nuttx/drivers/mtd/s25fl1.c

1639 lines
56 KiB
C
Raw Normal View History

/****************************************************************************
* drivers/mtd/s25fl1.c
* Driver for QuadSPI-based S25FL116K, S25FL132K, and S25L164K
*
* Copyright (C) 2015 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/kmalloc.h>
#include <nuttx/signal.h>
#include <nuttx/fs/ioctl.h>
#include <nuttx/spi/qspi.h>
#include <nuttx/mtd/mtd.h>
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Configuration ************************************************************/
/* QuadSPI Mode. Per data sheet, either Mode 0 or Mode 3 may be used. */
#ifndef CONFIG_S25FL1_QSPIMODE
#define CONFIG_S25FL1_QSPIMODE QSPIDEV_MODE0
#endif
/* QuadSPI Frequency per data sheet::
*
* Normal Read (Serial):
* 50 MHz clock rate (-40°C to +85°C/105°C)
* 45 MHz clock rate (-40°C to +125°C)
* Fast Read (Serial):
* 108 MHz clock rate (-40°C to +85°C/105°C)
* 97 MHz clock rate (-40°C to +125°C)
* Dual Read:
* 108 MHz clock rate (-40°C to +85°C/105°C)
* 97 MHz clock rate (-40°C to +125°C)
* Quad Read:
* 108 MHz clock rate (-40°C to +85°C/105°C)
* 97 MHz clock rate for S25FL164K (-40°C to +125°C)
*
* Table 5.8:
* - Clock frequency for all SPI commands except for Read Data
* command (0x03) and Fast Read command (0x0b): 108 MHz
* - Clock frequency for Read Data command (0x03): 50 MHz
* - Clock frequency for all Fast Read commands SIO and MIO: 108 MHz
*
* In this implementation, only "Quad" reads are performed.
*/
#ifndef CONFIG_S25FL1_QSPI_FREQUENCY
#define CONFIG_S25FL1_QSPI_FREQUENCY 108000000
#endif
/* S25FL1 Commands **********************************************************/
/* Configuration, Status, Erase, Program Commands ***************************/
/* Command Value Description: */
/* Data sequence */
#define S25FL1_READ_STATUS1 0x05 /* Read status register 1: *
* 0x05 | SR1 */
#define S25FL1_READ_STATUS2 0x35 /* Read status register 2: *
* 0x35 | SR2 */
#define S25FL1_READ_STATUS3 0x33 /* Read status register 3: *
* 0x33 | SR3 */
#define S25FL1_WRITE_ENABLE 0x06 /* Write enable: *
* 0x06 */
#define S25FL1_VWRITE_ENABLE 0x50 /* Write enable for volatile status: *
* 0x50 */
#define S25FL1_WRITE_DISABLE 0x04 /* Write disable command code: *
* 0x04 */
#define S25FL1_WRITE_STATUS 0x01 /* Write status register: *
* 0x01 | SR1 | SR2 | SR3 */
#define S25FL1_WRAP_ENABLE 0x77 /* Set Burst with Wrap: *
* 0x77 | xx | xx | xx | SR3 */
#define S25FL1_UNPROTECT_SECTOR 0x39 /* Set Block / Pointer Protection: *
* 0x39 | ADDR(MS) | ADDR(MID) | xx */
#define S25FL1_PAGE_PROGRAM 0x02 /* Page Program: *
* 0x02 | ADDR(MS) | ADDR(MID) | *
* ADDR(LS) | data */
#define S25FL1_SECTOR_ERASE 0x20 /* Sector Erase (4 kB) *
* 0x02 | ADDR(MS) | ADDR(MID) | *
* ADDR(LS) */
#define S25FL1_BLOCK_ERASE 0xd8 /* Block Erase (64 kB): *
* 0x02 | ADDR(MS) | ADDR(MID) | *
* ADDR(LS) */
#define S25FL1_CHIP_ERASE_1 0x60 /* Chip Erase 1: *
* 0x60 */
#define S25FL1_CHIP_ERASE_2 0xc7 /* Chip Erase 2: *
* 0xc7 */
#define S25FL1_ERASE_PROG_SUSPEND 0x75 /* Erase / Program Suspend: *
* 0x75 */
#define S25FL1_ERASE_PROG_RESUME 0x7a /* Erase / Program Resume: *
* 0x7a */
/* Read Commands ************************************************************/
/* Command Value Description: */
/* Data sequence */
#define S25FL1_READ_DATA 0x03 /* Read Data: *
* 0x03 | ADDR(MS) | ADDR(MID) | *
* ADDR(LS) | data... */
#define S25FL1_FAST_READ 0x0b /* Fast Read: *
* 0x0b | ADDR(MS) | ADDR(MID) | *
* ADDR(LS) | dummy | data... */
#define S25FL1_FAST_READ_DUAL 0x3b /* Fast Read Dual Output: *
* 0x3b | ADDR(MS) | ADDR(MID) | *
* ADDR(LS) | dummy | data... */
#define S25FL1_FAST_READ_QUAD 0x6b /* Fast Read Dual Output: *
* 0x6b | ADDR(MS) | ADDR(MID) | *
* ADDR(LS) | dummy | data... */
#define S25FL1_FAST_READ_DUALIO 0xbb /* Fast Read Dual I/O: *
* 0xbb | ADDR(MS) | ADDR(LS) | data... */
#define S25FL1_FAST_READ_QUADIO 0xeb /* Fast Read Quad I/O: *
* 0xeb | ADDR | data... */
#define S25FL1_CONT_READ_RESET 0xff /* Continuous Read Mode Reset: *
* 0xff | 0xff */
/* Reset Commands ***********************************************************/
/* Command Value Description: */
/* Data sequence */
#define S25FL1_SOFT_RESET_ENABLE 0x66 /* Software Reset Enable: *
* 0x66 */
#define S25FL1_SOFT_RESET 0x99 /* Software Reset: *
* 0x99 */
/* Continuous Read Mode Reset: *
* 0xff | 0xff */
/* ID/Security Commands *************************&***************************/
/* Command Value Description: */
/* Data sequence */
#define S25FL1_DEEP_PWRDOWN 0xb9 /* Deep Power-down: *
* 0xb9 */
#define S25FL1_RELEASE_PWRDOWN 0xab /* Release Power down / Device ID: *
* 0xab | dummy | dummy | dummy | *
* DeviceID */
#define S25FL1_MANUFACTURER 0x90 /* Manufacturer / Device ID: *
* 0x90 | dummy | dummy | 0x00 | *
* Manufacturer | DeviceID */
#define S25FL1_JEDEC_ID 0x9f /* JEDEC ID: *
* 0x9f | Manufacturer | MemoryType | *
* Capacity */
#define S25FL1_READ_SFDP 0x5a /* Read SFDP Register / Read Unique ID *
* Number: *
* 0x5a | 0x00 | 0x00 | ADDR | dummy | *
* data... */
#define S25FL1_READ_SECURITY 0x48 /* Read Security Registers: *
* 0x48 | ADDR(MS) | ADDR(MID) | *
* ADDR(LS) | dummy | data... */
#define S25FL1_ERASE_SECURITY 0x44 /* Erase Security Registers: *
* 0x48 | ADDR(MS) | ADDR(MID) | *
* ADDR(LS) */
#define S25FL1_PROgRAM_SECURITY 0x42 /* Program Security Registers: *
* 0x42 | ADDR(MS) | ADDR(MID) | *
* ADDR(LS) | data... */
/* Flash Manufacturer JEDEC IDs */
#define S25FL1_JEDEC_ID_SPANSION 0x01
#define S25FL1_JEDEC_ID_ATMEL 0x1f
