nuttx/boards/arm/kinetis/freedom-k28f/include/board.h
Johanne Schock ac1f5d673a Fixed formatting and comments in board.h and kinetis_k28memorymap.h
Fixed clock calculation in board.h
2020-03-08 08:52:46 -06:00

496 lines
20 KiB
C

/********************************************************************************
* boards/arm/kinetis/freedom-k28f/include/board.h
*
* Copyright (C) 2018 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
********************************************************************************/
#ifndef __BOARDS_ARM_KINETIS_FREEDOM_K28F_INCLUDE_BOARD_H
#define __BOARDS_ARM_KINETIS_FREEDOM_K28F_INCLUDE_BOARD_H
/********************************************************************************
* Included Files
********************************************************************************/
#include <nuttx/config.h>
#ifndef __ASSEMBLY__
# include <stdint.h>
# include <stdbool.h>
# include <arch/chip/kinetis_mcg.h>
#endif
/********************************************************************************
* Pre-processor Definitions
********************************************************************************/
/* Clocking *********************************************************************/
/* The Freedom K28F uses a 12MHz external Oscillator.
* The Kinetis MCU startup from an internal digitally-controlled oscillator
* (DCO). Nuttx will enable the main external oscillator (EXTAL0/XTAL0).
* The external oscillator/resonator can range from 32.768 KHz up to 50 MHz.
* The default external source for the MCG oscillator inputs is 12 MHz
* oscillator
*
* X501 a High-frequency, low-power Xtal
*/
#define BOARD_EXTAL_LP 1
#define BOARD_EXTAL_FREQ 12000000 /* 12MHz Oscillator */
#define BOARD_XTAL32_FREQ 32768 /* 32KHz RTC Oscillator */
/* PLL Configuration.
* Either the external clock or crystal frequency is used to select the
* PRDIV value. Only reference clock frequencies are supported that will
* produce a KINETIS_MCG_PLL_REF_MIN >= PLLIN <=KINETIS_MCG_PLL_REF_MAX
* reference clock to the PLL.
*
* PLL Input frequency: PLLIN = REFCLK / PRDIV = 12 MHz / 1 = 12 MHz
* PLL Output frequency: PLLOUT = PLLIN * VDIV = 12 MHz * 24 = 288 MHz
* MCG Frequency: PLLOUT = 144 MHz = 288 MHz /
* KINETIS_MCG_PLL_INTERNAL_DIVBY
* PRDIV register value is the divider minus KINETIS_MCG_C5_PRDIV_BASE.
* VDIV register value is offset by KINETIS_MCG_C6_VDIV_BASE.
*/
#define BOARD_PRDIV 1 /* PLL External Reference Divider */
#define BOARD_VDIV 24 /* PLL VCO Divider (frequency multiplier) */
/* Define additional MCG_C2 Setting */
