nuttx/arch/arm/src/sam34/sam_vectors.S
2014-06-25 08:25:52 -06:00

507 lines
18 KiB
ArmAsm

/************************************************************************************************
* arch/arm/src/sam34/sam_vectors.S
*
* Copyright (C) 2009-2010, 2013-2014 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
************************************************************************************************/
/************************************************************************************************
* Included Files
************************************************************************************************/
#include <nuttx/config.h>
#include <arch/irq.h>
#include "exc_return.h"
/************************************************************************************************
* Preprocessor Definitions
************************************************************************************************/
/* Configuration ********************************************************************************/
#ifdef CONFIG_ARCH_HIPRI_INTERRUPT
/* In kernel mode without an interrupt stack, this interrupt handler will set the MSP to the
* stack pointer of the interrupted thread. If the interrupted thread was a privileged
* thread, that will be the MSP otherwise it will be the PSP. If the PSP is used, then the
* value of the MSP will be invalid when the interrupt handler returns because it will be a
* pointer to an old position in the unprivileged stack. Then when the high priority
* interrupt occurs and uses this stale MSP, there will most likely be a system failure.
*
* If the interrupt stack is selected, on the other hand, then the interrupt handler will
* always set the the MSP to the interrupt stack. So when the high priority interrupt occurs,
* it will either use the MSP of the last privileged thread to run or, in the case of the
* nested interrupt, the interrupt stack if no privileged task has run.
*/
# if defined(CONFIG_NUTTX_KERNEL) && CONFIG_ARCH_INTERRUPTSTACK < 4
# error Interrupt stack must be used with high priority interrupts in kernel mode
# endif
/* Use the the BASEPRI to control interrupts is required if nested, high
* priority interrupts are supported.
*/
# ifndef CONFIG_ARMV7M_USEBASEPRI
# error CONFIG_ARMV7M_USEBASEPRI must be used with CONFIG_ARCH_HIPRI_INTERRUPT
# endif
#endif
/* Memory Map ***********************************************************************************/
/*
* 0x0800:0000 - Beginning of FLASH. Address of vectors. Mapped to address 0x0000:0000 at boot
* time.
* 0x0803:ffff - End of flash
* 0x2000:0000 - Start of SRAM and start of .data (_sdata)
* - End of .data (_edata) and start of .bss (_sbss)
* - End of .bss (_ebss) and bottom of idle stack
* - _ebss + CONFIG_IDLETHREAD_STACKSIZE = end of idle stack, start of heap. NOTE
* that the ARM uses a decrement before store stack so that the correct initial
* value is the end of the stack + 4;
* 0x2000:bfff - End of SRAM and end of heap
*/
#define IDLE_STACK (_ebss+CONFIG_IDLETHREAD_STACKSIZE-4)
#define HEAP_BASE (_ebss+CONFIG_IDLETHREAD_STACKSIZE)
/************************************************************************************************
* Global Symbols
************************************************************************************************/
.syntax unified
.thumb
.file "sam_vectors.S"
/* Check if common ARMv7 interrupt vectoring is used (see arch/arm/src/armv7-m/up_vectors.S) */
#ifndef CONFIG_ARMV7M_CMNVECTOR
.globl __start
/************************************************************************************************
* Macros
************************************************************************************************/
/* On entry into an IRQ, the hardware automatically saves the xPSR, PC, LR, R12, R0-R3
* registers on the stack, then branches to an instantantiation of the following
* macro. This macro simply loads the IRQ number into R0, then jumps to the common
* IRQ handling logic.
