7990f90915
follow the code style convention Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com> |
||
---|---|---|
.. | ||
configs | ||
include | ||
kernel | ||
scripts | ||
src | ||
Kconfig | ||
README.txt |
README ====== This README discusses issues unique to NuttX configurations for the STMicro STM32140G-EVAL development board. Contents ======== - Ethernet - LEDs - PWM - CAN - FPU - FSMC SRAM - I/O Expanders - STM3240G-EVAL-specific Configuration Options - Configurations Ethernet ======== The Ethernet driver is configured to use the MII interface: Board Jumper Settings: Jumper Description JP8 To enable MII, JP8 should not be fitted. JP6 2-3: Enable MII interface mode JP5 2-3: Provide 25 MHz clock for MII or 50 MHz clock for RMII by MCO at PA8 SB1 Not used with MII LEDs ==== The STM3240G-EVAL board has four LEDs labeled LD1, LD2, LD3 and LD4 on the board.. These LEDs are not used by the board port unless CONFIG_ARCH_LEDS is defined. In that case, the usage by the board port is defined in include/board.h and src/up_leds.c. The LEDs are used to encode OS-related\ events as follows: SYMBOL Meaning LED1* LED2 LED3 LED4 ------------------- ----------------------- ------- ------- ------- ------ LED_STARTED NuttX has been started ON OFF OFF OFF LED_HEAPALLOCATE Heap has been allocated OFF ON OFF OFF LED_IRQSENABLED Interrupts enabled ON ON OFF OFF LED_STACKCREATED Idle stack created OFF OFF ON OFF LED_INIRQ In an interrupt** ON N/C N/C OFF LED_SIGNAL In a signal handler*** N/C ON N/C OFF LED_ASSERTION An assertion failed ON ON N/C OFF LED_PANIC The system has crashed N/C N/C N/C ON LED_IDLE STM32 is is sleep mode (Optional, not used) * If LED1, LED2, LED3 are statically on, then NuttX probably failed to boot and these LEDs will give you some indication of where the failure was ** The normal state is LED3 ON and LED1 faintly glowing. This faint glow is because of timer interrupts that result in the LED being illuminated on a small proportion of the time. *** LED2 may also flicker normally if signals are processed. PWM === The STM3240G-Eval has no real on-board PWM devices, but the board can be configured to output a pulse train using timer output pins. The following pins have been use to generate PWM output (see board.h for some other candidates): TIM4 CH2. Pin PD13 is used by the FSMC (FSMC_A18) and is also connected to the Motor Control Connector (CN5) just for this purpose. If FSMC is not enabled, then FSMC_A18 will not be used (and will be tri-stated from the LCD). CONFIGURATION: CONFIG_STM32_TIM4=y CONFIG_PWM=n CONFIG_PWM_PULSECOUNT=n CONFIG_STM32_TIM4_PWM=y CONFIG_STM32_TIM4_CHANNEL=2 ACCESS: Daughter board Extension Connector, CN3, pin 32 Ground is available on CN3, pin1 NOTE: TIM4 hardware will not support pulse counting. TIM8 CH4: Pin PC9 is used by the microSD card (MicroSDCard_D1) and I2S (I2S_CKIN) but can be completely disconnected from both by opening JP16. CONFIGURATION: CONFIG_STM32_TIM8=y CONFIG_PWM=n CONFIG_PWM_PULSECOUNT=y CONFIG_STM32_TIM8_PWM=y CONFIG_STM32_TIM8_CHANNEL=4 ACCESS: Daughterboard Extension Connector, CN3, pin 17 Ground is available on CN3, pin1 CAN === Connector 10 (CN10) is DB-9 male connector that can be used with CAN1 or CAN2. JP10 connects CAN1_RX or CAN2_RX to the CAN transceiver JP3 connects CAN1_TX or CAN2_TX to the CAN transceiver CAN signals are then available on CN10 pins: CN10 Pin 7 = CANH CN10 Pin 2 = CANL Mapping to STM32 GPIO pins: PD0 = FSMC_D2 & CAN1_RX PD1 = FSMC_D3 & CAN1_TX PB13 = ULPI_D6 & CAN2_TX PB5 = ULPI_D7 & CAN2_RX Configuration Options: CONFIG_CAN - Enables CAN support (one or both of CONFIG_STM32_CAN1 or CONFIG_STM32_CAN2 must also be defined) CONFIG_CAN_EXTID - Enables support for the 29-bit extended ID. Default Standard 11-bit IDs. CONFIG_CAN_FIFOSIZE - The size of the circular buffer of CAN messages. Default: 8 CONFIG_CAN_NPENDINGRTR - The size of the list of pending RTR requests. Default: 4 CONFIG_STM32_CAN1 - Enable support for CAN1 CONFIG_STM32_CAN1_BAUD - CAN1 BAUD rate. Required if CONFIG_STM32_CAN1 is defined. CONFIG_STM32_CAN2 - Enable support for CAN2 CONFIG_STM32_CAN2_BAUD - CAN1 BAUD rate. Required if CONFIG_STM32_CAN2 is defined. CONFIG_STM32_CAN_TSEG1 - The number of CAN time quanta in segment 1. Default: 6 CONFIG_STM32_CAN_TSEG2 - the number of CAN time quanta in segment 2. Default: 7 CONFIG_STM32_CAN_REGDEBUG - If CONFIG_DEBUG_FEATURES is set, this will generate an dump of all CAN registers. FPU === FPU Configuration Options ------------------------- There are two version of the FPU support built into the STM32 port. 1. Non-Lazy Floating Point Register Save In this configuration floating point register save and restore is implemented on interrupt entry and return, respectively. In this case, you may use floating point operations for interrupt handling logic if necessary. This FPU behavior logic is enabled by default with: CONFIG_ARCH_FPU=y 2. Lazy Floating Point Register Save. An alternative implementation only saves and restores FPU registers only on context switches. This means: (1) floating point registers are not stored on each context