY / priv->baud;
if (tmp < CAN_BIT_QUANTA)
{
/* At the smallest brp value (1), there are already too few bit times
* (PCLCK1 / baud) to meet our goal. brp must be one and we need
* make some reasonable guesses about ts1 and ts2.
*/
brp = 1;
/* In this case, we have to guess a good value for ts1 and ts2 */
ts1 = (tmp - 1) >> 1;
ts2 = tmp - ts1 - 1;
if (ts1 == ts2 && ts1 > 1 && ts2 < CAN_BTR_TSEG2_MAX)
{
ts1--;
ts2++;
}
}
/* Otherwise, nquanta is CAN_BIT_QUANTA, ts1 is CONFIG_CAN_TSEG1, ts2 is
* CONFIG_CAN_TSEG2 and we calculate brp to achieve CAN_BIT_QUANTA quanta
* in the bit time
*/
else
{
ts1 = CONFIG_CAN_TSEG1;
ts2 = CONFIG_CAN_TSEG2;
brp = (tmp + (CAN_BIT_QUANTA/2)) / CAN_BIT_QUANTA;
DEBUGASSERT(brp >= 1 && brp <= CAN_BTR_BRP_MAX);
}
canllvdbg("TS1: %d TS2: %d BRP: %d\n", ts1, ts2, brp);
/* Configure bit timing. This also does the following, less obvious
* things. Unless loopback mode is enabled, it:
*
* - Disables silent mode.
* - Disables loopback mode.
*
* NOTE that for the time being, SJW is set to 1 just because I don't
* know any better.
*/
tmp = ((brp - 1) << CAN_BTR_BRP_SHIFT) | ((ts1 - 1) << CAN_BTR_TS1_SHIFT) |
((ts2 - 1) << CAN_BTR_TS2_SHIFT) | ((1 - 1) << CAN_BTR_SJW_SHIFT);
#ifdef CONFIG_CAN_LOOPBACK
//tmp |= (CAN_BTR_LBKM | CAN_BTR_SILM);
tmp |= CAN_BTR_LBKM;
#endif
can_putreg(priv, STM32_CAN_BTR_OFFSET, tmp);
return OK;
}
/****************************************************************************
* Name: can_cellinit
*
* Description:
* CAN cell initialization
*
* Input Parameter:
* priv - A pointer to the private data structure for this CAN block
*
* Returned Value:
* Zero on success; a negated errno value on failure.
*
****************************************************************************/
static int can_cellinit(FAR struct stm32_can_s *priv)
{
volatile uint32_t timeout;
uint32_t regval;
int ret;
canllvdbg("CAN%d\n", priv->port);
/* Exit from sleep mode */
regval = can_getreg(priv, STM32_CAN_MCR_OFFSET);
regval &= ~CAN_MCR_SLEEP;
can_putreg(priv, STM32_CAN_MCR_OFFSET, regval);
/* Enter initialization mode */
regval |= CAN_MCR_INRQ;
can_putreg(priv, STM32_CAN_MCR_OFFSET, regval);
/* Wait until initialization mode is acknowledged */
for (timeout = INAK_TIMEOUT; timeout > 0; timeout--)
{
regval = can_getreg(priv, STM32_CAN_MSR_OFFSET);
if ((regval & CAN_MSR_INAK) != 0)
{
/* We are in initialization mode */
break;
}
}
/* Check for a timeout */
if (timeout < 1)
{
canlldbg("ERROR: Timed out waiting to enter initialization mode\n");
return -ETIMEDOUT;
}
/* Disable the following modes:
*
* - Time triggered communication mode
* - Automatic bus-off management
* - Automatic wake-up mode
* - No automatic retransmission
* - Receive FIFO locked mode
* - Transmit FIFO priority
*/
regval = can_getreg(priv, STM32_CAN_MCR_OFFSET);
regval &= ~(CAN_MCR_TXFP | CAN_MCR_RFLM | CAN_MCR_NART |
CAN_MCR_AWUM | CAN_MCR_ABOM | CAN_MCR_TTCM);
can_putreg(priv, STM32_CAN_MCR_OFFSET, regval);
/* Configure bit timing. */
ret = can_bittiming(priv);
if (ret < 0)
{
canlldbg("ERROR: Failed to set bit timing: %d\n", ret);
return ret;
}
/* Exit initialization mode */
regval = can_getreg(priv, STM32_CAN_MCR_OFFSET);
regval &= ~CAN_MCR_INRQ;
can_putreg(priv, STM32_CAN_MCR_OFFSET, regval);
/* Wait until the initialization mode exit is acknowledged */
for (timeout = INAK_TIMEOUT; timeout > 0; timeout--)
{
regval = can_getreg(priv, STM32_CAN_MSR_OFFSET);
if ((regval & CAN_MSR_INAK) == 0)
{
/* We are out of initialization mode */
break;
}
}
/* Check for a timeout */
if (timeout < 1)
{
canlldbg("ERROR: Timed out waiting to exit initialization mode: %08x\n",
regval);
return -ETIMEDOUT;
}
return OK;
}
/****************************************************************************
* Name: can_filterinit
*
* Description:
* CAN filter initialization. CAN filters are not currently used by this
* driver. The CAN filters can be configured in a different way:
*
* 1. As a match of specific IDs in a list (IdList mode), or as
* 2. And ID and a mask (IdMask mode).
