nuttx/arch/arm/src/efm32/efm32_adc.c

1320 lines
38 KiB
C
Raw Normal View History

2015-09-05 10:51:33 +02:00
/****************************************************************************
* arch/arm/src/efm32/efm32_adc.c
*
* Copyright (C) 2014 Bouteville Pierre-Noel. All rights reserved.
* Copyright (C) 2016 Gregory Nutt. All rights reserved.
2015-09-05 10:51:33 +02:00
* Authors: Bouteville Pierre-Noel <pnb990@gmail.com>
* Gregory Nutt <gnutt@nuttx.org>
2015-09-05 10:51:33 +02:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <stdio.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <unistd.h>
#include <string.h>
#include <semaphore.h>
#include <errno.h>
#include <assert.h>
#include <debug.h>
#include <unistd.h>
#include <arch/board/board.h>
#include <nuttx/irq.h>
2015-09-05 10:51:33 +02:00
#include <nuttx/arch.h>
#include <nuttx/analog/adc.h>
#include "up_internal.h"
#include "up_arch.h"
#include "chip.h"
#include "efm32.h"
#include "efm32_adc.h"
/* ADC "lower half" support must be enabled */
2015-09-05 10:51:33 +02:00
#ifdef CONFIG_EFM32_ADC
2015-09-05 10:51:33 +02:00
/* Some ADC peripheral must be enabled */
2015-09-05 15:50:02 +02:00
#if defined(CONFIG_EFM32_ADC1)
2015-09-05 10:51:33 +02:00
2015-09-05 15:50:02 +02:00
/* This implementation is for the EFM32GG Only */
2015-09-05 10:51:33 +02:00
2015-09-05 15:50:02 +02:00
#if defined(CONFIG_EFM32_EFM32GG)
2015-09-05 10:51:33 +02:00
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* ADC interrupts ***********************************************************/
/* The maximum number of channels that can be sampled. If dma support is
* not enabled, then only a single channel can be sampled. Otherwise,
* data overruns would occur.
*/
#ifdef CONFIG_ADC_DMA
# define ADC_MAX_SAMPLES 16
# warning "not tested !"
#else
# define ADC_MAX_SAMPLES 1
#endif
/****************************************************************************
* Private Types
****************************************************************************/
/* This structure describes the state of one ADC block */
struct efm32_dev_s
{
FAR const struct adc_callback_s *cb;
2015-09-05 10:51:33 +02:00
uint8_t irq; /* Interrupt generated by this ADC block */
uint8_t nchannels; /* Number of channels */
uint8_t current; /* Current ADC channel being converted */
xcpt_t isr; /* Interrupt handler for this ADC block */
uint32_t base; /* Base address of registers unique to this ADC block */
uint8_t chanlist[ADC_MAX_SAMPLES];
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* ADC Register access */
2015-10-06 01:13:53 +02:00
static uint32_t adc_getreg(struct efm32_dev_s *priv, int offset);
static void adc_putreg(struct efm32_dev_s *priv, int offset, uint32_t value);
static void adc_hw_reset(struct efm32_dev_s *priv, bool reset);
2015-09-05 10:51:33 +02:00
/* ADC Interrupt Handler */
static int adc_interrupt(int irq, FAR void *context, FAR struct adc_dev_s *dev);
2015-09-05 10:51:33 +02:00
/* ADC Driver Methods */
static int adc_bind(FAR struct adc_dev_s *dev,
FAR const struct adc_callback_s *callback);
2015-09-05 10:51:33 +02:00
static void adc_reset(FAR struct adc_dev_s *dev);
static int adc_setup(FAR struct adc_dev_s *dev);
static void adc_shutdown(FAR struct adc_dev_s *dev);
static void adc_rxint(FAR struct adc_dev_s *dev, bool enable);
static int adc_ioctl(FAR struct adc_dev_s *dev, int cmd, unsigned long arg);
static void adc_enable(FAR struct efm32_dev_s *priv, bool enable);
2015-09-05 10:51:33 +02:00
#ifdef ADC_HAVE_TIMER
static void adc_timstart(FAR struct efm32_dev_s *priv, bool enable);
static int adc_timinit(FAR struct efm32_dev_s *priv);
2015-09-05 10:51:33 +02:00
#endif
2015-09-05 15:50:02 +02:00
#if defined(CONFIG_EFM32_EFM32GG)
static void adc_startconv(FAR struct efm32_dev_s *priv, bool enable);
2015-09-05 10:51:33 +02:00
#endif
/****************************************************************************
* Private Data
****************************************************************************/
/* ADC interface operations */
static const struct adc_ops_s g_adcops =
{
.ao_bind = adc_bind,
2015-09-05 10:51:33 +02:00
.ao_reset = adc_reset,
.ao_setup = adc_setup,
.ao_shutdown = adc_shutdown,
.ao_rxint = adc_rxint,
.ao_ioctl = adc_ioctl,
};
/* ADC1 state */
#ifdef CONFIG_EFM32_ADC1
static struct efm32_dev_s g_adcpriv1 =
{
.irq = EFM32_IRQ_ADC0,
.isr = adc_interrupt,
.base = EFM32_ADC1_BASE,
2015-09-05 10:51:33 +02:00
};
static struct adc_dev_s g_adcdev1 =
{
.ad_ops = &g_adcops,
.ad_priv = &g_adcpriv1,
2015-09-05 10:51:33 +02:00
};
#endif
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: adc_getreg
*
* Description:
* Read the value of an ADC register.