switch and, hence, possibly better interrupt performance. But, (2) since floating point registers are not saved, you cannot use floating point operations within interrupt handlers. This logic can be enabled by simply adding the following to your .config file: CONFIG_ARCH_FPU=y FSMC SRAM ========= On-board SRAM ------------- A 16 Mbit SRAM is connected to the STM32F407IGH6 FSMC bus which shares the same I/Os with the CAN1 bus. Jumper settings: JP1: Connect PE4 to SRAM as A20 JP2: onnect PE3 to SRAM as A19 JP3 and JP10 must not be fitted for SRAM and LCD application. JP3 and JP10 select CAN1 or CAN2 if fitted; neither if not fitted. The on-board SRAM can be configured by setting CONFIG_STM32_FSMC=y CONFIG_STM32_EXTERNAL_RAM=y CONFIG_HEAP2_BASE=0x64000000 CONFIG_HEAP2_SIZE=2097152 CONFIG_MM_REGIONS=2 (or =3, see below) Configuration Options --------------------- Internal SRAM is available in all members of the STM32 family. The F4 family also contains internal CCM SRAM. This SRAM is different because it cannot be used for DMA. So if DMA needed, then the following should be defined to exclude CCM SRAM from the heap: CONFIG_STM32_CCMEXCLUDE : Exclude CCM SRAM from the HEAP In addition to internal SRAM, SRAM may also be available through the FSMC. In order to use FSMC SRAM, the following additional things need to be present in the NuttX configuration file: CONFIG_STM32_FSMC=y : Enables the FSMC CONFIG_STM32_EXTERNAL_RAM=y : Indicates that SRAM is available via the FSMC (as opposed to an LCD or FLASH). CONFIG_HEAP2_BASE : The base address of the SRAM in the FSMC address space CONFIG_HEAP2_SIZE : The size of the SRAM in the FSMC address space CONFIG_MM_REGIONS : Must be set to a large enough value to include the FSMC SRAM SRAM Configurations ------------------- There are 4 possible SRAM configurations: Configuration 1. System SRAM (only) CONFIG_MM_REGIONS == 1 CONFIG_STM32_EXTERNAL_RAM NOT defined CONFIG_STM32_CCMEXCLUDE defined Configuration 2. System SRAM and CCM SRAM CONFIG_MM_REGIONS == 2 CONFIG_STM32_EXTERNAL_RAM NOT defined CONFIG_STM32_CCMEXCLUDE NOT defined Configuration 3. System SRAM and FSMC SRAM CONFIG_MM_REGIONS == 2 CONFIG_STM32_EXTERNAL_RAM defined CONFIG_STM32_CCMEXCLUDE defined Configuration 4. System SRAM, CCM SRAM, and FSMC SRAM CONFIG_MM_REGIONS == 3 CONFIG_STM32_ETXERNAL_RAM defined CONFIG_STM32_CCMEXCLUDE NOT defined I/O Expanders ============= The STM3240G-EVAL has two STMPE811QTR I/O expanders on board both connected to the STM32 via I2C1. They share a common interrupt line: PI2. STMPE811 U24, I2C address 0x41 (7-bit) ------ ---- ---------------- -------------------------------------------- STPE11 PIN BOARD SIGNAL BOARD CONNECTION ------ ---- ---------------- -------------------------------------------- Y- TouchScreen_Y- LCD Connector XL X- TouchScreen_X- LCD Connector XR Y+ TouchScreen_Y+ LCD Connector XD X+ TouchScreen_X+ LCD Connector XU IN3 EXP_IO9 IN2 EXP_IO10 IN1 EXP_IO11 IN0 EXP_IO12 STMPE811 U29, I2C address 0x44 (7-bit) ------ ---- ---------------- -------------------------------------------- STPE11 PIN BOARD SIGNAL BOARD CONNECTION ------ ---- ---------------- -------------------------------------------- Y- EXP_IO1 X- EXP_IO2 Y+ EXP_IO3 X+ EXP_IO4 IN3 EXP_IO5 IN2 EXP_IO6 IN1 EXP_IO7 IN0 EXP_IO8 STM3240G-EVAL-specific Configuration Options ============================================ CONFIG_ARCH - Identifies the arch/ subdirectory. This should be set to: CONFIG_ARCH=arm CONFIG_ARCH_family - For use in C code: CONFIG_ARCH_ARM=y CONFIG_ARCH_architecture - For use in C code: CONFIG_ARCH_CORTEXM4=y CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory CONFIG_ARCH_CHIP=stm32 CONFIG_ARCH_CHIP_name - For use in C code to identify the exact chip: CONFIG_ARCH_CHIP_STM32F407IG=y CONFIG_ARCH_BOARD_STM32_CUSTOM_CLOCKCONFIG - Enables special STM32 clock configuration features. CONFIG_ARCH_BOARD_STM32_CUSTOM_CLOCKCONFIG=n CONFIG_ARCH_BOARD - Identifies the boards/ subdirectory and hence, the board that supports the particular chip or SoC. CONFIG_ARCH_BOARD=stm3240g_eval (for the STM3240G-EVAL development board) CONFIG_ARCH_BOARD_name - For use in C code CONFIG_ARCH_BOARD_STM3240G_EVAL=y CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation of delay loops CONFIG_ENDIAN_BIG - define if big endian (default is little endian) CONFIG_RAM_SIZE - Describes the installed DRAM (SRAM in this case): CONFIG_RAM_SIZE=0x00010000 (64Kb) CONFIG_RAM_START - The start address of installed DRAM CONFIG_RAM_START=0x20000000 CONFIG_STM32_CCMEXCLUDE - Exclude CCM SRAM from the HEAP In addition to internal SRAM, SRAM may also be available through the FSMC. In order to use FSMC SRAM, the following additional things need to be present in the NuttX configuration file: CONFIG_STM32_EXTERNAL_RAM - Indicates that SRAM is available via the FSMC (as opposed to an LCD or FLASH). CONFIG_HEAP2_BASE - The base address of the SRAM in the FSMC address space (hex) CONFIG_HEAP2_END - The size of the SRAM in the FSMC address space (decimal) CONFIG_ARCH_FPU - The STM3240xxx supports a floating point unit (FPU) CONFIG_ARCH_FPU=y CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that have LEDs CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt stack. If defined, this symbol is the size of the interrupt stack in bytes. If not defined, the user task stacks will be used during interrupt handling. CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to board architecture. Individual subsystems can be enabled: AHB1 ---- CONFIG_STM32_CRC CONFIG_STM32_BKPSRAM CONFIG_STM32_CCMDATARAM CONFIG_STM32_DMA1 CONFIG_STM32_DMA2 CONFIG_STM32_ETHMAC CONFIG_STM32_OTGHS AHB2 ---- CONFIG_STM32_DCMI CONFIG_STM32_CRYP CONFIG_STM32_HASH CONFIG_STM32_RNG CONFIG_STM32_OTGFS AHB3 ---- CONFIG_STM32_FSMC APB1 ---- CONFIG_STM32_TIM2 CONFIG_STM32_TIM3 CONFIG_STM32_TIM4 CONFIG_STM32_TIM5 CONFIG_STM32_TIM6 CONFIG_STM32_TIM7 CONFIG_STM32_TIM12 CONFIG_STM32_TIM13 CONFIG_STM32_TIM14 CONFIG_STM32_WWDG CONFIG_STM32_IWDG CONFIG_STM32_SPI2 CONFIG_STM32_SPI3 CONFIG_STM32_USART2 CONFIG_STM32_USART3 CONFIG_STM32_UART4 CONFIG_STM32_UART5 CONFIG_STM32_I2C1 CONFIG_STM32_I2C2 CONFIG_STM32_I2C3 CONFIG_STM32_CAN1 CONFIG_STM32_CAN2 CONFIG_STM32_DAC1 CONFIG_STM32_DAC2 CONFIG_STM32_PWR -- Required for RTC APB2 ---- CONFIG_STM32_TIM1 CONFIG_STM32_TIM8 CONFIG_STM32_USART1 CONFIG_STM32_USART6 CONFIG_STM32_ADC1 CONFIG_STM32_ADC2 CONFIG_STM32_ADC3 CONFIG_STM32_SDIO CONFIG_STM32_SPI1 CONFIG_STM32_SYSCFG CONFIG_STM32_TIM9 CONFIG_STM32_TIM10 CONFIG_STM32_TIM11 Timer devices may be used for different purposes. One special purpose is to generate modulated outputs for such things as motor control. If CONFIG_STM32_TIMn is defined (as above) then the following may also be defined to indicate that the timer is intended to be used for pulsed output modulation, ADC conversion, or DAC conversion. Note that ADC/DAC require two definition: Not only do you have to assign the timer (n) for used by the ADC or DAC, but then you also have to configure which ADC or DAC (m) it is assigned to. CONFIG_STM32_TIMn_PWM Reserve timer n for use by PWM, n=1,..,14 CONFIG_STM32_TIMn_ADC Reserve timer n for use by ADC, n=1,..,14 CONFIG_STM32_TIMn_ADCm Reserve timer n to trigger ADCm, n=1,..,14, m=1,..,3 CONFIG_STM32_TIMn_DAC Reserve timer n for use by DAC, n=1,..,14 CONFIG_STM32_TIMn_DACm Reserve timer n to trigger DACm, n=1,..,14, m=1,..,2 For each timer that is enabled for PWM usage, we need the following additional configuration settings: CONFIG_STM32_TIMx_CHANNEL - Specifies the timer output channel {1,..,4} NOTE: The STM32 timers are each capable of generating different signals on each of the four channels with different duty cycles. That capability is not supported by this driver: Only one output channel per timer. JTAG Enable settings (by default JTAG-DP and SW-DP are disabled): CONFIG_STM32_JTAG_FULL_ENABLE - Enables full SWJ (JTAG-DP + SW-DP) CONFIG_STM32_JTAG_NOJNTRST_ENABLE - Enables full SWJ (JTAG-DP + SW-DP) but without JNTRST. CONFIG_STM32_JTAG_SW_ENABLE - Set JTAG-DP disabled and SW-DP enabled STM3240xxx specific device driver settings CONFIG_U[S]ARTn_SERIAL_CONSOLE - selects the USARTn (n=1,2,3) or UART m (m=4,5) for the console and ttys0 (default is the USART1). CONFIG_U[S]ARTn_RXBUFSIZE - Characters are buffered as received. This specific the size of the receive buffer CONFIG_U[S]ARTn_TXBUFSIZE - Characters are buffered before being sent. This specific the size of the transmit buffer CONFIG_U[S]ARTn_BAUD - The configure BAUD of the UART. Must be CONFIG_U[S]ARTn_BITS - The number of bits. Must be either 7 or 8. CONFIG_U[S]ARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity CONFIG_U[S]ARTn_2STOP - Two stop bits CONFIG_STM32_SPI_INTERRUPTS - Select to enable interrupt driven SPI support. Non-interrupt-driven, poll-waiting is recommended if the interrupt rate would be to high in the interrupt driven case. CONFIG_STM32_SPIx_DMA - Use DMA to improve SPIx transfer performance. Cannot be used with CONFIG_STM32_SPI_INTERRUPT. CONFIG_SDIO_DMA - Support DMA data transfers. Requires CONFIG_STM32_SDIO and CONFIG_STM32_DMA2. CONFIG_STM32_SDIO_PRI - Select SDIO interrupt priority. Default: 128 CONFIG_STM32_SDIO_DMAPRIO - Select SDIO DMA interrupt priority. Default: Medium CONFIG_STM32_SDIO_WIDTH_D1_ONLY - Select 1-bit transfer mode. Default: 4-bit transfer mode. CONFIG_STM32_PHYADDR - The 5-bit address of the PHY on the board CONFIG_STM32_MII - Support Ethernet MII interface CONFIG_STM32_MII_MCO1 - Use MCO1 to clock the MII interface CONFIG_STM32_MII_MCO2 - Use MCO2 to clock the MII interface CONFIG_STM32_RMII - Support Ethernet RMII interface CONFIG_STM32_AUTONEG - Use PHY autonegotiation to determine speed and mode CONFIG_STM32_ETHFD - If CONFIG_STM32_AUTONEG is not defined, then this may be defined to select full duplex mode. Default: half-duplex CONFIG_STM32_ETH100MBPS - If CONFIG_STM32_AUTONEG is not defined, then this may be defined to select 100 MBps speed. Default: 10 Mbps CONFIG_STM32_PHYSR - This must be provided if CONFIG_STM32_AUTONEG is defined. The PHY status register address may diff from PHY to PHY. This configuration sets the address of the PHY status register. CONFIG_STM32_PHYSR_SPEED - This must