#define S25FL1_JEDEC_ID_ST 0x20
#define S25FL1_JEDEC_ID_SST 0xbf
#define S25FL1_JEDEC_ID_MACRONIX 0xc2
#define S25FL1_JEDEC_ID_WINBOND 0xef
/* S25FL1 JEDIC IDs */
#define S25FL1_JEDEC_DEVICE_TYPE 0x40 /* S25FL1 memory device type */
#define S25FL116K_JEDEC_CAPACITY 0x15 /* S25FL116K memory capacity */
#define S25FL132K_JEDEC_CAPACITY 0x16 /* S25FL132K memory capacity */
#define S25FL164K_JEDEC_CAPACITY 0x17 /* S25FL164K memory capacity */
/* S25FL1 Registers *********************************************************/
/* Status register bit definitions */
#define STATUS1_BUSY_MASK (1 << 0) /* Bit 0: Device ready/busy status */
#define STATUS1_READY (0 << 0) /* 0 = Not Busy */
#define STATUS1_BUSY (1 << 0) /* 1 = Busy */
#define STATUS1_WEL_MASK (1 << 1) /* Bit 1: Write enable latch status */
#define STATUS1_WEL_DISABLED (0 << 1) /* 0 = Not Write Enabled */
#define STATUS1_WEL_ENABLED (1 << 1) /* 1 = Write Enabled */
#define STATUS1_BP_SHIFT (2) /* Bits 2-4: Block protect bits */
#define STATUS1_BP_MASK (7 << STATUS1_BP_SHIFT)
#define STATUS1_BP_NONE (0 << STATUS1_BP_SHIFT)
#define STATUS1_BP_ALL (7 << STATUS1_BP_SHIFT)
#define STATUS1_TB_MASK (1 << 5) /* Bit 5: Top / Bottom Protect */
#define STATUS1_TB_TOP (0 << 5) /* 0 = BP2-BP0 protect Top down */
#define STATUS1_TB_BOTTOM (1 << 5) /* 1 = BP2-BP0 protect Bottom up */
#define STATUS1_SEC_MASK (1 << 6) /* Bit 6: Sector / Block Protect */
#define STATUS1_SEC_BLOCK (0 << 6) /* 0 = BP2-BP0 protect 64-kB blocks */
#define STATUS1_SEC_SECTOR (1 << 6) /* 1 = BP2-BP0 protect 4-kB sectors */
#define STATUS1_SRP0_MASK (1 << 7) /* Bit 7: Status register protect 0 */
#define STATUS1_SRP0_UNLOCKED (0 << 7) /* 0 = WP# no effect / PS Lock Down */
#define STATUS1_SRP0_LOCKED (1 << 7) /* 1 = WP# protect / OTP Lock Down */
#define STATUS2_SRP1_MASK (1 << 0) /* Bit 0: Status register protect 1 */
#define STATUS2_SRP1_UNLOCKED (0 << 0) /* 0 = WP# no effect / PS Lock Down */
#define STATUS2_SRP1_LOCKED (1 << 0) /* 1 = WP# protect / OTP Lock Down */
#define STATUS2_QUAD_ENABLE_MASK (1 << 1) /* Bit 1: Quad Enable */
#define STATUS2_QUAD_DISABLE (0 << 1) /* 0 = Quad Mode Not Enabled */
#define STATUS2_QUAD_ENABLE (1 << 1) /* 1 = Quad Mode Enabled */
#define STATUS2_LB_SHIFT (2) /* Bits 2-5: Security Register Lock */
#define STATUS2_LB_MASK (15 << STATUS2_LB_SHIFT)
#define STATUS2_LB_NONE (0 << STATUS2_LB_SHIFT)
#define STATUS2_LB_ALL (15 << STATUS2_LB_SHIFT)
#define STATUS2_CMP_MASK (1 << 6) /* Bit 6: Complement Protect */
#define STATUS2_CMP_NORMAL (0 << 6) /* 0 = Normal Protection Map */
#define STATUS2_CMP_INVERTED (1 << 6) /* 1 = Inverted Protection Map */
#define STATUS2_SUS_MASK (1 << 7) /* Bit 7: Suspend Status */
#define STATUS2_SUS_NONE (0 << 7) /* 0 = Erase / Program not suspended */
#define STATUS2_SUS_SUSPENDED (1 << 7) /* 1 = Erase / Program suspended */
#define STATUS3_LC_SHIFT (0) /* Bits 0-3: Latency control */
#define STATUS3_LC_MASK (15 << STATUS3_LC_SHIFT)
#define STATUS3_W4_MASK (1 << 4) /* Bit 4: Burst Wrap Enable */
#define STATUS3_W4_DISABLED (0 << 4) /* 0 = Wrap Enabled */
#define STATUS3_W4_ENABLED (1 << 4) /* 1 = Wrap Disabled */
#define STATUS3_W56_SHIFT (5) /* Bits 5-6: Burst Wrap Length */
#define STATUS3_W56_MASK (3 << STATUS3_W56_SHIFT)
#define STATUS3_W56_8BYTE (0 << STATUS3_W56_SHIFT)
#define STATUS3_W56_16BYTE (1 << STATUS3_W56_SHIFT)
#define STATUS3_W56_32BYTE (2 << STATUS3_W56_SHIFT)
#define STATUS3_W56_63BYTE (3 << STATUS3_W56_SHIFT)
/* Bit 7: Reserved */
/* Chip Geometries **********************************************************/
/* All members of the family support uniform 4K-byte sectors */
#define S25FL116K_SECTOR_SIZE (4*1024)
#define S25FL116K_SECTOR_SHIFT (12)
#define S25FL116K_SECTOR_COUNT (512)
#define S25FL116K_PAGE_SIZE (256)
#define S25FL116K_PAGE_SHIFT (8)
#define S25FL132K_SECTOR_SIZE (4*1024)
#define S25FL132K_SECTOR_SHIFT (12)
#define S25FL132K_SECTOR_COUNT (1024)
#define S25FL132K_PAGE_SIZE (256)
#define S25FL132K_PAGE_SHIFT (8)
#define S25FL164K_SECTOR_SIZE (4*1024)
#define S25FL164K_SECTOR_SHIFT (12)
#define S25FL164K_SECTOR_COUNT (2048)
#define S25FL164K_PAGE_SIZE (256)
#define S25FL164K_PAGE_SHIFT (8)
/* Cache flags **************************************************************/
#define S25FL1_CACHE_VALID (1 << 0) /* 1=Cache has valid data */
#define S25FL1_CACHE_DIRTY (1 << 1) /* 1=Cache is dirty */
#define S25FL1_CACHE_ERASED (1 << 2) /* 1=Backing FLASH is erased */
#define IS_VALID(p) ((((p)->flags) & S25FL1_CACHE_VALID) != 0)
#define IS_DIRTY(p) ((((p)->flags) & S25FL1_CACHE_DIRTY) != 0)
#define IS_ERASED(p) ((((p)->flags) & S25FL1_CACHE_ERASED) != 0)
#define SET_VALID(p) do { (p)->flags |= S25FL1_CACHE_VALID; } while (0)
#define SET_DIRTY(p) do { (p)->flags |= S25FL1_CACHE_DIRTY; } while (0)
#define SET_ERASED(p) do { (p)->flags |= S25FL1_CACHE_ERASED; } while (0)
#define CLR_VALID(p) do { (p)->flags &= ~S25FL1_CACHE_VALID; } while (0)
#define CLR_DIRTY(p) do { (p)->flags &= ~S25FL1_CACHE_DIRTY; } while (0)
#define CLR_ERASED(p) do { (p)->flags &= ~S25FL1_CACHE_ERASED; } while (0)
/* 512 byte sector support **************************************************/
#define S25FL1_SECTOR512_SHIFT 9
#define S25FL1_SECTOR512_SIZE (1 << 9)
#define S25FL1_ERASED_STATE 0xff
/****************************************************************************
* Private Types
****************************************************************************/
/* This type represents the state of the MTD device.