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to read
*
* Returned Value:
*
****************************************************************************/
static uint32_t adc_getreg(struct efm32_dev_s *priv, int offset)
2015-09-05 10:51:33 +02:00
{
return getreg32(priv->base + offset);
}
/****************************************************************************
* Name: adc_getreg
*
* Description:
* Read the value of an ADC register.
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to read
*
* Returned Value:
*
****************************************************************************/
static void adc_putreg(struct efm32_dev_s *priv, int offset, uint32_t value)
2015-09-05 10:51:33 +02:00
{
putreg32(value, priv->base + offset);
}
/****************************************************************************
* Name: ADC_CalibrateLoadScan
*
* Description:
2015-09-05 10:51:33 +02:00
* Load SCAN calibrate register with predefined values for a certain
* reference.
*
* During production, calibration values are made and stored in the device
* information page for known references. Notice that for external references,
* calibration values must be determined explicitly, and this function
* will not modify the calibration register.
*
* Input Parameters:
* adc - Pointer to ADC peripheral register block.
* ref - Reference to load calibrated values for. No values are loaded for
2015-09-05 10:51:33 +02:00
* external references.
*
****************************************************************************/
2015-09-05 10:51:33 +02:00
static void ADC_CalibrateLoadScan(ADC_TypeDef *adc, ADC_Ref_TypeDef ref)
{
uint32_t cal;
/* Load proper calibration data depending on selected reference
* NOTE: We use ...SCAN... defines below, they are the same as
* similar ...SINGLE... defines.
*/
2015-09-05 10:51:33 +02:00
switch (ref)
{
case adcRef1V25:
cal = adc->CAL & ~(_ADC_CAL_SCANOFFSET_MASK | _ADC_CAL_SCANGAIN_MASK);
cal |= ((DEVINFO->ADC0CAL0 & _DEVINFO_ADC0CAL0_1V25_GAIN_MASK) >>
_DEVINFO_ADC0CAL0_1V25_GAIN_SHIFT) << _ADC_CAL_SCANGAIN_SHIFT;
cal |= ((DEVINFO->ADC0CAL0 & _DEVINFO_ADC0CAL0_1V25_OFFSET_MASK) >>
_DEVINFO_ADC0CAL0_1V25_OFFSET_SHIFT) << _ADC_CAL_SCANOFFSET_SHIFT;
adc->CAL = cal;
break;
case adcRef2V5:
cal = adc->CAL & ~(_ADC_CAL_SCANOFFSET_MASK | _ADC_CAL_SCANGAIN_MASK);
cal |= ((DEVINFO->ADC0CAL0 & _DEVINFO_ADC0CAL0_2V5_GAIN_MASK) >>
_DEVINFO_ADC0CAL0_2V5_GAIN_SHIFT) << _ADC_CAL_SCANGAIN_SHIFT;