be provided if CONFIG_STM32_AUTONEG is defined. This provides bit mask indicating 10 or 100MBps speed. CONFIG_STM32_PHYSR_100MBPS - This must be provided if CONFIG_STM32_AUTONEG is defined. This provides the value of the speed bit(s) indicating 100MBps speed. CONFIG_STM32_PHYSR_MODE - This must be provided if CONFIG_STM32_AUTONEG is defined. This provide bit mask indicating full or half duplex modes. CONFIG_STM32_PHYSR_FULLDUPLEX - This must be provided if CONFIG_STM32_AUTONEG is defined. This provides the value of the mode bits indicating full duplex mode. CONFIG_STM32_ETH_PTP - Precision Time Protocol (PTP). Not supported but some hooks are indicated with this condition. STM3240G-EVAL CAN Configuration CONFIG_CAN - Enables CAN support (one or both of CONFIG_STM32_CAN1 or CONFIG_STM32_CAN2 must also be defined) CONFIG_CAN_FIFOSIZE - The size of the circular buffer of CAN messages. Default: 8 CONFIG_CAN_NPENDINGRTR - The size of the list of pending RTR requests. Default: 4 CONFIG_CAN_LOOPBACK - A CAN driver may or may not support a loopback mode for testing. The STM32 CAN driver does support loopback mode. CONFIG_STM32_CAN1_BAUD - CAN1 BAUD rate. Required if CONFIG_STM32_CAN1 is defined. CONFIG_STM32_CAN2_BAUD - CAN1 BAUD rate. Required if CONFIG_STM32_CAN2 is defined. CONFIG_STM32_CAN_TSEG1 - The number of CAN time quanta in segment 1. Default: 6 CONFIG_STM32_CAN_TSEG2 - the number of CAN time quanta in segment 2. Default: 7 CONFIG_STM32_CAN_REGDEBUG - If CONFIG_DEBUG_FEATURES is set, this will generate an dump of all CAN registers. STM3240G-EVAL LCD Hardware Configuration The LCD driver supports the following LCDs on the STM324xG_EVAL board: AM-240320L8TNQW00H (LCD_ILI9320 or LCD_ILI9321) OR AM-240320D5TOQW01H (LCD_ILI9325) Configuration options. CONFIG_LCD_LANDSCAPE - Define for 320x240 display "landscape" support. Default is this 320x240 "landscape" orientation For the STM3240G-EVAL board, the edge opposite from the row of buttons is used as the top of the display in this orientation. CONFIG_LCD_RLANDSCAPE - Define for 320x240 display "reverse landscape" support. Default is this 320x240 "landscape" orientation For the STM3240G-EVAL board, the edge next to the row of buttons is used as the top of the display in this orientation. CONFIG_LCD_PORTRAIT - Define for 240x320 display "portrait" orientation support. In this orientation, the STM3210E-EVAL's LCD ribbon cable is at the bottom of the display. Default is 320x240 "landscape" orientation. In this orientation, the top of the display is to the left of the buttons (if the board is held so that the buttons are at the bottom of the board). CONFIG_LCD_RPORTRAIT - Define for 240x320 display "reverse portrait" orientation support. In this orientation, the STM3210E-EVAL's LCD ribbon cable is at the top of the display. Default is 320x240 "landscape" orientation. In this orientation, the top of the display is to the right of the buttons (if the board is held so that the buttons are at the bottom of the board). CONFIG_STM3240G_LCD_RDSHIFT - When reading 16-bit gram data, there appears to be a shift in the returned data. This value fixes the offset. Default 5. The LCD driver dynamically selects the LCD based on the reported LCD ID value. However, code size can be reduced by suppressing support for individual LCDs using: CONFIG_STM3240G_ILI9320_DISABLE (includes ILI9321) CONFIG_STM3240G_ILI9325_DISABLE STM32 USB OTG FS Host Driver Support Pre-requisites CONFIG_USBHOST - Enable USB host support CONFIG_STM32_OTGFS - Enable the STM32 USB OTG FS block CONFIG_STM32_SYSCFG - Needed CONFIG_SCHED_WORKQUEUE - Worker thread support is required Options: CONFIG_STM32_OTGFS_RXFIFO_SIZE - Size of the RX FIFO in 32-bit words. Default 128 (512 bytes) CONFIG_STM32_OTGFS_NPTXFIFO_SIZE - Size of the non-periodic Tx FIFO in 32-bit words. Default 96 (384 bytes) CONFIG_STM32_OTGFS_PTXFIFO_SIZE - Size of the periodic Tx FIFO in 32-bit words. Default 96 (384 bytes) CONFIG_STM32_OTGFS_DESCSIZE - Maximum size of a descriptor. Default: 128 CONFIG_STM32_OTGFS_SOFINTR - Enable SOF interrupts. Why would you ever want to do that? CONFIG_STM32_USBHOST_REGDEBUG - Enable very low-level register access debug. Depends on CONFIG_DEBUG_FEATURES. CONFIG_STM32_USBHOST_PKTDUMP - Dump all incoming and outgoing USB packets. Depends on CONFIG_DEBUG_FEATURES. Configurations ============== Each STM3240G-EVAL configuration is maintained in a sub-directory and can be selected as follow: tools/configure.sh stm3240g-eval:<subdir> Where <subdir> is one of the following: dhcpd: ----- This builds the DHCP server using the apps/examples/dhcpd application (for execution from FLASH.) See apps/examples/README.txt for information about the dhcpd example. NOTES: 1. This configuration uses the mconf-based configuration tool. To change this configurations using that tool, you should: a. Build and install the kconfig-mconf tool. See nuttx/README.txt see additional README.txt files in the NuttX tools repository. b. Execute 'make menuconfig' in nuttx/ in order to start the reconfiguration process. 