*/
.macro HANDLER, label, irqno
.thumb_func
\label:
mov r0, #\irqno
b exception_common
.endm
/************************************************************************************************
* Vectors
************************************************************************************************/
.section .vectors, "ax"
.code 16
.align 2
.globl _vectors
.type _vectors, function
_vectors:
/* Processor Exceptions */
.word IDLE_STACK /* Vector 0: Reset stack pointer */
.word __start /* Vector 1: Reset vector */
.word sam_nmi /* Vector 2: Non-Maskable Interrupt (NMI) */
.word sam_hardfault /* Vector 3: Hard fault */
.word sam_mpu /* Vector 4: Memory management (MPU) */
.word sam_busfault /* Vector 5: Bus fault */
.word sam_usagefault /* Vector 6: Usage fault */
.word sam_reserved /* Vector 7: Reserved */
.word sam_reserved /* Vector 8: Reserved */
.word sam_reserved /* Vector 9: Reserved */
.word sam_reserved /* Vector 10: Reserved */
.word sam_svcall /* Vector 11: SVC call */
.word sam_dbgmonitor /* Vector 12: Debug monitor */
.word sam_reserved /* Vector 13: Reserved */
.word sam_pendsv /* Vector 14: Pendable system service request */
.word sam_systick /* Vector 15: System tick */
/* External Interrupts */
#undef VECTOR
#define VECTOR(l,i) .word l
#undef UNUSED
#define UNUSED(i) .word sam_reserved
#if defined(CONFIG_ARCH_CHIP_SAM3U)
# include "chip/sam3u_vectors.h"
#elif defined(CONFIG_ARCH_CHIP_SAM3X) || defined(CONFIG_ARCH_CHIP_SAM3A)
# include "chip/sam3x_vectors.h"
#elif defined(CONFIG_ARCH_CHIP_SAM4CM)
# include "chip/sam4cm_vectors.h"
#elif defined(CONFIG_ARCH_CHIP_SAM4E)
# include "chip/sam4e_vectors.h"
#elif defined(CONFIG_ARCH_CHIP_SAM4L)
# include "chip/sam4l_vectors.h"
#elif defined(CONFIG_ARCH_CHIP_SAM4S)
# include "chip/sam4s_vectors.h"
#else
# error Unrecognized SAM architecture
#endif
.size _vectors, .-_vectors
/************************************************************************************************
* .text
************************************************************************************************/
.text
.type handlers, function
.thumb_func
handlers:
HANDLER sam_reserved, SAM_IRQ_RESERVED /* Unexpected/reserved vector */
HANDLER sam_nmi, SAM_IRQ_NMI /* Vector 2: Non-Maskable Interrupt (NMI) */
HANDLER sam_hardfault, SAM_IRQ_HARDFAULT /* Vector 3: Hard fault */
HANDLER sam_mpu, SAM_IRQ_MEMFAULT /* Vector 4: Memory management (MPU) */
HANDLER sam_busfault, SAM_IRQ_BUSFAULT /* Vector 5: Bus fault */
HANDLER sam_usagefault, SAM_IRQ_USAGEFAULT /* Vector 6: Usage fault */
HANDLER sam_svcall, SAM_IRQ_SVCALL /* Vector 11: SVC call */
HANDLER sam_dbgmonitor, SAM_IRQ_DBGMONITOR /* Vector 12: Debug Monitor */
HANDLER sam_pendsv, SAM_IRQ_PENDSV /* Vector 14: Penable system service request */
HANDLER sam_systick, SAM_IRQ_SYSTICK /* Vector 15: System tick */
#undef VECTOR
#define VECTOR(l,i) HANDLER l, i
#undef UNUSED
#define UNUSED(i)
#if defined(CONFIG_ARCH_CHIP_SAM3U)
# include "chip/sam3u_vectors.h"
#elif defined(CONFIG_ARCH_CHIP_SAM3X) || defined(CONFIG_ARCH_CHIP_SAM3A)
# include "chip/sam3x_vectors.h"
#elif defined(CONFIG_ARCH_CHIP_SAM4CM)
# include "chip/sam4cm_vectors.h"
#elif defined(CONFIG_ARCH_CHIP_SAM4E)
# include "chip/sam4e_vectors.h"
#elif defined(CONFIG_ARCH_CHIP_SAM4L)
# include "chip/sam4l_vectors.h"
#elif defined(CONFIG_ARCH_CHIP_SAM4S)
# include "chip/sam4s_vectors.h"
#else
# error Unrecognized SAM architecture
#endif
/* Common IRQ handling logic. On entry here, the return stack is on either
* the PSP or the MSP and looks like the following:
*
* REG_XPSR
* REG_R15
* REG_R14
* REG_R12
* REG_R3
* REG_R2
* REG_R1
* MSP->REG_R0
*
* And
* R0 contains the IRQ number
* R14 Contains the EXC_RETURN value
* We are in handler mode and the current SP is the MSP
*/
.globl exception_common
.type exception_common, function
exception_common:
/* Complete the context save */
#ifdef CONFIG_NUTTX_KERNEL
/* The EXC_RETURN value will be 0xfffffff9 (privileged thread) or 0xfffffff1
* (handler mode) if the stack is on the MSP. It can only be on the PSP if
* EXC_RETURN is 0xfffffffd (unprivileged thread)
*/
tst r14, #EXC_RETURN_PROCESS_STACK /* nonzero if context on process stack */
beq 1f /* Branch if context already on the MSP */
mrs r1, psp /* R1=The process stack pointer (PSP) */
mov sp, r1 /* Set the MSP to the PSP */
1:
#endif
/* r1 holds the value of the stack pointer AFTER the excption handling logic
* pushed the various registers onto the stack. Get r2 = the value of the
* stack pointer BEFORE the interrupt modified it.