cal |= ((DEVINFO->ADC0CAL0 & _DEVINFO_ADC0CAL0_2V5_OFFSET_MASK) >>
_DEVINFO_ADC0CAL0_2V5_OFFSET_SHIFT) << _ADC_CAL_SCANOFFSET_SHIFT;
adc->CAL = cal;
break;
case adcRefVDD:
cal = adc->CAL & ~(_ADC_CAL_SCANOFFSET_MASK | _ADC_CAL_SCANGAIN_MASK);
cal |= ((DEVINFO->ADC0CAL1 & _DEVINFO_ADC0CAL1_VDD_GAIN_MASK) >>
_DEVINFO_ADC0CAL1_VDD_GAIN_SHIFT) << _ADC_CAL_SCANGAIN_SHIFT;
cal |= ((DEVINFO->ADC0CAL1 & _DEVINFO_ADC0CAL1_VDD_OFFSET_MASK) >>
_DEVINFO_ADC0CAL1_VDD_OFFSET_SHIFT) << _ADC_CAL_SCANOFFSET_SHIFT;
adc->CAL = cal;
break;
case adcRef5VDIFF:
cal = adc->CAL & ~(_ADC_CAL_SCANOFFSET_MASK | _ADC_CAL_SCANGAIN_MASK);
cal |= ((DEVINFO->ADC0CAL1 & _DEVINFO_ADC0CAL1_5VDIFF_GAIN_MASK) >>
_DEVINFO_ADC0CAL1_5VDIFF_GAIN_SHIFT) << _ADC_CAL_SCANGAIN_SHIFT;
cal |= ((DEVINFO->ADC0CAL1 & _DEVINFO_ADC0CAL1_5VDIFF_OFFSET_MASK) >>
_DEVINFO_ADC0CAL1_5VDIFF_OFFSET_SHIFT) << _ADC_CAL_SCANOFFSET_SHIFT;
adc->CAL = cal;
break;
case adcRef2xVDD:
/* Gain value not of relevance for this reference, leave as is */
2015-09-05 10:51:33 +02:00
cal = adc->CAL & ~_ADC_CAL_SCANOFFSET_MASK;
cal |= ((DEVINFO->ADC0CAL2 & _DEVINFO_ADC0CAL2_2XVDDVSS_OFFSET_MASK) >>
_DEVINFO_ADC0CAL2_2XVDDVSS_OFFSET_SHIFT) << _ADC_CAL_SCANOFFSET_SHIFT;
adc->CAL = cal;
break;
/* For external references, the calibration must be determined for the
* specific application and set explicitly.
*/
2015-09-05 10:51:33 +02:00
default:
break;
}
}
/****************************************************************************
* Name: ADC_CalibrateLoadSingle
*
* Description:
2015-09-05 10:51:33 +02:00
* Load SINGLE calibrate register with predefined values for a certain
* reference.
*
* During production, calibration values are made and stored in the device
* information page for known references. Notice that for external references,
* calibration values must be determined explicitly, and this function
* will not modify the calibration register.
*
* Input Parameters:
* adc - Pointer to ADC peripheral register block.
* ref - Reference to load calibrated values for. No values are loaded for
* external references.
2015-09-05 10:51:33 +02:00
*
****************************************************************************/
2015-09-05 10:51:33 +02:00
static void ADC_CalibrateLoadSingle(ADC_TypeDef *adc, ADC_Ref_TypeDef ref)
{
uint32_t cal;
/* Load proper calibration data depending on selected reference
* NOTE: We use ...SCAN... defines below, they are the same as
* similar ...SINGLE... defines.