2. The server address is 10.0.0.1 and it serves IP addresses in the range 10.0.0.2 through 10.0.0.17 (all of which, of course, are configurable). 3. Default build environment (also easily reconfigured): CONFIG_HOST_WINDOWS=y CONFIG_WINDOWS_CYGWIN=y CONFIG_ARM_TOOLCHAIN_GNU_EABI=y discover: -------- This configuration exercises netutils/discover utility using apps/examples/discover. This example initializes and starts the UDP discover daemon. This daemon is useful for discovering devices in local networks, especially with DHCP configured devices. It listens for UDP broadcasts which also can include a device class so that groups of devices can be discovered. It is also possible to address all classes with a kind of broadcast discover. Configuration settings that you may need to change for your environment: CONFIG_ARM_TOOLCHAIN_GNU_EABI=y - GNU EABI toolchain for Linux CONFIG_EXAMPLES_DISCOVER_DHCPC=y - DHCP Client CONFIG_EXAMPLES_DISCOVER_IPADDR - (not defined) CONFIG_EXAMPLES_DISCOVER_DRIPADDR - Router IP address NOTE: This configuration uses to the kconfig-mconf configuration tool to control the configuration. See the section entitled "NuttX Configuration Tool" in the top-level README.txt file. fb -- A simple NSH configuration used for some basic (non-graphic) debug of the framebuffer character driver at drivers/video/fb.c. NOTE that the STM3240G-EVAL LCD driver does not support a framebuffer! It interfaces with the LCD through a parallel FSMC interface. This configuration uses the LCD framebuffer front end at drivers/lcd/lcd_framebuffer to convert the LCD interface into a compatible framebuffer interface. This examples supports the framebuffer test at apps/examples/fb. That test simply draws a pattern into the framebuffer and updates the LCD. This example also supports the pdcurses library at apps/graphics/pdcurses and the demo programs at apps/examples/pdcurses. This is a good test of the use of the framebuffer driver in an application. Many of the pdcurses demos requires user interaction via a mouse, keyboard, or joystick. No input devices are currently present in the configuration so no such interaction is possible. The STM3240G-EVAL does provide a on-board discrete joystick (djoystick) that could be used for this interaction. However, those discrete inputs do not go directly to the STM32 but rather go indirectly through an I/O expander. I just have not had the motivation to deal with that yet. STATUS: 2017-09-17: This configuration appears to be fully functional. 2017-11-25: Non-interactive pdcurses examples added. knxwm: ----- This is identical to the nxwm configuration below except that NuttX is built as a kernel-mode, monolithic module and the user applications are built separately. Is is recommended to use a special make command; not just 'make' but make with the following two arguments: make pass1 pass2 In the normal case (just 'make'), make will attempt to build both user- and kernel-mode blobs more or less interleaved. This actual works! However, for me it is very confusing so I prefer the above make command: Make the user-space binaries first (pass1), then make the kernel-space binaries (pass2) NOTES: 1. This configuration uses the mconf-based configuration tool. To change this configuration using that tool, you should: a. Build and install the kconfig-mconf tool. See nuttx/README.txt see additional README.txt files in the NuttX tools repository. b. Execute 'make menuconfig' in nuttx/ in order to start the reconfiguration process. 2. This is the default platform/toolchain in the configuration: CONFIG_HOST_WINDOWS=y : Windows CONFIG_WINDOWS_CYGWIN=y : Cygwin environment on Windows CONFIG_ARM_TOOLCHAIN_BUILDROOT=y : NuttX EABI buildroot toolchain CONFIG_ARCH_SIZET_LONG=y : size_t is long (maybe?) This is easily changed by modifying the configuration. 3. In addition to the protected mode build, this NxWM configuration differences from the nxwm configuration in that: a. Networking is disabled. There are issues with some of the network- related NSH commands and with Telnet in the protected build (see the top-level TODO file). Without these NSH commands, there is no use for networking in this configuration. b. The NxTerm windows are disabled. There are also issues with the NxTerm build now. NOTE: Those issues have been resolved. However, this configuration has not yet be re-verified with NxTerm enabled. c. The initialization sequence is quite different: NX and the touchscreen are initialized in kernel mode by logic in this src/ directory before the NxWM application is started. 