*/
mov r2, sp /* R2=Copy of the main/process stack pointer */
add r2, #HW_XCPT_SIZE /* R2=MSP/PSP before the interrupt was taken */
#ifdef CONFIG_ARMV7M_USEBASEPRI
mrs r3, basepri /* R3=Current BASEPRI setting */
#else
mrs r3, primask /* R3=Current PRIMASK setting */
#endif
#ifdef CONFIG_ARCH_FPU
/* Skip over the block of memory reserved for floating pointer register save.
* Lazy FPU register saving is used. FPU registers will be saved in this
* block only if a context switch occurs (this means, of course, that the FPU
* cannot be used in interrupt processing).
*/
sub sp, #(4*SW_FPU_REGS)
#endif
/* Save the remaining registers on the stack after the registers pushed
* by the exception handling logic. r2=SP and r3=primask or basepri, r4-r11,
* r14=register values.
*/
#ifdef CONFIG_NUTTX_KERNEL
stmdb sp!, {r2-r11,r14} /* Save the remaining registers plus the SP value */
#else
stmdb sp!, {r2-r11} /* Save the remaining registers plus the SP value */
#endif
#ifndef CONFIG_ARCH_HIPRI_INTERRUPT
/* Disable interrupts, select the stack to use for interrupt handling
* and call up_doirq to handle the interrupt
*/
cpsid i /* Disable further interrupts */
#else
/* Set the BASEPRI register so that further normal interrupts will be
* masked. Nested, high priority may still occur, however.
*/
mov r2, #NVIC_SYSH_DISABLE_PRIORITY
msr basepri, r2 /* Set the BASEPRI */
#endif
/* There are two arguments to up_doirq:
*
* R0 = The IRQ number
* R1 = The top of the stack points to the saved state
*/
mov r1, sp
#if CONFIG_ARCH_INTERRUPTSTACK > 3
/* If CONFIG_ARCH_INTERRUPTSTACK is defined, we will set the MSP to use
* a special special interrupt stack pointer. The way that this is done
* here prohibits nested interrupts without some additional logic!
*/
ldr sp, =g_intstackbase
str r1, [sp, #-4]! /* Save the MSP on the interrupt stack */
bl up_doirq /* R0=IRQ, R1=register save (msp) */
ldr r1, [sp, #+4]! /* Recover R1=main stack pointer */
#else
/* Otherwise, we will re-use the interrupted thread's stack. That may
* mean using either MSP or PSP stack for interrupt level processing (in
* kernel mode).
*/
bl up_doirq /* R0=IRQ, R1=register save (msp) */
mov r1, sp /* Recover R1=main stack pointer */
#endif
/* On return from up_doirq, R0 will hold a pointer to register context
* array to use for the interrupt return. If that return value is the same
* as current stack pointer, then things are relatively easy.
*/
cmp r0, r1 /* Context switch? */
beq 2f /* Branch if no context switch */
/* We are returning with a pending context switch.
*
* If the FPU is enabled, then we will need to restore FPU registers.
* This is not done in normal interrupt save/restore because the cost
* is prohibitive. This is only done when switching contexts. A
* consequence of this is that floating point operations may not be
* performed in interrupt handling logic.
*
* Here:
* r0 = Address of the register save area
* NOTE: It is a requirement that up_restorefpu() preserve the value of
* r0!
*/
#ifdef CONFIG_ARCH_FPU
bl up_restorefpu /* Restore the FPU registers */
#endif
/* We are returning with a pending context switch. This case is different
* because in this case, the register save structure does not lie in the
* stack but, rather, within a TCB structure. We'll have to copy some
* values to the stack.