#define BOARD_MCG_C2_FCFTRIM 0 /* Do not enable FCFTRIM */
#define BOARD_MCG_C2_LOCRE0 MCG_C2_LOCRE0 /* Enable reset on loss of clock */
#define BOARD_PLLIN_FREQ (BOARD_EXTAL_FREQ / BOARD_PRDIV)
#define BOARD_PLLOUT_FREQ (BOARD_PLLIN_FREQ * BOARD_VDIV)
#define BOARD_MCG_FREQ (BOARD_PLLOUT_FREQ / KINETIS_MCG_PLL_INTERNAL_DIVBY)
/* SIM CLKDIV1 dividers */
#define BOARD_OUTDIV1 1 /* Core = MCG, 144 MHz */
#define BOARD_OUTDIV2 2 /* Bus = MCG / 2, 72 MHz */
#define BOARD_OUTDIV3 2 /* FlexBus = MCG / 2, 72 MHz */
#define BOARD_OUTDIV4 6 /* Flash clock = MCG / 6, 24 MHz */
#define BOARD_CORECLK_FREQ (BOARD_MCG_FREQ / BOARD_OUTDIV1)
#define BOARD_BUS_FREQ (BOARD_MCG_FREQ / BOARD_OUTDIV2)
#define BOARD_FLEXBUS_FREQ (BOARD_MCG_FREQ / BOARD_OUTDIV3)
#define BOARD_FLASHCLK_FREQ (BOARD_MCG_FREQ / BOARD_OUTDIV4)
/* Use BOARD_MCG_FREQ as the output SIM_SOPT2 MUX selected by
* SIM_SOPT2[PLLFLLSEL]
*/
#define BOARD_SOPT2_PLLFLLSEL SIM_SOPT2_PLLFLLSEL_MCGPLLCLK
#define BOARD_SOPT2_FREQ BOARD_MCG_FREQ
/* N.B. The above BOARD_SOPT2_FREQ precludes use of USB with a 12 MHz Xtal
* Divider output clock = Divider input clock * ((USBFRAC+1) / (USBDIV+1))
* SIM_CLKDIV2_FREQ = BOARD_SOPT2_FREQ * ((USBFRAC+1) / (USBDIV+1))
* SIM_CLKDIV2_FREQ = BOARD_SOPT2_FREQ / (USBDIV+1)* (USBFRAC+1)
* 48MHz = 144MHz / (2 + 1) * (1 + 0)
*/
#if (BOARD_SOPT2_FREQ == 144000000L)
# define BOARD_SIM_CLKDIV2_USBFRAC 1
# define BOARD_SIM_CLKDIV2_USBDIV 3
# define BOARD_SIM_CLKDIV2_FREQ (BOARD_SOPT2_FREQ / \
BOARD_SIM_CLKDIV2_USBDIV * \
BOARD_SIM_CLKDIV2_USBFRAC)
#endif
/* Divider output clock = Divider input clock * ((PLLFLLFRAC+1)/(PLLFLLDIV+1))
* SIM_CLKDIV3_FREQ = BOARD_SOPT2_FREQ * ((PLLFLLFRAC+1) / (PLLFLLDIV+1))
* SIM_CLKDIV3_FREQ = BOARD_SOPT2_FREQ / (PLLFLLDIV+1) * (PLLFLLFRAC+1)
* 72MHz = 144MHz / (1 + 1) * (1 + 0)
*/
#define BOARD_SIM_CLKDIV3_PLLFLLFRAC 1
#define BOARD_SIM_CLKDIV3_PLLFLLDIV 2
#define BOARD_SIM_CLKDIV3_FREQ (BOARD_SOPT2_FREQ / \
BOARD_SIM_CLKDIV3_PLLFLLDIV * \
BOARD_SIM_CLKDIV3_PLLFLLFRAC)
#define BOARD_LPUART0_CLKSRC SIM_SOPT2_LPUARTSRC_MCGCLK
#define BOARD_LPUART0_FREQ BOARD_SIM_CLKDIV3_FREQ
#define BOARD_TPM_CLKSRC SIM_SOPT2_TPMSRC_MCGCLK
#define BOARD_TPM_FREQ BOARD_SIM_CLKDIV3_FREQ
/* SDHC clocking ****************************************************************/
/* SDCLK configurations corresponding to various modes of operation.
* Formula is:
*
* SDCLK frequency = (base clock) / (prescaler * divisor)
*
* The SDHC module is always configure configured so that the core clock is
* the baseclock.