4. At the end of the build, there will be several files in the top-level NuttX build directory: PASS1: nuttx_user.elf - The pass1 user-space ELF file nuttx_user.hex - The pass1 Intel HEX format file (selected in defconfig) User.map - Symbols in the user-space ELF file PASS2: nuttx - The pass2 kernel-space ELF file nuttx.hex - The pass2 Intel HEX file (selected in defconfig) System.map - Symbols in the kernel-space ELF file 5. Combining .hex files. If you plan to use the STM32 ST-Link Utility to load the .hex files into FLASH, then you need to combine the two hex files into a single .hex file. Here is how you can do that. a. The 'tail' of the nuttx.hex file should look something like this (with my comments added): $ tail nuttx.hex # 00, data records ... :10 9DC0 00 01000000000800006400020100001F0004 :10 9DD0 00 3B005A0078009700B500D400F300110151 :08 9DE0 00 30014E016D0100008D # 05, Start Linear Address Record :04 0000 05 0800 0419 D2 # 01, End Of File record :00 0000 01 FF Use an editor such as vi to remove the 05 and 01 records. b. The 'head' of the nuttx_user.hex file should look something like this (again with my comments added): $ head nuttx_user.hex # 04, Extended Linear Address Record :02 0000 04 0801 F1 # 00, data records :10 8000 00 BD89 01084C800108C8110208D01102087E :10 8010 00 0010 00201C1000201C1000203C16002026 :10 8020 00 4D80 01085D80010869800108ED83010829 ... Nothing needs to be done here. The nuttx_user.hex file should be fine. c. Combine the edited nuttx.hex and un-edited nuttx_user.hex file to produce a single combined hex file: $ cat nuttx.hex nuttx_user.hex >combined.hex Then use the combined.hex file with the STM32 ST-Link tool. If you do this a lot, you will probably want to invest a little time to develop a tool to automate these steps. STATUS: 2014-10-11: This worked at one time, but today I am getting a failure inside of the GCC library. This occurred with the computations at the end of touchscreen calibration. The NuttX code seems to be working correctly, but there is some problem with how the GCC integer math is hooked in??? I did not dig into this very deeply. nettest: ------- This configuration directory may be used to verify networking performance using the STM32's Ethernet controller. It uses apps/examples/nettest to exercise the TCP/IP network. CONFIG_ARM_TOOLCHAIN_GNU_EABI=y : GNU EABI toolchain for Windows CONFIG_EXAMPLES_NETTEST_SERVER=n : Target is configured as the client CONFIG_EXAMPLES_NETTEST_PERFORMANCE=y : Only network performance is verified. CONFIG_EXAMPLES_NETTEST_IPADDR=(10<<24|0<<16|0<<8|2) : Target side is IP: 10.0.0.2 CONFIG_EXAMPLES_NETTEST_DRIPADDR=(10<<24|0<<16|0<<8|1) : Host side is IP: 10.0.0.1 CONFIG_EXAMPLES_NETTEST_CLIENTIP=(10<<24|0<<16|0<<8|1) : Server address used by which ever is client. NOTES: 1. This configuration uses the mconf-based configuration tool. To change this configurations using that tool, you should: a. Build and install the kconfig-mconf tool. See nuttx/README.txt see additional README.txt files in the NuttX tools repository. b. Execute 'make menuconfig' in nuttx/ in order to start the reconfiguration process. nsh: --- Configures the NuttShell (nsh) located at apps/examples/nsh. The Configuration enables both the serial and telnet NSH interfaces. CONFIG_ARM_TOOLCHAIN_GNU_EABI=y : GNU EABI toolchain for Windows CONFIG_NSH_DHCPC=n : DHCP is disabled CONFIG_NSH_IPADDR=(10<<24|0<<16|0<<8|2) : Target IP address 10.0.0.2 CONFIG_NSH_DRIPADDR=(10<<24|0<<16|0<<8|1) : Host IP address 10.0.0.1 NOTES: 1. This configuration uses the mconf-based configuration tool. To change this configurations using that tool, you should: a. Build and install the kconfig-mconf tool. See nuttx/README.txt see additional README.txt files in the NuttX tools repository. b. Execute 'make menuconfig' in nuttx/ in order to start the reconfiguration process. 2. This example assumes that a network is connected. During its initialization, it will try to negotiate the link speed. If you have no network connected when you reset the board, there will be a long delay (maybe 30 seconds?) before anything happens. That is the timeout before the networking finally gives up and decides that no network is available. 3. This example supports the ADC test (apps/examples/adc) but this must be manually enabled by selecting: CONFIG_ADC=y : Enable the generic ADC infrastructure CONFIG_STM32_ADC3=y : Enable ADC3 CONFIG_STM32_TIM1=y : Enable Timer 1 CONFIG_STM32_TIM1_ADC=y : Indicate that timer 1 will be used to trigger an ADC CONFIG_STM32_TIM1_ADC3=y : Assign timer 1 to drive ADC3 sampling CONFIG_STM32_ADC3_SAMPLE_FREQUENCY=100 : Select a sampling frequency See also apps/examples/README.txt General debug for analog devices (ADC/DAC): CONFIG_DEBUG_ANALOG 4. This example supports the PWM test (apps/examples/pwm) but this must be manually enabled by selecting eeither CONFIG_PWM=y : Enable the generic PWM infrastructure CONFIG_PWM_PULSECOUNT=n : Disable to support for TIM1/8 pulse counts CONFIG_STM32_TIM4=y : Enable TIM4 CONFIG_STM32_TIM4_PWM=y : Use TIM4 to generate PWM output CONFIG_STM32_TIM4_CHANNEL=2 : Select output on TIM4, channel 2 If CONFIG_STM32_FSMC is disabled, output will appear on CN3, pin 32. Ground is available on CN3, pin1. Or.. CONFIG_PWM=y : Enable the generic PWM infrastructure CONFIG_PWM_PULSECOUNT=y : Enable to support for TIM1/8 pulse counts CONFIG_STM32_TIM8=y : Enable TIM8 CONFIG_STM32_TIM8_PWM=y : Use TIM8 to generate PWM output CONFIG_STM32_TIM8_CHANNEL=4 : Select output on TIM8, channel 4 If CONFIG_STM32_FSMC is disabled, output will appear on CN3, pin 17 Ground is available on CN23 pin1. See also include/board.h and apps/examples/README.txt