*/
add r1, r0, #SW_XCPT_SIZE /* R1=Address of HW save area in reg array */
ldmia r1, {r4-r11} /* Fetch eight registers in HW save area */
ldr r1, [r0, #(4*REG_SP)] /* R1=Value of SP before interrupt */
stmdb r1!, {r4-r11} /* Store eight registers in HW save area */
#ifdef CONFIG_NUTTX_KERNEL
ldmia r0, {r2-r11,r14} /* Recover R4-R11, r14 + 2 temp values */
#else
ldmia r0, {r2-r11} /* Recover R4-R11 + 2 temp values */
#endif
b 3f /* Re-join common logic */
/* We are returning with no context switch. We simply need to "unwind"
* the same stack frame that we created
*
* Here:
* r1 = Address of the return stack (same as r0)
*/
2:
#ifdef CONFIG_NUTTX_KERNEL
ldmia r1!, {r2-r11,r14} /* Recover R4-R11, r14 + 2 temp values */
#else
ldmia r1!, {r2-r11} /* Recover R4-R11 + 2 temp values */
#endif
#ifdef CONFIG_ARCH_FPU
/* Skip over the block of memory reserved for floating pointer register
* save. Then R1 is the address of the HW save area
*/
add r1, #(4*SW_FPU_REGS)
#endif
/* Set up to return from the exception
*
* Here:
* r1 = Address on the target thread's stack position at the start of
* the registers saved by hardware
* r3 = primask or basepri
* r4-r11 = restored register values
*/
3:
#ifdef CONFIG_NUTTX_KERNEL
/* The EXC_RETURN value will be 0xfffffff9 (privileged thread) or 0xfffffff1
* (handler mode) if the stack is on the MSP. It can only be on the PSP if
* EXC_RETURN is 0xfffffffd (unprivileged thread)
*/
mrs r2, control /* R2=Contents of the control register */
tst r14, #EXC_RETURN_PROCESS_STACK /* nonzero if context on process stack */
beq 4f /* Branch if privileged */
orr r2, r2, #1 /* Unprivileged mode */
msr psp, r1 /* R1=The process stack pointer */
b 5f
4:
bic r2, r2, #1 /* Privileged mode */
msr msp, r1 /* R1=The main stack pointer */
5:
msr control, r2 /* Save the updated control register */
#else
msr msp, r1 /* Recover the return MSP value */
/* Preload r14 with the special return value first (so that the return
* actually occurs with interrupts still disabled).
*/
ldr r14, =EXC_RETURN_PRIVTHR /* Load the special value */
#endif
/* Restore the interrupt state */
#ifdef CONFIG_ARMV7M_USEBASEPRI
msr basepri, r3 /* Restore interrupts priority masking */
#ifndef CONFIG_ARCH_HIPRI_INTERRUPT
cpsie i /* Re-enable interrupts */
#endif
#else
msr primask, r3 /* Restore interrupts */
#endif
/* Always return with R14 containing the special value that will: (1)
* return to thread mode, and (2) continue to use the MSP
*/
bx r14 /* And return */
.size handlers, .-handlers
/************************************************************************************************
* Name: g_intstackalloc/g_intstackbase
*
* Description:
* Shouldn't happen
*
************************************************************************************************/
#if CONFIG_ARCH_INTERRUPTSTACK > 3
.bss
.global g_intstackalloc
.global g_intstackbase
.align 4
g_intstackalloc:
.skip (CONFIG_ARCH_INTERRUPTSTACK & ~3)
g_intstackbase:
.size g_intstackalloc, .-g_intstackalloc
#endif
#endif /* CONFIG_ARMV7M_CMNVECTOR */
/************************************************************************************************
* .rodata
************************************************************************************************/
.section .rodata, "a"
/* Variables: _sbss is the start of the BSS region (see ld.script) _ebss is the end
* of the BSS regsion (see ld.script). The idle task stack starts at the end of BSS
* and is of size CONFIG_IDLETHREAD_STACKSIZE. The IDLE thread is the thread that
* the system boots on and, eventually, becomes the idle, do nothing task that runs
* only when there is nothing else to run. The heap continues from there until the
* end of memory. See g_idle_topstack below.
*/
.globl g_idle_topstack
.type g_idle_topstack, object
g_idle_topstack:
.word HEAP_BASE
.size g_idle_topstack, .-g_idle_topstack
.end