* Possible values for prescaler and divisor are:
*
* SDCLKFS: {2, 4, 8, 16, 32, 63, 128, 256}
* DVS: {1..16}
*/
/* Identification mode:
* Optimal 400KHz, Actual 144MHz / (32 * 12) = 375 Khz
*/
#define BOARD_SDHC_IDMODE_PRESCALER SDHC_SYSCTL_SDCLKFS_DIV32
#define BOARD_SDHC_IDMODE_DIVISOR SDHC_SYSCTL_DVS_DIV(12)
/* MMC normal mode:
* Optimal 20MHz, Actual 144MHz / (2 * 4) = 18 MHz
*/
#define BOARD_SDHC_MMCMODE_PRESCALER SDHC_SYSCTL_SDCLKFS_DIV2
#define BOARD_SDHC_MMCMODE_DIVISOR SDHC_SYSCTL_DVS_DIV(4)
/* SD normal mode (1-bit):
* Optimal 20MHz, Actual 144MHz / (2 * 4) = 18 MHz
*/
#define BOARD_SDHC_SD1MODE_PRESCALER SDHC_SYSCTL_SDCLKFS_DIV2
#define BOARD_SDHC_SD1MODE_DIVISOR SDHC_SYSCTL_DVS_DIV(4)
/* SD normal mode (4-bit):
* Optimal 25MHz, Actual 144MHz / (2 * 3) = 24 MHz (with DMA)
* SD normal mode (4-bit):
* Optimal 25MHz, Actual 144MHz / (2 * 3) = 24 MHz (no DMA)
*/
#ifdef CONFIG_SDIO_DMA
# define BOARD_SDHC_SD4MODE_PRESCALER SDHC_SYSCTL_SDCLKFS_DIV2
# define BOARD_SDHC_SD4MODE_DIVISOR SDHC_SYSCTL_DVS_DIV(3)
#else
# define BOARD_SDHC_SD4MODE_PRESCALER SDHC_SYSCTL_SDCLKFS_DIV2
# define BOARD_SDHC_SD4MODE_DIVISOR SDHC_SYSCTL_DVS_DIV(3)
#endif
/* Use the output of SIM_SOPT2[PLLFLLSEL] as the USB clock source */
#define BOARD_USB_CLKSRC SIM_SOPT2_USBSRC
#define BOARD_USB_FREQ BOARD_SIM_CLKDIV2_FREQ
/* Allow USBOTG-FS Controller to Read from FLASH */
#define BOARD_USB_FLASHACCESS
/* PWM Configuration */
/* FTM0 Channels */
#define GPIO_FTM0_CH0OUT PIN_FTM0_CH0_2 /* Pin 22: PTC1 */
#define GPIO_FTM0_CH1OUT PIN_FTM0_CH1_2 /* Pin 23: PTC2 */
#define GPIO_FTM0_CH2OUT PIN_FTM0_CH2_2 /* Pin 9: PTC3 */
#define GPIO_FTM0_CH3OUT PIN_FTM0_CH3 /* Pin 10: PTC4 */
#define GPIO_FTM0_CH4OUT PIN_FTM0_CH4 /* Pin 6: PTD4 */
#define GPIO_FTM0_CH5OUT PIN_FTM0_CH5_2 /* Pin 20: PTD5 */
#define GPIO_FTM0_CH6OUT PIN_FTM0_CH6_2 /* Pin 21: PTD6 */
#define GPIO_FTM0_CH7OUT PIN_FTM0_CH7_2 /* Pin 5: PTD7 */
/* FTM1 Channels */
#define GPIO_FTM1_CH0OUT PIN_FTM1_CH0_1 /* Pin 3: PTA12 */
#define GPIO_FTM1_CH1OUT PIN_FTM1_CH1_1 /* Pin 4: PTA13 */
/* FTM2 Channels */
#define GPIO_FTM2_CH0OUT PIN_FTM2_CH0 /* Pin 25: PTB18 */
#define GPIO_FTM2_CH1OUT PIN_FTM2_CH1 /* Pin 32: PTB19 */
/* LED definitions **************************************************************/
/* A single LED is available driven by PTC5. The LED is grounded so bringing
* PTC5 high will illuminate the LED.
*/
/* LED index values for use with board_userled() */
#define BOARD_LED 0
#define BOARD_NLEDS 1
/* LED bits for use with board_userled_all() */
#define BOARD_LED_BIT (1 << BOARD_LED)
/* When CONFIG_ARCH_LEDS is defined in the NuttX configuration, NuttX will
* control the LED as defined below.
* Thus if the LED is statically on, NuttX has successfully booted and is,
* apparently, running normally.
* If the LED is flashing at approximately 2Hz, then a fatal error has been
* detected and the system has halted.