*
* Filters can also be configured as:
*
* 3. 16- or 32-bit. The advantage of 16-bit filters is that you get
* more filters; The advantage of 32-bit filters is that you get
* finer control of the filtering.
*
* One filter is set up for each CAN. The filter resources are shared
* between the two CAN modules: CAN1 uses only filter 0 (but reserves
* 0 through CAN_NFILTERS/2-1); CAN2 uses only filter CAN_NFILTERS/2
* (but reserves CAN_NFILTERS/2 through CAN_NFILTERS-1).
*
* 32-bit IdMask mode is configured. However, both the ID and the MASK
* are set to zero thus supressing all filtering because anything masked
* with zero matches zero.
*
* Input Parameter:
* priv - A pointer to the private data structure for this CAN block
*
* Returned Value:
* Zero on success; a negated errno value on failure.
*
****************************************************************************/
static int can_filterinit(FAR struct stm32_can_s *priv)
{
uint32_t regval;
uint32_t bitmask;
canllvdbg("CAN%d filter: %d\n", priv->port, priv->filter);
/* Get the bitmask associated with the filter used by this CAN block */
bitmask = (uint32_t)1 << priv->filter;
/* Enter filter initialization mode */
regval = can_getfreg(priv, STM32_CAN_FMR_OFFSET);
regval |= CAN_FMR_FINIT;
can_putfreg(priv, STM32_CAN_FMR_OFFSET, regval);
/* Assign half the filters to CAN1, half to CAN2 */
#if defined(CONFIG_STM32_CONNECTIVITYLINE) || \
defined(CONFIG_STM32_STM32F20XX) || \
defined(CONFIG_STM32_STM32F40XX)
regval = can_getfreg(priv, STM32_CAN_FMR_OFFSET);
regval &= CAN_FMR_CAN2SB_MASK;
regval |= (CAN_NFILTERS / 2) << CAN_FMR_CAN2SB_SHIFT;
can_putfreg(priv, STM32_CAN_FMR_OFFSET, regval);
#endif
/* Disable the filter */
regval = can_getfreg(priv, STM32_CAN_FA1R_OFFSET);
regval &= ~bitmask;
can_putfreg(priv, STM32_CAN_FA1R_OFFSET, regval);
/* Select the 32-bit scale for the filter */
regval = can_getfreg(priv, STM32_CAN_FS1R_OFFSET);
regval |= bitmask;
can_putfreg(priv, STM32_CAN_FS1R_OFFSET, regval);
/* There are 14 or 28 filter banks (depending) on the device.
* Each filter bank is composed of two 32-bit registers, CAN_FiR:
*/
can_putfreg(priv, STM32_CAN_FIR_OFFSET(priv->filter, 1), 0);
can_putfreg(priv, STM32_CAN_FIR_OFFSET(priv->filter, 2), 0);
/* Set Id/Mask mode for the filter */
regval = can_getfreg(priv, STM32_CAN_FM1R_OFFSET);
regval &= ~bitmask;
can_putfreg(priv, STM32_CAN_FM1R_OFFSET, regval);
/* Assign FIFO 0 for the filter */
regval = can_getfreg(priv, STM32_CAN_FFA1R_OFFSET);
regval &= ~bitmask;
can_putfreg(priv, STM32_CAN_FFA1R_OFFSET, regval);
/* Enable the filter */
regval = can_getfreg(priv, STM32_CAN_FA1R_OFFSET);
regval |= bitmask;
can_putfreg(priv, STM32_CAN_FA1R_OFFSET, regval);
/* Exit filter initialization mode */
regval = can_getfreg(priv, STM32_CAN_FMR_OFFSET);
regval &= ~CAN_FMR_FINIT;
can_putfreg(priv, STM32_CAN_FMR_OFFSET, regval);
return OK;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: stm32_caninitialize
*
* Description:
* Initialize the selected CAN port
*
* Input Parameter:
* Port number (for hardware that has mutiple CAN interfaces)
*
* Returned Value:
* Valid CAN device structure reference on succcess; a NULL on failure
*
****************************************************************************/
FAR struct can_dev_s *stm32_caninitialize(int port)
{
FAR struct can_dev_s *dev = NULL;
canvdbg("CAN%d\n", port);
/* NOTE: Peripherical clocking for CAN1 and/or CAN2 was already provided
* by stm32_clockconfig() early in the reset sequence.
*/
#ifdef CONFIG_STM32_CAN1
if (port == 1)
{
/* Select the CAN1 device structure */
dev = &g_can1dev;
/* Configure CAN1 pins. The ambiguous settings in the stm32*_pinmap.h
* file must have been disambiguated in the board.h file.
*/
stm32_configgpio(GPIO_CAN1_RX);
stm32_configgpio(GPIO_CAN1_TX);
}
else
#endif
#ifdef CONFIG_STM32_CAN2
if (port == 2)
{
/* Select the CAN2 device structure */
dev = &g_can2dev;
/* Configure CAN2 pins. The ambiguous settings in the stm32*_pinmap.h
* file must have been disambiguated in the board.h file.
*/
stm32_configgpio(GPIO_CAN2_RX);
stm32_configgpio(GPIO_CAN2_TX);
}
else
#endif
{
candbg("ERROR: Unsupported port %d\n", port);
return NULL;
}
return dev;
}
#endif /* CONFIG_CAN && (CONFIG_STM32_CAN1 || CONFIG_STM32_CAN2) */