* The struct mtd_dev_s must appear at the beginning of the definition so
* that you can freely cast between pointers to struct mtd_dev_s and struct
* s25fl1_dev_s.
*/
struct s25fl1_dev_s
{
struct mtd_dev_s mtd; /* MTD interface */
FAR struct qspi_dev_s *qspi; /* Saved QuadSPI interface instance */
uint16_t nsectors; /* Number of erase sectors */
uint8_t sectorshift; /* Log2 of sector size */
uint8_t pageshift; /* Log2 of page size */
FAR uint8_t *cmdbuf; /* Allocated command buffer */
FAR uint8_t *readbuf; /* Allocated status read buffer */
#ifdef CONFIG_S25FL1_SECTOR512
uint8_t flags; /* Buffered sector flags */
uint16_t esectno; /* Erase sector number in the cache */
FAR uint8_t *sector; /* Allocated sector data */
#endif
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Locking */
static void s25fl1_lock(FAR struct qspi_dev_s *qspi);
static inline void s25fl1_unlock(FAR struct qspi_dev_s *qspi);
/* Low-level message helpers */
static int s25fl1_command(FAR struct qspi_dev_s *qspi,
uint8_t cmd);
static int s25fl1_command_address(FAR struct qspi_dev_s *qspi,
uint8_t cmd,
off_t addr,
uint8_t addrlen);
static int s25fl1_command_read(FAR struct qspi_dev_s *qspi,
uint8_t cmd,
FAR void *buffer,
size_t buflen);
static int s25fl1_command_write(FAR struct qspi_dev_s *qspi,
uint8_t cmd,
FAR const void *buffer,
size_t buflen);
static uint8_t sf25fl1_read_status1(FAR struct s25fl1_dev_s *priv);
static uint8_t sf25fl1_read_status2(FAR struct s25fl1_dev_s *priv);
static uint8_t sf25fl1_read_status3(FAR struct s25fl1_dev_s *priv);
static void s25fl1_write_enable(FAR struct s25fl1_dev_s *priv);
static void s25fl1_write_disable(FAR struct s25fl1_dev_s *priv);
static int s25fl1_readid(FAR struct s25fl1_dev_s *priv);
static int s25fl1_protect(FAR struct s25fl1_dev_s *priv,
off_t startblock,
size_t nblocks);
static int s25fl1_unprotect(FAR struct s25fl1_dev_s *priv,
off_t startblock,
size_t nblocks);
static bool s25fl1_isprotected(FAR struct s25fl1_dev_s *priv,
uint8_t status,
off_t address);
static int s25fl1_erase_sector(FAR struct s25fl1_dev_s *priv,
off_t offset);
static int s25fl1_erase_chip(FAR struct s25fl1_dev_s *priv);
static int s25fl1_read_byte(FAR struct s25fl1_dev_s *priv,
FAR uint8_t *buffer,
off_t address, size_t nbytes);
static int s25fl1_write_page(FAR struct s25fl1_dev_s *priv,
FAR const uint8_t *buffer,
off_t address,
size_t nbytes);
#ifdef CONFIG_S25FL1_SECTOR512
static int s25fl1_flush_cache(struct s25fl1_dev_s *priv);
static FAR uint8_t *s25fl1_read_cache(struct s25fl1_dev_s *priv,
off_t sector);
static void s25fl1_erase_cache(struct s25fl1_dev_s *priv,
off_t sector);
static int s25fl1_write_cache(FAR struct s25fl1_dev_s *priv,
FAR const uint8_t *buffer,
off_t sector,
size_t nsectors);
#endif
/* MTD driver methods */
static int s25fl1_erase(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks);
static ssize_t s25fl1_bread(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks,
FAR uint8_t *buf);
static ssize_t s25fl1_bwrite(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks,
FAR const uint8_t *buf);
static ssize_t s25fl1_read(FAR struct mtd_dev_s *dev,
off_t offset,
size_t nbytes,
FAR uint8_t *buffer);
static int s25fl1_ioctl(FAR struct mtd_dev_s *dev,
int cmd,
unsigned long arg);
/****************************************************************************
* Private Data
****************************************************************************/
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: s25fl1_lock
****************************************************************************/
static void s25fl1_lock(FAR struct qspi_dev_s *qspi)
{
/* On QuadSPI buses where there are multiple devices, it will be necessary
* to lock QuadSPI to have exclusive access to the buses for a sequence of
* transfers. The bus should be locked before the chip is selected.
*
* This is a blocking call and will not return until we have exclusive
* access to the QuadSPI bus.
* We will retain that exclusive access until the bus is unlocked.
*/
QSPI_LOCK(qspi, true);
/* After locking the QuadSPI bus, the we also need call the setfrequency,
* setbits, and setmode methods to make sure that the QuadSPI is properly
* configured for the device.
* If the QuadSPI bus is being shared, then it may have been left in an
* incompatible state.