*/
#define LED_STARTED 0 /* STATUS LED=OFF */
#define LED_HEAPALLOCATE 0 /* STATUS LED=OFF */
#define LED_IRQSENABLED 0 /* STATUS LED=OFF */
#define LED_STACKCREATED 1 /* STATUS LED=ON */
#define LED_INIRQ 2 /* STATUS LED=no change */
#define LED_SIGNAL 2 /* STATUS LED=no change */
#define LED_ASSERTION 3 /* STATUS LED=no change */
#define LED_PANIC 3 /* STATUS LED=flashing */
/* Button definitions ***********************************************************/
/* The freedom-k28f board has no standard GPIO contact buttons */
/* Alternative pin resolution ***************************************************/
/* The Freedom K28F has five LPUARTs with pin availability as follows:
*
* ----- --------------- -------------------------------
* GPIO LPUART FUNCTION BOARD CONFIGURATION
* ----- --------------- -------------------------------
* PTA1 LPUART0_RX PTA1 GPIO0
* PTA15 LPUART0_RX PTA15 FXIO0_D21
* PTB14 LPUART0_RX PTB14
* PTB16 LPUART0_RX PTB16 SDRAM_D17
* PTC25 LPUART0_RX PTC25 LPUART0_RX_TGTMCU
* PTD6 LPUART0_RX PTD6 Arduino_D17_ADC0_SE7b
* PTA2 LPUART0_TX PTA2 INT
* PTA14 LPUART0_TX PTA14 FXIO0_D20
* PTB15 LPUART0_TX N/C
* PTB17 LPUART0_TX PTB17 SDRAM_D16
* PTC24 LPUART0_TX PTC24 LPUART0_TX_TGTMCU
* PTD7 LPUART0_TX PTD7 SDRAM_CKE
* PTA3 LPUART0_RTS PTA3
* PTA17 LPUART0_RTS PTA17 FXIO0_D23
* PTB2 LPUART0_RTS PTB2 Arduino_D19_ADC0_SE12/I2C0_SCL/SDRAM_WE
* PTB12 LPUART0_RTS PTB12 Arduino_D5_FTM1_CH0/FTM0_CH4
* PTC27 LPUART0_RTS PTC27 FXOS8700CQ_RESET
* PTD4 LPUART0_RTS PTD4 SDRAM_A10
* PTA0 LPUART0_CTS PTA0 K28F_SWD_CLK
* PTA16 LPUART0_CTS PTA16 FXIO0_D22
* PTB3 LPUART0_CTS PTB3 Arduino_D18_ADC0_SE13/I2C0_SDA/SDRAM_CS0
* PTB13 LPUART0_CTS PTB13 Arduino_D6_FTM1_CH1/FTM0_CH5
* PTC26 LPUART0_CTS PTC26 FXOS8700CQ_INT
* PTD5 LPUART0_CTS PTD5 SDRAM_A9
* ----- --------------- -------------------------------
* PTD8 LPUART1_RX PTD8 FXIO0_D24
* PTC3 LPUART1_RX PTC3 CLKOUT
* PTE1 LPUART1_RX PTE1 QSPIA0_SCLK
* PTC4 LPUART1_TX PTC4 SDRAM_A19
* PTD9 LPUART1_TX PTD9 FXIO0_D25
* PTE0 LPUART1_TX PTE0 QSPIA0_DATA3
* PTD10 LPUART1_RTS PTD10 FXIO0_D26
* PTC1 LPUART1_RTS PTC1 SDRAM_A21
* PTE3 LPUART1_RTS PTE3 QSPIA0_DATA2
* PTC2 LPUART1_CTS PTC1 SDRAM_A21
* PTD11 LPUART1_CTS PTD11 FXIO0_D27
* PTE2 LPUART1_CTS PTE2 QSPIA0_DATA0
* ----- --------------- -------------------------------
* PTA25 LPUART2_RX PTA25 SDHC0_D0/Arduino_D0_LPUART2_RX
* PTD2 LPUART2_RX PTD2 SDRAM_A12
* PTE13 LPUART2_RX N/C
* PTE17 LPUART2_RX N/C
* PTA24 LPUART2_TX PTA24 SDHC0_D1/Arduino_D1_LPUART2_TX
* PTD3 LPUART2_TX PTD3 SDRAM_A11