*/
2015-09-05 10:51:33 +02:00
switch (ref)
{
case adcRef1V25:
cal = adc->CAL & ~(_ADC_CAL_SINGLEOFFSET_MASK | _ADC_CAL_SINGLEGAIN_MASK);
cal |= ((DEVINFO->ADC0CAL0 & _DEVINFO_ADC0CAL0_1V25_GAIN_MASK) >>
_DEVINFO_ADC0CAL0_1V25_GAIN_SHIFT) << _ADC_CAL_SINGLEGAIN_SHIFT;
cal |= ((DEVINFO->ADC0CAL0 & _DEVINFO_ADC0CAL0_1V25_OFFSET_MASK) >>
_DEVINFO_ADC0CAL0_1V25_OFFSET_SHIFT) << _ADC_CAL_SINGLEOFFSET_SHIFT;
adc->CAL = cal;
break;
case adcRef2V5:
cal = adc->CAL & ~(_ADC_CAL_SINGLEOFFSET_MASK | _ADC_CAL_SINGLEGAIN_MASK);
cal |= ((DEVINFO->ADC0CAL0 & _DEVINFO_ADC0CAL0_2V5_GAIN_MASK) >>
_DEVINFO_ADC0CAL0_2V5_GAIN_SHIFT) << _ADC_CAL_SINGLEGAIN_SHIFT;
cal |= ((DEVINFO->ADC0CAL0 & _DEVINFO_ADC0CAL0_2V5_OFFSET_MASK) >>
_DEVINFO_ADC0CAL0_2V5_OFFSET_SHIFT) << _ADC_CAL_SINGLEOFFSET_SHIFT;
adc->CAL = cal;
break;
case adcRefVDD:
cal = adc->CAL & ~(_ADC_CAL_SINGLEOFFSET_MASK | _ADC_CAL_SINGLEGAIN_MASK);
cal |= ((DEVINFO->ADC0CAL1 & _DEVINFO_ADC0CAL1_VDD_GAIN_MASK) >>
_DEVINFO_ADC0CAL1_VDD_GAIN_SHIFT) << _ADC_CAL_SINGLEGAIN_SHIFT;
cal |= ((DEVINFO->ADC0CAL1 & _DEVINFO_ADC0CAL1_VDD_OFFSET_MASK) >>
_DEVINFO_ADC0CAL1_VDD_OFFSET_SHIFT) << _ADC_CAL_SINGLEOFFSET_SHIFT;
adc->CAL = cal;
break;
case adcRef5VDIFF:
cal = adc->CAL & ~(_ADC_CAL_SINGLEOFFSET_MASK | _ADC_CAL_SINGLEGAIN_MASK);
cal |= ((DEVINFO->ADC0CAL1 & _DEVINFO_ADC0CAL1_5VDIFF_GAIN_MASK) >>
_DEVINFO_ADC0CAL1_5VDIFF_GAIN_SHIFT) << _ADC_CAL_SINGLEGAIN_SHIFT;
cal |= ((DEVINFO->ADC0CAL1 & _DEVINFO_ADC0CAL1_5VDIFF_OFFSET_MASK) >>
_DEVINFO_ADC0CAL1_5VDIFF_OFFSET_SHIFT) << _ADC_CAL_SINGLEOFFSET_SHIFT;
adc->CAL = cal;
break;
case adcRef2xVDD:
/* Gain value not of relevance for this reference, leave as is */
2015-09-05 10:51:33 +02:00
cal = adc->CAL & ~_ADC_CAL_SINGLEOFFSET_MASK;
cal |= ((DEVINFO->ADC0CAL2 & _DEVINFO_ADC0CAL2_2XVDDVSS_OFFSET_MASK) >>
_DEVINFO_ADC0CAL2_2XVDDVSS_OFFSET_SHIFT) << _ADC_CAL_SINGLEOFFSET_SHIFT;
adc->CAL = cal;
break;
/* For external references, the calibration must be determined for the
* specific application and set explicitly.
*/
2015-09-05 10:51:33 +02:00
default:
break;
}
}
/****************************************************************************
* Public Functions
****************************************************************************/
2015-09-05 10:51:33 +02:00
/****************************************************************************
* Name: ADC_Init
2015-09-05 10:51:33 +02:00
* Initialize ADC.
*
* Description:
2015-09-05 10:51:33 +02:00
* Initializes common parts for both single conversion and scan sequence.
* In addition, single and/or scan control configuration must be done, please
* refer to ADC_InitSingle() and ADC_InitScan() respectively.
*
* NOTE: This function will stop any ongoing conversion.
2015-09-05 10:51:33 +02:00
*
* Input Parameters:
* adc - Pointer to ADC peripheral register block.
* int - Pointer to ADC initialization structure.