*/
QSPI_SETMODE(qspi, CONFIG_S25FL1_QSPIMODE);
QSPI_SETBITS(qspi, 8);
QSPI_SETFREQUENCY(qspi, CONFIG_S25FL1_QSPI_FREQUENCY);
}
/****************************************************************************
* Name: s25fl1_unlock
****************************************************************************/
static inline void s25fl1_unlock(FAR struct qspi_dev_s *qspi)
{
QSPI_LOCK(qspi, false);
}
/****************************************************************************
* Name: s25fl1_command
****************************************************************************/
static int s25fl1_command(FAR struct qspi_dev_s *qspi, uint8_t cmd)
{
struct qspi_cmdinfo_s cmdinfo;
finfo("CMD: %02x\n", cmd);
cmdinfo.flags = 0;
cmdinfo.addrlen = 0;
cmdinfo.cmd = cmd;
cmdinfo.buflen = 0;
cmdinfo.addr = 0;
cmdinfo.buffer = NULL;
return QSPI_COMMAND(qspi, &cmdinfo);
}
/****************************************************************************
* Name: s25fl1_command_address
****************************************************************************/
static int s25fl1_command_address(FAR struct qspi_dev_s *qspi,
uint8_t cmd,
off_t addr,
uint8_t addrlen)
{
struct qspi_cmdinfo_s cmdinfo;
finfo("CMD: %02x Address: %04lx addrlen=%d\n",
cmd, (unsigned long)addr, addrlen);
cmdinfo.flags = QSPICMD_ADDRESS;
cmdinfo.addrlen = addrlen;
cmdinfo.cmd = cmd;
cmdinfo.buflen = 0;
cmdinfo.addr = addr;
cmdinfo.buffer = NULL;
return QSPI_COMMAND(qspi, &cmdinfo);
}
/****************************************************************************
* Name: s25fl1_command_read
****************************************************************************/
static int s25fl1_command_read(FAR struct qspi_dev_s *qspi, uint8_t cmd,
FAR void *buffer, size_t buflen)
{
struct qspi_cmdinfo_s cmdinfo;
finfo("CMD: %02x buflen: %lu\n", cmd, (unsigned long)buflen);
cmdinfo.flags = QSPICMD_READDATA;
cmdinfo.addrlen = 0;
cmdinfo.cmd = cmd;
cmdinfo.buflen = buflen;
cmdinfo.addr = 0;
cmdinfo.buffer = buffer;
return QSPI_COMMAND(qspi, &cmdinfo);
}
/****************************************************************************
* Name: s25fl1_command_write
****************************************************************************/
static int s25fl1_command_write(FAR struct qspi_dev_s *qspi, uint8_t cmd,
FAR const void *buffer, size_t buflen)
{
struct qspi_cmdinfo_s cmdinfo;
finfo("CMD: %02x buflen: %lu\n", cmd, (unsigned long)buflen);
cmdinfo.flags = QSPICMD_WRITEDATA;
cmdinfo.addrlen = 0;
cmdinfo.cmd = cmd;
cmdinfo.buflen = buflen;
cmdinfo.addr = 0;
cmdinfo.buffer = (FAR void *)buffer;
return QSPI_COMMAND(qspi, &cmdinfo);
}
/****************************************************************************
* Name: sf25fl1_read_status1
****************************************************************************/
static uint8_t sf25fl1_read_status1(FAR struct s25fl1_dev_s *priv)
{
DEBUGVERIFY(s25fl1_command_read(priv->qspi, S25FL1_READ_STATUS1,
(FAR void *)&priv->readbuf[0], 1));
return priv->readbuf[0];
}
/****************************************************************************
* Name: sf25fl1_read_status2
****************************************************************************/
static uint8_t sf25fl1_read_status2(FAR struct s25fl1_dev_s *priv)
{
DEBUGVERIFY(s25fl1_command_read(priv->qspi, S25FL1_READ_STATUS2,
(FAR void *)&priv->readbuf[0], 1));
return priv->readbuf[0];
}
/****************************************************************************
* Name: sf25fl1_read_status3
****************************************************************************/
static uint8_t sf25fl1_read_status3(FAR struct s25fl1_dev_s *priv)
{
DEBUGVERIFY(s25fl1_command_read(priv->qspi, S25FL1_READ_STATUS3,
(FAR void *)&priv->readbuf[0], 1));
return priv->readbuf[0];
}
/****************************************************************************
* Name: s25fl1_write_enable
****************************************************************************/
static void s25fl1_write_enable(FAR struct s25fl1_dev_s *priv)
{
uint8_t status;
do
{
s25fl1_command(priv->qspi, S25FL1_WRITE_ENABLE);
status = sf25fl1_read_status1(priv);
}
while ((status & STATUS1_WEL_MASK) != STATUS1_WEL_ENABLED);
}
/****************************************************************************
* Name: s25fl1_write_disable
****************************************************************************/
static void s25fl1_write_disable(FAR struct s25fl1_dev_s *priv)
{
uint8_t status;
do
{
s25fl1_command(priv->qspi, S25FL1_WRITE_DISABLE);
status = sf25fl1_read_status1(priv);
}
while ((status & STATUS1_WEL_MASK) != STATUS1_WEL_DISABLED);
}
/****************************************************************************
* Name: s25fl1_write_status
****************************************************************************/
static void s25fl1_write_status(FAR struct s25fl1_dev_s *priv)
{
s25fl1_write_enable(priv);
s25fl1_command_write(priv->qspi, S25FL1_WRITE_STATUS,
(FAR const void *)priv->cmdbuf, 3);
s25fl1_write_disable(priv);
}
/****************************************************************************
* Name: s25fl1_readid
****************************************************************************/
static inline int s25fl1_readid(struct s25fl1_dev_s *priv)
{
/* Lock the QuadSPI bus and configure the bus. */
s25fl1_lock(priv->qspi);
/* Read the JEDEC ID */
s25fl1_command_read(priv->qspi, S25FL1_JEDEC_ID, priv->cmdbuf, 3);
/* Unlock the bus */
s25fl1_unlock(priv->qspi);
finfo("Manufacturer: %02x Device Type %02x, Capacity: %02x",
priv->cmdbuf[0], priv->cmdbuf[1], priv->cmdbuf[2]);
/* Check for a recognized memory device type */
if (priv->cmdbuf[1] != S25FL1_JEDEC_DEVICE_TYPE)
{
ferr("ERROR: Unrecognized device type: %02x\n", priv->cmdbuf[1]);
return -ENODEV;
}
/* Check for a supported capacity */
switch (priv->cmdbuf[2])
{
case S25FL116K_JEDEC_CAPACITY:
priv->sectorshift = S25FL116K_SECTOR_SHIFT;
priv->pageshift = S25FL116K_PAGE_SHIFT;
priv->nsectors = S25FL116K_SECTOR_COUNT;
break;
case S25FL132K_JEDEC_CAPACITY:
priv->sectorshift = S25FL132K_SECTOR_SHIFT;
priv->pageshift = S25FL116K_PAGE_SHIFT;
priv->nsectors = S25FL132K_SECTOR_COUNT;
break;
case S25FL164K_JEDEC_CAPACITY:
priv->sectorshift = S25FL164K_SECTOR_SHIFT;
priv->pageshift = S25FL116K_PAGE_SHIFT;
priv->nsectors = S25FL164K_SECTOR_COUNT;
break;
/* Support for this part is not implemented yet */
default:
ferr("ERROR: Unsupported memory capacity: %02x\n", priv->cmdbuf[2]);
return -ENODEV;
2015-10-04 23:04:00 +02:00
}
2015-10-04 23:04:00 +02:00
return OK;
}
/****************************************************************************
* Name: s25fl1_protect
****************************************************************************/
2015-08-29 23:58:54 +02:00
static int s25fl1_protect(FAR struct s25fl1_dev_s *priv,
off_t startblock, size_t nblocks)
2015-08-29 23:58:54 +02:00
{
/* Get the status register value to check the current protection */
priv->cmdbuf[0] = sf25fl1_read_status1(priv);
priv->cmdbuf[1] = sf25fl1_read_status2(priv);
priv->cmdbuf[2] = sf25fl1_read_status3(priv);
2015-08-29 23:58:54 +02:00
if ((priv->cmdbuf[0] & STATUS1_BP_MASK) == STATUS1_BP_NONE)
2015-08-29 23:58:54 +02:00
{
/* Protection already disabled */
return 0;
}
/* Check if sector protection registers are locked */
if ((priv->cmdbuf[0] & STATUS1_SRP0_MASK) == STATUS1_SRP0_LOCKED)
2015-08-29 23:58:54 +02:00
{
/* Yes.. unprotect section protection registers */
priv->cmdbuf[0] &= ~STATUS1_SRP0_MASK;
s25fl1_write_status(priv);
2015-08-29 23:58:54 +02:00
}
/* Set the protection mask to zero.