* PTE12 LPUART2_TX PTE12 I2S0_TX_BCLK
* PTE16 LPUART2_TX N/C
* PTD0 LPUART2_RTS PTD0 Button_LLWU_P12
* PTA27 LPUART2_RTS PTA27 SDHC0_CMD
* PTE19 LPUART2_RTS N/C
* PTA26 LPUART2_CTS PTA26 SDHC0_DCLK
* PTD1 LPUART2_CTS PTD1 Arduino_D16_ADC0_SE5b
* PTE18 LPUART2_CTS N/C
* ----- --------------- -------------------------------
* PTA29 LPUART3_RX PTA29 SDHC0_D2
* PTB10 LPUART3_RX PTB10 SDRAM_D19
* PTC16 LPUART3_RX PTC16 SDRAM_DQM2
* PTE5 LPUART3_RX PTE5 QSPIA0_SS0/USB0_SOF_OUT
* PTA28 LPUART3_TX PTA28 SDHC0_D3
* PTB11 LPUART3_TX PTB11 SDRAM_D18
* PTC17 LPUART3_TX PTC17 SDRAM_DQM3
* PTE4 LPUART3_TX PTE4 QSPIA0_DATA1
* PTB8 LPUART3_RTS PTB8 SDRAM_D21
* PTA31 LPUART3_RTS PTA31
* PTC18 LPUART3_RTS PTC18 Arduino_D7
* PTE7 LPUART3_RTS PTE7 I2S0_RXD0/LEDRGB_GREEN
* PTA30 LPUART3_CTS PTA30
* PTB9 LPUART3_CTS PTB9 SDRAM_D20
* PTC19 LPUART3_CTS PTC19 Arduino_D8
* PTE6 LPUART3_CTS PTE6 I2S0_MCK/LEDRGB_RED
* ----- --------------- -------------------------------
* PTA21 LPUART4_RX PTA21 TE/FXIO0_D9
* PTC14 LPUART4_RX PTC14 SDRAM_D25
* PTE21 LPUART4_RX N/C
* PTA20 LPUART4_TX PTA20 RD/FXIO0_D8
* PTC15 LPUART4_TX PTC15 SDRAM_D24
* PTE20 LPUART4_TX N/C
* PTA23 LPUART4_RTS PTA23 WR/FXIO0_D7
* PTC12 LPUART4_RTS PTC12 SDRAM_D27
* PTE23 LPUART4_RTS N/C
* PTA22 LPUART4_CTS PTA22 CS/FXIO0_D6
* PTC13 LPUART4_CTS PTC13 SDRAM_D26
* PTE22 LPUART4_CTS N/C
* ----- --------------- -------------------------------
*
* Virtual serial port
* -------------------
*
* A serial port connection is available between the OpenSDA v2.2 MCU and
* pins PTC24 and PTC25 of the K28 MCU:
*
* ----- --------------- -------------------------------
* GPIO LPUART FUNCTION BOARD CONFIGURATION
* ----- --------------- -------------------------------
* PTC25 LPUART0_RX PTC25 LPUART0_RX_TGTMCU
* PTC24 LPUART0_TX PTC24 LPUART0_TX_TGTMCU
* ----- --------------- -------------------------------
*/
#define PIN_LPUART0_RX PIN_LPUART0_RX_5 /* PTC25 */
#define PIN_LPUART0_TX PIN_LPUART0_TX_5 /* PTC24
/* Arduino RS-232 Shield
* ---------------------
*
* ----- --------------- -------------------------------
* GPIO LPUART FUNCTION BOARD CONFIGURATION
* ----- --------------- -------------------------------
* PTA25 LPUART2_RX PTA25 SDHC0_D0/Arduino_D0_LPUART2_RX
* PTA24 LPUART2_TX PTA24 SDHC0_D1/Arduino_D1_LPUART2_TX
* ----- --------------- -------------------------------
*
* Note: PTA24 and PTA25 are shared between Micro SD Card circuit and
* Arduino connectors. Remove R106 and R107 or R94 and R11 as necessary to
* prevent contention.