Special PWM-only debug options: CONFIG_DEBUG_PWM_INFO 5. This example supports the CAN loopback test (apps/examples/can) but this must be manually enabled by selecting: CONFIG_CAN=y : Enable the generic CAN infrastructure CONFIG_CAN_EXTID=y or n : Enable to support extended ID frames CONFIG_STM32_CAN1=y : Enable CAN1 CONFIG_CAN_LOOPBACK=y : Enable CAN loopback mode See also apps/examples/README.txt Special CAN-only debug options: CONFIG_DEBUG_CAN_INFO CONFIG_STM32_CAN_REGDEBUG 6. This example can support an FTP client. In order to build in FTP client support simply uncomment the following lines in the defconfig file (before configuring) or in the .config file (after configuring): CONFIG_NETUTILS_FTPC=y CONFIG_EXAMPLES_FTPC=y 7. This example can support an FTP server. In order to build in FTP server support simply add the following lines in the defconfig file (before configuring) or in the .config file (after configuring): CONFIG_NETUTILS_FTPD=y CONFIG_EXAMPLES_FTPD=y 8. This example supports the watchdog timer test (apps/examples/watchdog) but this must be manually enabled by selecting: CONFIG_WATCHDOG=y : Enables watchdog timer driver support CONFIG_STM32_WWDG=y : Enables the WWDG timer facility, OR CONFIG_STM32_IWDG=y : Enables the IWDG timer facility (but not both) The WWDG watchdog is driven off the (fast) 42MHz PCLK1 and, as result, has a maximum timeout value of 49 milliseconds. For WWDG watchdog, you should also add the following to the configuration file: CONFIG_EXAMPLES_WATCHDOG_PINGDELAY=20 CONFIG_EXAMPLES_WATCHDOG_TIMEOUT=49 The IWDG timer has a range of about 35 seconds and should not be an issue. 9. Adding LCD and graphics support: defconfig (nuttx/.config): CONFIG_EXAMPLES_nx=y : Pick one or more CONFIG_EXAMPLES_nxhello=y : CONFIG_EXAMPLES_nximage : CONFIG_EXAMPLES_nxlines : CONFIG_STM32_FSMC=y : FSMC support is required for the LCD CONFIG_NX=y : Enable graphics support CONFIG_MM_REGIONS=3 : When FSMC is enabled, so is the on-board SRAM memory region 10. USB OTG FS Device or Host Support CONFIG_USBDEV : Enable USB device support, OR CONFIG_USBHOST : Enable USB host support CONFIG_STM32_OTGFS : Enable the STM32 USB OTG FS block CONFIG_STM32_SYSCFG : Needed CONFIG_SCHED_WORKQUEUE : Worker thread support is required 11. USB OTG FS Host Support. The following changes will enable support for a USB host on the STM32F4Discovery, including support for a mass storage class driver: CONFIG_USBDEV=n : Make sure the USB device support is disabled CONFIG_USBHOST=y : Enable USB host support CONFIG_STM32_OTGFS=y : Enable the STM32 USB OTG FS block CONFIG_STM32_SYSCFG=y : Needed for all USB OTF FS support CONFIG_SCHED_WORKQUEUE=y : Worker thread support is required for the mass storage class driver. CONFIG_NSH_ARCHINIT=y : Architecture specific USB initialization is needed for NSH CONFIG_FS_FAT=y : Needed by the USB host mass storage class. With those changes, you can use NSH with a FLASH pen driver as shown belong. Here NSH is started with nothing in the USB host slot: NuttShell (NSH) NuttX-x.yy nsh> ls /dev /dev: console null ttyS0 After inserting the FLASH drive, the /dev/sda appears and can be mounted like this: nsh> ls /dev /dev: console null sda ttyS0 nsh> mount -t vfat /dev/sda /mnt/stuff nsh> ls /mnt/stuff /mnt/stuff: -rw-rw-rw- 16236 filea.c And files on the FLASH can be manipulated to standard interfaces: nsh> echo "This is a test" >/mnt/stuff/atest.txt nsh> ls /mnt/stuff /mnt/stuff: -rw-rw-rw- 16236 filea.c -rw-rw-rw- 16 atest.txt nsh> cat /mnt/stuff/atest.txt This is a test nsh> cp /mnt/stuff/filea.c fileb.c nsh> ls /mnt/stuff /mnt/stuff: -rw-rw-rw- 16236 filea.c -rw-rw-rw- 16 atest.txt -rw-rw-rw- 16236 fileb.c To prevent data loss, don't forget to un-mount the FLASH drive before removing it: nsh> umount /mnt/stuff 12. By default, this configuration supports /dev/random using the STM32's RNG hardware. This can be disabled as follows: -CONFIG_STM32_RNG=y +CONFIG_STM32_RNG=n -CONFIG_DEV_RANDOM=y +CONFIG_DEV_RANDOM=n 13. This configuration requires that jumper JP22 be set to enable RS-232 operation. nsh2: ----- This is an alternative NSH configuration. One limitation of the STM3240G-EVAL board is that you cannot have both a UART-based NSH console and SDIO support. The nsh2 differs from the nsh configuration in the following ways: -CONFIG_STM32_USART3=y : USART3 is disabled +CONFIG_STM32_USART3=n -CONFIG_STM32_SDIO=n : SDIO is enabled +CONFIG_STM32_SDIO=y Logically, these are the only differences: This configuration has SDIO (and the SD card) enabled and the serial console disabled. There is ONLY a Telnet console!. There are some special settings to make life with only a Telnet CONFIG_RAMLOG=y - Enable the RAM-based logging feature. CONFIG_CONSOLE_SYSLOG=y - Use the RAM logger as the default console. This means that any console output from non-Telnet threads will go into the circular buffer in RAM. CONFIG_RAMLOG_SYSLOG - This enables the RAM-based logger as the system logger. This means that (1) in addition to the console output from other tasks, ALL of the debug output will also to to the circular buffer in RAM, and (2) NSH will now support a command called 'dmesg' that can be used to dump the RAM log. There are a few other configuration differences as necessary to support this different device configuration. Just the do the 'diff' if you are curious. NOTES: 1. This configuration uses the mconf-based configuration tool. To change this configurations using that tool, you should: a. Build and install the kconfig-mconf tool. See nuttx/README.txt see additional README.txt files in the NuttX tools repository. b. Execute 'make menuconfig' in nuttx/ in order to start the reconfiguration process. 