* REVISIT: This logic should really just set the BP bits as
* necessary to protect the range of sectors.
*/
priv->cmdbuf[0] |= STATUS1_BP_MASK;
s25fl1_write_status(priv);
2015-08-29 23:58:54 +02:00
/* Check the new status */
priv->cmdbuf[0] = sf25fl1_read_status1(priv);
if ((priv->cmdbuf[0] & STATUS1_BP_MASK) != STATUS1_BP_MASK)
2015-08-29 23:58:54 +02:00
{
return -EACCES;
}
return OK;
}
/****************************************************************************
* Name: s25fl1_unprotect
****************************************************************************/
static int s25fl1_unprotect(FAR struct s25fl1_dev_s *priv,
off_t startblock, size_t nblocks)
2015-08-29 23:58:54 +02:00
{
/* Get the status register value to check the current protection */
priv->cmdbuf[0] = sf25fl1_read_status1(priv);
priv->cmdbuf[1] = sf25fl1_read_status2(priv);
priv->cmdbuf[2] = sf25fl1_read_status3(priv);
2015-08-29 23:58:54 +02:00
if ((priv->cmdbuf[0] & STATUS1_BP_MASK) == STATUS1_BP_NONE &&
(priv->cmdbuf[1] & STATUS2_CMP_MASK) == 0)
2015-08-29 23:58:54 +02:00
{
/* Protection already disabled */
return 0;
}
/* Check if sector protection registers are locked */
if ((priv->cmdbuf[0] & STATUS1_SRP0_MASK) == STATUS1_SRP0_LOCKED)
2015-08-29 23:58:54 +02:00
{
/* Yes.. unprotect section protection registers */
priv->cmdbuf[0] &= ~STATUS1_SRP0_MASK;
s25fl1_write_status(priv);
2015-08-29 23:58:54 +02:00
}
/* Set the protection mask to zero (and not complemented).
2015-08-29 23:58:54 +02:00
* REVISIT: This logic should really just re-write the BP bits as
* necessary to unprotect the range of sectors.
*/
priv->cmdbuf[0] &= ~STATUS1_BP_MASK;
priv->cmdbuf[1] &= ~STATUS2_CMP_MASK;
s25fl1_write_status(priv);
2015-08-29 23:58:54 +02:00
/* Check the new status */
priv->cmdbuf[0] = sf25fl1_read_status1(priv);
if ((priv->cmdbuf[0] & (STATUS1_SRP0_MASK | STATUS1_BP_MASK)) != 0)
2015-08-29 23:58:54 +02:00
{
return -EACCES;
}
return OK;
}
/****************************************************************************
* Name: s25fl1_isprotected
****************************************************************************/
2015-08-29 23:58:54 +02:00
static bool s25fl1_isprotected(FAR struct s25fl1_dev_s *priv, uint8_t status,
off_t address)
{
2015-08-29 23:58:54 +02:00
off_t protstart;
off_t protend;
off_t protsize;
unsigned int bp;
/* What is protected? 64 Kb blocks? Or 4Kb sectors? */
if ((status & STATUS1_SEC_MASK) == STATUS1_SEC_BLOCK)
{
/* 64 Kb block */
protsize = 0x00010000;
}
else
{
/* 4 Kb sector */
protsize = 0x00001000;
}
/* The BP field is the essentially a multiplier on this protection size */
bp = (status & STATUS1_BP_MASK) >> STATUS1_BP_SHIFT;
switch (bp)
{
case 0:
return false;
case 1:
break;
case 6:
case 7:
return true;
default:
protsize <<= (protsize << (bp - 1));
break;
}
/* The final protection range then depends on if the protection region is
* configured top-down or bottom up (assuming CMP=0).
*/
if ((status & STATUS1_TB_MASK) != 0)
{
protstart = 0x00000000;
protend = protstart + protsize;
}
else
{
protend = 0x00200000;
protstart = protend - protsize;
}
return (address >= protstart && address < protend);
}
/****************************************************************************
* Name: s25fl1_erase_sector
****************************************************************************/
static int s25fl1_erase_sector(struct s25fl1_dev_s *priv, off_t sector)
{
off_t address;
uint8_t status;
finfo("sector: %08lx\n", (unsigned long)sector);
/* Check that the flash is ready and unprotected */
status = sf25fl1_read_status1(priv);
if ((status & STATUS1_BUSY_MASK) != STATUS1_READY)
{
ferr("ERROR: Flash busy: %02x", status);
return -EBUSY;
}
2015-08-29 23:58:54 +02:00
/* Get the address associated with the sector */
address = (off_t)sector << priv->sectorshift;
if ((status & STATUS1_BP_MASK) != 0 &&
s25fl1_isprotected(priv, status, address))
{
ferr("ERROR: Flash protected: %02x", status);
2015-08-29 23:58:54 +02:00
return -EACCES;
}
/* Send the sector erase command */
s25fl1_write_enable(priv);
s25fl1_command_address(priv->qspi, S25FL1_SECTOR_ERASE, address, 3);
/* Wait for erasure to finish */
while ((sf25fl1_read_status1(priv) & STATUS1_BUSY_MASK) != 0);
return OK;
}
/****************************************************************************
* Name: s25fl1_erase_chip
****************************************************************************/
static int s25fl1_erase_chip(struct s25fl1_dev_s *priv)
{
uint8_t status;
/* Check if the FLASH is protected */
status = sf25fl1_read_status1(priv);
if ((status & STATUS1_BP_MASK) != 0)
{
ferr("ERROR: FLASH is Protected: %02x", status);
return -EACCES;
}
/* Erase the whole chip */
s25fl1_write_enable(priv);
s25fl1_command(priv->qspi, S25FL1_CHIP_ERASE_2);
/* Wait for the erasure to complete */
status = sf25fl1_read_status1(priv);
while ((status & STATUS1_BUSY_MASK) != 0)
{
nxsig_usleep(200 * 1000);
status = sf25fl1_read_status1(priv);
}
return OK;
}
/****************************************************************************
* Name: s25fl1_read_byte
****************************************************************************/
static int s25fl1_read_byte(FAR struct s25fl1_dev_s *priv,
FAR uint8_t *buffer,
off_t address,
size_t buflen)
{
2015-08-28 20:01:08 +02:00
struct qspi_meminfo_s meminfo;
finfo("address: %08lx nbytes: %d\n", (long)address, (int)buflen);
2015-08-28 20:01:08 +02:00
#ifdef CONFIG_S25FL1_SCRAMBLE
2015-08-28 20:01:08 +02:00
meminfo.flags = QSPIMEM_READ | QSPIMEM_QUADIO | QSPIMEM_SCRAMBLE;
#else