*/
#define PIN_LPUART2_RX PIN_LPUART2_RX_1 /* PTA25 */
#define PIN_LPUART2_TX PIN_LPUART2_TX_1 /* PTA24 */
/* I2C */
#ifdef CONFIG_KINETIS_I2C0
#ifdef CONFIG_FREEDOM_K28F_I2C_ALT_PINS
# define PIN_I2C0_SCL (PIN_I2C0_SCL_1 | PIN_ALT2_OPENDRAIN | PIN_ALT2_SLOW)
# define PIN_I2C0_SDA (PIN_I2C0_SDA_1 | PIN_ALT2_OPENDRAIN | PIN_ALT2_SLOW)
#else
# define PIN_I2C0_SCL (PIN_I2C0_SCL_2 | PIN_ALT2_OPENDRAIN | PIN_ALT2_SLOW)
# define PIN_I2C0_SDA (PIN_I2C0_SDA_2 | PIN_ALT2_OPENDRAIN | PIN_ALT2_SLOW)
#endif
#endif
/* REVISIT: Added only for clean compilation with I2C1 enabled. */
#ifdef CONFIG_KINETIS_I2C1
#ifdef CONFIG_FREEDOM_K28F_I2C_ALT_PINS
# define PIN_I2C1_SCL (PIN_I2C1_SCL_1 | PIN_ALT2_OPENDRAIN | PIN_ALT2_SLOW)
# define PIN_I2C1_SDA (PIN_I2C1_SDA_1 | PIN_ALT2_OPENDRAIN | PIN_ALT2_SLOW)
#else
# define PIN_I2C1_SCL (PIN_I2C1_SCL_2 | PIN_ALT2_OPENDRAIN | PIN_ALT2_SLOW)
# define PIN_I2C1_SDA (PIN_I2C1_SDA_2 | PIN_ALT2_OPENDRAIN | PIN_ALT2_SLOW)
#endif
#endif
/* SDHC */
#ifdef CONFIG_KINETIS_SDHC
# define PIN_SDHC0_CMD PIN_SDHC0_CMD_1
# define PIN_SDHC0_D0 PIN_SDHC0_D0_1
# define PIN_SDHC0_D1 PIN_SDHC0_D1_1
# define PIN_SDHC0_D2 PIN_SDHC0_D2_1
# define PIN_SDHC0_D3 PIN_SDHC0_D3_1
# define PIN_SDHC0_DCLK PIN_SDHC0_DCLK_1
#endif
/* LED definitions **************************************************************/
/* The Freedom K28F has a single RGB LED driven by the K28F as follows:
*
* LED K28
* ------ -------------------------------------------------------
* RED PTE6
* BLUE PTE7
* GREEN PTE8
*
* If CONFIG_ARCH_LEDS is not defined, then the user can control the LEDs in
* any way. The following definitions are used to access individual LEDs.
*/
/* LED index values for use with board_userled() */
#define BOARD_LED_R 0
#define BOARD_LED_G 1
#define BOARD_LED_B 2
#define BOARD_NLEDS 3
/* LED bits for use with board_userled_all() */
#define BOARD_LED_R_BIT (1 << BOARD_LED_R)
#define BOARD_LED_G_BIT (1 << BOARD_LED_G)
#define BOARD_LED_B_BIT (1 << BOARD_LED_B)
/* If CONFIG_ARCH_LEDs is defined, then NuttX will control the LED on board
* the Freedom K28F. The following definitions describe how NuttX controls
* the LEDs:
*
* SYMBOL Meaning LED state
* RED GREEN BLUE
* ------------------- ---------------------------- -----------------
*/
#define LED_STARTED 1 /* NuttX has been started OFF OFF OFF */
#define LED_HEAPALLOCATE 2 /* Heap has been allocated OFF OFF ON */
#define LED_IRQSENABLED 0 /* Interrupts enabled OFF OFF ON */
#define LED_STACKCREATED 3 /* Idle stack created OFF ON OFF */
#define LED_INIRQ 0 /* In an interrupt (no change) */
#define LED_SIGNAL 0 /* In a signal handler (no change) */
#define LED_ASSERTION 0 /* An assertion failed (no change) */
#define LED_PANIC 4 /* The system has crashed FLASH OFF OFF */
#undef LED_IDLE /* K28 is in sleep mode (Not used) */
/* Button definitions ***********************************************************/
/* Two push buttons, SW2 and SW3, are available on FRDM-K28F board,
* where SW2 is connected to PTA4 and SW3 is connected to PTD0.
* Besides the general purpose input/output functions, SW2 and SW3 can be
* low-power wake up signal. Also, only SW3 can be a non-maskable interrupt.
*
* Switch GPIO Function
* --------- --------------------------------------------------------------
* SW2 PTA4/NMI_B
* SW3 PTA4/NMI_B
*/
#define BUTTON_SW2 0
#define BUTTON_SW3 1
#define NUM_BUTTONS 2
#define BUTTON_SW2_BIT (1 << BUTTON_SW2)
#define BUTTON_SW3_BIT (1 << BUTTON_SW3)
#endif /* __BOARDS_ARM_KINETIS_FREEDOM_K28F_INCLUDE_BOARD_H */