2. See the notes for the nsh configuration. Most also apply to the nsh2 configuration. Like the nsh configuration, this configuration can be modified to support a variety of additional tests. 3. RS-232 is disabled, but Telnet is still available for use as a console. Since RS-232 and SDIO use the same pins (one controlled by JP22), RS232 and SDIO cannot be used concurrently. 4. This configuration requires that jumper JP22 be set to enable SDIO operation. To enable MicroSD Card, which shares same I/Os with RS-232, JP22 is not fitted. 5. In order to use SDIO without overruns, DMA must be used. The STM32 F4 has 192Kb of SRAM in two banks: 112Kb of "system" SRAM located at 0x2000:0000 and 64Kb of "CCM" SRAM located at 0x1000:0000. It appears that you cannot perform DMA from CCM SRAM. The work around that I have now is simply to omit the 64Kb of CCM SRAM from the heap so that all memory is allocated from System SRAM. This is done by setting: CONFIG_MM_REGIONS=1 Then DMA works fine. The downside is, of course, is that we lose 64Kb of precious SRAM. 6. Another SDIO/DMA issue. This one is probably a software bug. This is the bug as stated in the TODO list: "If you use a large I/O buffer to access the file system, then the MMCSD driver will perform multiple block SD transfers. With DMA ON, this seems to result in CRC errors detected by the hardware during the transfer. Workaround: CONFIG_MMCSD_MULTIBLOCK_LIMIT=1" For this reason, CONFIG_MMCSD_MULTIBLOCK_LIMIT=1 appears in the defconfig file. 7. Another DMA-related concern. I see this statement in the reference manual: "The burst configuration has to be selected in order to respect the AHB protocol, where bursts must not cross the 1 KB address boundary because the minimum address space that can be allocated to a single slave is 1 KB. This means that the 1 KB address boundary should not be crossed by a burst block transfer, otherwise an AHB error would be generated, that is not reported by the DMA registers." There is nothing in the DMA driver to prevent this now. nxterm: ---------- This is yet another NSH configuration. This NSH configuration differs from the others, however, in that it uses the NxTerm driver to host the NSH shell. NOTES: 1. This configuration uses the mconf-based configuration tool. To change this configurations using that tool, you should: a. Build and install the kconfig-mconf tool. See nuttx/README.txt see additional README.txt files in the NuttX tools repository. b. Execute 'make menuconfig' in nuttx/ in order to start the reconfiguration process. 2. Some of the differences in this configuration and the normal nsh configuration include these settings in the defconfig file: These select NX Multi-User mode: CONFG_NX_MULTIUSER=y CONFIG_DISABLE_MQUEUE=n The following definition in the defconfig file to enables the NxTerm driver: CONFIG_NXTERM=y And this selects examples/nxterm instead of examples/nsh: CONFIG_EXAMPLES_NXTERM=y LCD Orientation: CONFIG_LCD_LANDSCAPE=y : 320x240 landscape 3. Default build environment (also easily reconfigured): CONFIG_HOST_WINDOWS=y : Windows CONFIG_WINDOWS_CYGWIN=y : With Cygwin CONFIG_ARM_TOOLCHAIN_GNU_EABI=y : GNU EABI toolchain for Windows nxwm ---- This is a special configuration setup for the NxWM window manager UnitTest. The NxWM window manager can be found here: apps/graphics/NxWidgets/nxwm The NxWM unit test can be found at: apps/graphics/NxWidgets/UnitTests/nxwm telnetd: -------- A simple test of the Telnet daemon(see apps/netutils/README.txt, apps/examples/README.txt, and apps/examples/telnetd). This is the same daemon that is used in the nsh configuration so if you use NSH, then you don't care about this. This test is good for testing the Telnet daemon only because it works in a simpler environment than does the nsh configuration. NOTES: 1. This configuration uses the mconf-based configuration tool. To change this configurations using that tool, you should: a. Build and install the kconfig-mconf tool. See nuttx/README.txt see additional README.txt files in the NuttX tools repository. b. Execute 'make menuconfig' in nuttx/ in order to start the reconfiguration process. 2. Default build environment (easily reconfigured): CONFIG_HOST_WINDOWS=y CONFIG_WINDOWS_CYGWIN=y CONFIG_ARM_TOOLCHAIN_GNU_EABI=y xmlrpc ------ An example configuration for the Embeddable Lightweight XML-RPC Server at apps/examples/xmlrpc. See http://www.drdobbs.com/web-development/\ an-embeddable-lightweight-xml-rpc-server/184405364 for more info. Contributed by Max Holtzberg.