meminfo.flags = QSPIMEM_READ | QSPIMEM_QUADIO;
#endif
meminfo.addrlen = 3;
meminfo.dummies = 6;
meminfo.buflen = buflen;
meminfo.cmd = S25FL1_FAST_READ_QUADIO;
2015-08-28 20:01:08 +02:00
meminfo.addr = address;
#ifdef CONFIG_S25FL1_SCRAMBLE
meminfo.key = CONFIG_S25FL1_SCRAMBLE_KEY;
2015-08-28 20:01:08 +02:00
#endif
meminfo.buffer = buffer;
return QSPI_MEMORY(priv->qspi, &meminfo);
}
/****************************************************************************
* Name: s25fl1_write_page
****************************************************************************/
static int s25fl1_write_page(struct s25fl1_dev_s *priv,
FAR const uint8_t *buffer,
off_t address,
size_t buflen)
{
2015-08-28 20:01:08 +02:00
struct qspi_meminfo_s meminfo;
unsigned int pagesize;
unsigned int npages;
int ret;
int i;
finfo("address: %08lx buflen: %u\n",
(unsigned long)address, (unsigned)buflen);
2015-08-28 20:01:08 +02:00
npages = (buflen >> priv->pageshift);
pagesize = (1 << priv->pageshift);
/* Set up non-varying parts of transfer description */
#ifdef CONFIG_S25FL1_SCRAMBLE
2015-08-28 20:01:08 +02:00
meminfo.flags = QSPIMEM_WRITE | QSPIMEM_SCRAMBLE;
#else
meminfo.flags = QSPIMEM_WRITE;
#endif
meminfo.cmd = S25FL1_PAGE_PROGRAM;
2015-08-28 20:01:08 +02:00
meminfo.addrlen = 3;
meminfo.buflen = pagesize;
#ifdef CONFIG_S25FL1_SCRAMBLE
meminfo.key = CONFIG_S25FL1_SCRAMBLE_KEY;
2015-08-28 20:01:08 +02:00
#endif
meminfo.dummies = 0;
/* Then write each page */
for (i = 0; i < npages; i++)
{
/* Set up varying parts of the transfer description */
meminfo.addr = address;
meminfo.buffer = (void *)buffer;
/* Write one page */
s25fl1_write_enable(priv);
2015-08-28 20:01:08 +02:00
ret = QSPI_MEMORY(priv->qspi, &meminfo);
s25fl1_write_disable(priv);
2015-08-28 20:01:08 +02:00
if (ret < 0)
{
ferr("ERROR: QSPI_MEMORY failed writing address=%06x\n",
address);
2015-08-28 20:01:08 +02:00
return ret;
}
/* Update for the next time through the loop */
buffer += pagesize;
address += pagesize;
buflen -= pagesize;
}
/* The transfer should always be an even number of sectors and hence also
* pages. There should be no remainder.
*/
DEBUGASSERT(buflen == 0);
return OK;
}
/****************************************************************************
* Name: s25fl1_flush_cache
****************************************************************************/
#ifdef CONFIG_S25FL1_SECTOR512
static int s25fl1_flush_cache(struct s25fl1_dev_s *priv)
{
2015-08-29 23:58:54 +02:00
int ret = OK;
/* If the cached is dirty (meaning that it no longer matches the old FLASH
* contents) or was erased (with the cache containing the correct FLASH
* contents), then write the cached erase block to FLASH.
*/
if (IS_DIRTY(priv) || IS_ERASED(priv))
{
off_t address;
/* Convert the erase sector numuber into a FLASH address */
address = (off_t)priv->esectno << priv->sectorshift;
/* Write entire erase block to FLASH */
2015-08-29 23:58:54 +02:00
ret = s25fl1_write_page(priv,
priv->sector,
address,
1 << priv->sectorshift);
2015-08-29 23:58:54 +02:00
if (ret < 0)
{
ferr("ERROR: s25fl1_write_page failed: %d\n", ret);
2015-08-29 23:58:54 +02:00
}
/* The case is no long dirty and the FLASH is no longer erased */
CLR_DIRTY(priv);
CLR_ERASED(priv);
}
2015-08-28 20:01:08 +02:00
2015-08-29 23:58:54 +02:00
return ret;
}
#endif
/****************************************************************************
* Name: s25fl1_read_cache
****************************************************************************/
#ifdef CONFIG_S25FL1_SECTOR512
static FAR uint8_t *s25fl1_read_cache(struct s25fl1_dev_s *priv,
off_t sector)
{
off_t esectno;
int shift;
int index;
2015-08-28 20:01:08 +02:00
int ret;
/* Convert from the 512 byte sector to the erase sector size of the device.
* For exmample, if the actual erase sector size if 4Kb (1 << 12), then we
* first shift to the right by 3 to get the sector number in 4096
* increments.
*/
shift = priv->sectorshift - S25FL1_SECTOR512_SHIFT;
esectno = sector >> shift;
finfo("sector: %ld esectno: %d shift=%d\n", sector, esectno, shift);
/* Check if the requested erase block is already in the cache */
if (!IS_VALID(priv) || esectno != priv->esectno)
{
/* No.. Flush any dirty erase block currently in the cache */
ret = s25fl1_flush_cache(priv);
2015-08-28 20:01:08 +02:00
if (ret < 0)
{
ferr("ERROR: s25fl1_flush_cache failed: %d\n", ret);
2015-08-28 20:01:08 +02:00
return NULL;
}
/* Read the erase block into the cache */
ret = s25fl1_read_byte(priv, priv->sector,
(esectno << priv->sectorshift),
(1 << priv->sectorshift));
2015-08-28 20:01:08 +02:00
if (ret < 0)
{
ferr("ERROR: s25fl1_read_byte failed: %d\n", ret);
2015-08-28 20:01:08 +02:00
return NULL;
}
/* Mark the sector as cached */
priv->esectno = esectno;
SET_VALID(priv); /* The data in the cache is valid */
CLR_DIRTY(priv); /* It should match the FLASH contents */
CLR_ERASED(priv); /* The underlying FLASH has not been erased */
}
/* Get the index to the 512 sector in the erase block that holds the
* argument
*/
index = sector & ((1 << shift) - 1);
/* Return the address in the cache that holds this sector */
return &priv->sector[index << S25FL1_SECTOR512_SHIFT];
}
#endif
/****************************************************************************
* Name: s25fl1_erase_cache
****************************************************************************/
#ifdef CONFIG_S25FL1_SECTOR512
static void s25fl1_erase_cache(struct s25fl1_dev_s *priv, off_t sector)
{
FAR uint8_t *dest;
/* First, make sure that the erase block containing the 512 byte sector is
* in the cache.
*/
dest = s25fl1_read_cache(priv, sector);
/* Erase the block containing this sector if it is not already erased.
* The erased indicated will be cleared when the data from the erase
* sector is read into the cache and set here when we erase the block.
*/
if (!IS_ERASED(priv))
{
off_t esectno = sector >>
(priv->sectorshift - S25FL1_SECTOR512_SHIFT);
finfo("sector: %ld esectno: %d\n", sector, esectno);
DEBUGVERIFY(s25fl1_erase_sector(priv, esectno));
SET_ERASED(priv);
}
/* Put the cached sector data into the erase state and mart the cache as
* dirty (but don't update the FLASH yet. The caller will do that at a
* more optimal time).
*/
memset(dest, S25FL1_ERASED_STATE, S25FL1_SECTOR512_SIZE);
SET_DIRTY(priv);
}
#endif
/****************************************************************************
* Name: s25fl1_write_cache
****************************************************************************/
#ifdef CONFIG_S25FL1_SECTOR512
static int s25fl1_write_cache(FAR struct s25fl1_dev_s *priv,
FAR const uint8_t *buffer, off_t sector,
size_t nsectors)
{
FAR uint8_t *dest;
2015-08-28 20:01:08 +02:00
int ret;
for (; nsectors > 0; nsectors--)
{
/* First, make sure that the erase block containing 512 byte sector is
* in memory.
*/
dest = s25fl1_read_cache(priv, sector);
/* Erase the block containing this sector if it is not already erased.
* The erased indicated will be cleared when the data from the erase
* sector is read into the cache and set here when we erase the sector.
*/
if (!IS_ERASED(priv))
{
off_t esectno = sector >>
(priv->sectorshift - S25FL1_SECTOR512_SHIFT);
finfo("sector: %ld esectno: %d\n", sector, esectno);
ret = s25fl1_erase_sector(priv, esectno);
2015-08-28 20:01:08 +02:00
if (ret < 0)
{
ferr("ERROR: s25fl1_erase_sector failed: %d\n", ret);
2015-08-28 20:01:08 +02:00
return ret;
}
SET_ERASED(priv);
}
/* Copy the new sector data into cached erase block */
memcpy(dest, buffer, S25FL1_SECTOR512_SIZE);
SET_DIRTY(priv);
/* Set up for the next 512 byte sector */
buffer += S25FL1_SECTOR512_SIZE;
sector++;
}
/* Flush the last erase block left in the cache */
return s25fl1_flush_cache(priv);
}
#endif
/****************************************************************************
* Name: s25fl1_erase
****************************************************************************/
static int s25fl1_erase(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks)
{
FAR struct s25fl1_dev_s *priv = (FAR struct s25fl1_dev_s *)dev;
size_t blocksleft = nblocks;
#ifdef CONFIG_S25FL1_SECTOR512
int ret;
#endif
finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* Lock access to the SPI bus until we complete the erase */
s25fl1_lock(priv->qspi);
while (blocksleft-- > 0)
{
/* Erase each sector */
#ifdef CONFIG_S25FL1_SECTOR512
s25fl1_erase_cache(priv, startblock);
#else
s25fl1_erase_sector(priv, startblock);
#endif
startblock++;
}
#ifdef CONFIG_S25FL1_SECTOR512
/* Flush the last erase block left in the cache */
ret = s25fl1_flush_cache(priv);
2015-08-28 20:01:08 +02:00
if (ret < 0)
{
nblocks = ret;
}
#endif
s25fl1_unlock(priv->qspi);
return (int)nblocks;
}
/****************************************************************************
* Name: s25fl1_bread
****************************************************************************/
static ssize_t s25fl1_bread(FAR struct mtd_dev_s *dev, off_t startblock,
size_t nblocks, FAR uint8_t *buffer)
{
#ifndef CONFIG_S25FL1_SECTOR512
FAR struct s25fl1_dev_s *priv = (FAR struct s25fl1_dev_s *)dev;
#endif
ssize_t nbytes;
finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* On this device, we can handle the block read just like the byte-oriented
* read
*/
#ifdef CONFIG_S25FL1_SECTOR512
nbytes = s25fl1_read(dev, startblock << S25FL1_SECTOR512_SHIFT,
nblocks << S25FL1_SECTOR512_SHIFT, buffer);
if (nbytes > 0)
{
nbytes >>= S25FL1_SECTOR512_SHIFT;
}
#else
nbytes = s25fl1_read(dev, startblock << priv->pageshift,
nblocks << priv->pageshift, buffer);
if (nbytes > 0)
{
nbytes >>= priv->pageshift;
}
#endif
return nbytes;
}
/****************************************************************************
* Name: s25fl1_bwrite
****************************************************************************/
static ssize_t s25fl1_bwrite(FAR struct mtd_dev_s *dev, off_t startblock,
size_t nblocks, FAR const uint8_t *buffer)
{
FAR struct s25fl1_dev_s *priv = (FAR struct s25fl1_dev_s *)dev;
2015-08-28 20:01:08 +02:00
int ret = (int)nblocks;
finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* Lock the QuadSPI bus and write all of the pages to FLASH */
s25fl1_lock(priv->qspi);
#if defined(CONFIG_S25FL1_SECTOR512)
ret = s25fl1_write_cache(priv, buffer, startblock, nblocks);
2015-08-28 20:01:08 +02:00
if (ret < 0)
{
ferr("ERROR: s25fl1_write_cache failed: %d\n", ret);
2015-08-28 20:01:08 +02:00
}
#else
ret = s25fl1_write_page(priv, buffer, startblock << priv->pageshift,
nblocks << priv->pageshift);
2015-08-28 20:01:08 +02:00
if (ret < 0)
{
ferr("ERROR: s25fl1_write_page failed: %d\n", ret);
2015-08-28 20:01:08 +02:00
}
#endif
2015-08-28 20:01:08 +02:00
s25fl1_unlock(priv->qspi);
return ret < 0 ? ret : nblocks;
}
/****************************************************************************
* Name: s25fl1_read
****************************************************************************/
static ssize_t s25fl1_read(FAR struct mtd_dev_s *dev,
off_t offset,
size_t nbytes,
FAR uint8_t *buffer)
{
FAR struct s25fl1_dev_s *priv = (FAR struct s25fl1_dev_s *)dev;
2015-08-28 20:01:08 +02:00
int ret;
finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes);
/* Lock the QuadSPI bus and select this FLASH part */
s25fl1_lock(priv->qspi);
ret = s25fl1_read_byte(priv, buffer, offset, nbytes);
s25fl1_unlock(priv->qspi);
2015-08-28 20:01:08 +02:00
if (ret < 0)
{
ferr("ERROR: s25fl1_read_byte returned: %d\n", ret);
2015-08-28 20:01:08 +02:00
return (ssize_t)ret;
}
finfo("return nbytes: %d\n", (int)nbytes);
2015-08-28 20:01:08 +02:00
return (ssize_t)nbytes;
}
/****************************************************************************
* Name: s25fl1_ioctl
****************************************************************************/
static int s25fl1_ioctl(FAR struct mtd_dev_s *dev,
int cmd,
unsigned long arg)
{
FAR struct s25fl1_dev_s *priv = (FAR struct s25fl1_dev_s *)dev;
int ret = -EINVAL; /* Assume good command with bad parameters */
finfo("cmd: %d \n", cmd);
switch (cmd)
{
case MTDIOC_GEOMETRY:
{
FAR struct mtd_geometry_s *geo =
(FAR struct mtd_geometry_s *)((uintptr_t)arg);
if (geo)
{
/* Populate the geometry structure with information need to
* know the capacity and how to access the device.
*
* NOTE:
* that the device is treated as though it where just an array
* of fixed size blocks. That is most likely not true, but
* the client will expect the device logic to do whatever is
* necessary to make it appear so.
*/
#ifdef CONFIG_S25FL1_SECTOR512
geo->blocksize = (1 << S25FL1_SECTOR512_SHIFT);
geo->erasesize = (1 << S25FL1_SECTOR512_SHIFT);
geo->neraseblocks = priv->nsectors <<
(priv->sectorshift - S25FL1_SECTOR512_SHIFT);
#else
geo->blocksize = (1 << priv->pageshift);
geo->erasesize = (1 << priv->sectorshift);
geo->neraseblocks = priv->nsectors;
#endif
ret = OK;
finfo("blocksize: %d erasesize: %d neraseblocks: %d\n",
geo->blocksize, geo->erasesize, geo->neraseblocks);
}
}
break;
case MTDIOC_BULKERASE:
{
/* Erase the entire device */
s25fl1_lock(priv->qspi);
ret = s25fl1_erase_chip(priv);
s25fl1_unlock(priv->qspi);
}
break;
2015-08-29 23:58:54 +02:00
case MTDIOC_PROTECT:
{
FAR const struct mtd_protect_s *prot =
(FAR const struct mtd_protect_s *)((uintptr_t)arg);
DEBUGASSERT(prot);
ret = s25fl1_protect(priv, prot->startblock, prot->nblocks);
2015-08-29 23:58:54 +02:00
}
break;
case MTDIOC_UNPROTECT:
{
FAR const struct mtd_protect_s *prot =
(FAR const struct mtd_protect_s *)((uintptr_t)arg);
DEBUGASSERT(prot);
ret = s25fl1_unprotect(priv, prot->startblock, prot->nblocks);
2015-08-29 23:58:54 +02:00
}
break;
default:
2015-08-29 23:58:54 +02:00
ret = -ENOTTY; /* Bad/unsupported command */
break;
}
finfo("return %d\n", ret);
return ret;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: s25fl1_initialize
*
* Description:
* Create an initialize MTD device instance for the QuadSPI-based ST24FL1
* FLASH part.
*
* MTD devices are not registered in the file system, but are created as
* instances that can be bound to other functions (such as a block or
* character driver front end).
*
****************************************************************************/
FAR struct mtd_dev_s *s25fl1_initialize(FAR struct qspi_dev_s *qspi,
bool unprotect)
{
FAR struct s25fl1_dev_s *priv;
int ret;
finfo("qspi: %p\n", qspi);
DEBUGASSERT(qspi != NULL);
/* Allocate a state structure (we allocate the structure instead of using
* a fixed, static allocation so that we can handle multiple FLASH devices.
* The current implementation would handle only one FLASH part per QuadSPI
* device (only because of the QSPIDEV_FLASH(0) definition) and so would
* have to be extended to handle multiple FLASH parts on the same QuadSPI
* bus.
*/
priv = (FAR struct s25fl1_dev_s *)kmm_zalloc(sizeof(struct s25fl1_dev_s));
if (priv)
{
/* Initialize the allocated structure (unsupported methods were
* nullified by kmm_zalloc).
*/
priv->mtd.erase = s25fl1_erase;
priv->mtd.bread = s25fl1_bread;
priv->mtd.bwrite = s25fl1_bwrite;
priv->mtd.read = s25fl1_read;
priv->mtd.ioctl = s25fl1_ioctl;
priv->mtd.name = "s25fl1";
priv->qspi = qspi;
/* Allocate a 4-byte buffer to support DMA command data */
priv->cmdbuf = (FAR uint8_t *)QSPI_ALLOC(qspi, 4);
if (priv->cmdbuf == NULL)
{
ferr("ERROR Failed to allocate command buffer\n");
goto errout_with_priv;
}
/* Allocate a one-byte buffer to support DMA status read data */
priv->readbuf = (FAR uint8_t *)QSPI_ALLOC(qspi, 1);
if (priv->readbuf == NULL)
{
ferr("ERROR Failed to allocate read buffer\n");
goto errout_with_cmdbuf;
}
/* Identify the FLASH chip and get its capacity */
ret = s25fl1_readid(priv);
if (ret != OK)
{
/* Unrecognized! Discard all of that work we just did and return
* NULL
*/
ferr("ERROR Unrecognized QSPI device\n");
goto errout_with_readbuf;
}
/* Enable quad mode */
priv->cmdbuf[0] = sf25fl1_read_status1(priv);
priv->cmdbuf[1] = sf25fl1_read_status2(priv);
priv->cmdbuf[2] = sf25fl1_read_status3(priv);
while ((priv->cmdbuf[1] & STATUS2_QUAD_ENABLE_MASK) == 0)
{
priv->cmdbuf[1] |= STATUS2_QUAD_ENABLE;
s25fl1_write_status(priv);
priv->cmdbuf[1] = sf25fl1_read_status2(priv);
nxsig_usleep(50 * 1000);
}
/* Unprotect FLASH sectors if so requested. */
if (unprotect)
{
ret = s25fl1_unprotect(priv, 0, priv->nsectors - 1);
if (ret < 0)
{
ferr("ERROR: Sector unprotect failed\n");
}
}
#ifdef CONFIG_S25FL1_SECTOR512 /* Simulate a 512 byte sector */
/* Allocate a buffer for the erase block cache */
priv->sector = (FAR uint8_t *)QSPI_ALLOC(qspi, 1 << priv->sectorshift);
if (priv->sector == NULL)
{
/* Allocation failed!
* Discard all of that work we just did and return NULL
*/
ferr("ERROR: Sector allocation failed\n");
goto errout_with_readbuf;
}
#endif
}
/* Return the implementation-specific state structure as the MTD device */
finfo("Return %p\n", priv);
return (FAR struct mtd_dev_s *)priv;
errout_with_readbuf:
QSPI_FREE(qspi, priv->readbuf);
errout_with_cmdbuf:
QSPI_FREE(qspi, priv->cmdbuf);
errout_with_priv:
kmm_free(priv);
return NULL;
}