2015-09-05 10:51:33 +02:00
*
****************************************************************************/
2015-09-05 10:51:33 +02:00
void ADC_Init(ADC_TypeDef *adc, const ADC_Init_TypeDef *init)
{
uint32_t tmp;
EFM_ASSERT(ADC_REF_VALID(adc));
/* Make sure conversion is not in progress */
2015-09-05 10:51:33 +02:00
adc->CMD = ADC_CMD_SINGLESTOP | ADC_CMD_SCANSTOP;
tmp = ((uint32_t)(init->ovsRateSel) << _ADC_CTRL_OVSRSEL_SHIFT) |
(((uint32_t)(init->timebase) << _ADC_CTRL_TIMEBASE_SHIFT) & _ADC_CTRL_TIMEBASE_MASK) |
(((uint32_t)(init->prescale) << _ADC_CTRL_PRESC_SHIFT) & _ADC_CTRL_PRESC_MASK) |
((uint32_t)(init->lpfMode) << _ADC_CTRL_LPFMODE_SHIFT) |
((uint32_t)(init->warmUpMode) << _ADC_CTRL_WARMUPMODE_SHIFT);
if (init->tailgate)
{
tmp |= ADC_CTRL_TAILGATE;
}
2015-09-05 10:51:33 +02:00
adc->CTRL = tmp;
}
/****************************************************************************
* Name: ADC_InitScan
*
* Description:
2015-09-05 10:51:33 +02:00
* Initialize ADC scan sequence.
*
* Please refer to ADC_Start() for starting scan sequence.
*
* When selecting an external reference, the gain and offset calibration
* must be set explicitly (CAL register). For other references, the
* calibration is updated with values defined during manufacturing.
*
* NOTE: This function will stop any ongoing scan sequence.
2015-09-05 10:51:33 +02:00
*
* Input Parameters:
* adc - Pointer to ADC peripheral register block.
* init - Pointer to ADC initialization structure.
2015-09-05 10:51:33 +02:00
*
****************************************************************************/
2015-09-05 10:51:33 +02:00
void ADC_InitScan(ADC_TypeDef *adc, const ADC_InitScan_TypeDef *init)
{
uint32_t tmp;
EFM_ASSERT(ADC_REF_VALID(adc));
/* Make sure scan sequence is not in progress */
2015-09-05 10:51:33 +02:00
adc->CMD = ADC_CMD_SCANSTOP;
/* Load proper calibration data depending on selected reference */
2015-09-05 10:51:33 +02:00
ADC_CalibrateLoadScan(adc, init->reference);
tmp = ((uint32_t)(init->prsSel) << _ADC_SCANCTRL_PRSSEL_SHIFT) |
((uint32_t)(init->acqTime) << _ADC_SCANCTRL_AT_SHIFT) |
((uint32_t)(init->reference) << _ADC_SCANCTRL_REF_SHIFT) |
init->input |
((uint32_t)(init->resolution) << _ADC_SCANCTRL_RES_SHIFT);
if (init->prsEnable)
{
tmp |= ADC_SCANCTRL_PRSEN;
}
2015-09-05 10:51:33 +02:00
if (init->leftAdjust)
{
tmp |= ADC_SCANCTRL_ADJ_LEFT;
}
2015-09-05 10:51:33 +02:00
if (init->diff)
{
tmp |= ADC_SCANCTRL_DIFF;
}
2015-09-05 10:51:33 +02:00
if (init->rep)
{
tmp |= ADC_SCANCTRL_REP;
}
2015-09-05 10:51:33 +02:00
adc->SCANCTRL = tmp;
}
/****************************************************************************
* Name: ADC_InitSingle
*
* Description:
2015-09-05 10:51:33 +02:00
* Initialize single ADC sample conversion.
*
* Please refer to ADC_Start() for starting single conversion.
*
* When selecting an external reference, the gain and offset calibration
* must be set explicitly (CAL register). For other references, the
* calibration is updated with values defined during manufacturing.
*
* NOTE: This function will stop any ongoing single conversion.
2015-09-05 10:51:33 +02:00
*
* Input Parameters:
* adc - Pointer to ADC peripheral register block.
* init - Pointer to ADC initialization structure.
2015-09-05 10:51:33 +02:00
*
****************************************************************************/
2015-09-05 10:51:33 +02:00
void ADC_InitSingle(ADC_TypeDef *adc, const ADC_InitSingle_TypeDef *init)
{
uint32_t tmp;
EFM_ASSERT(ADC_REF_VALID(adc));
/* Make sure single conversion is not in progress */
2015-09-05 10:51:33 +02:00
adc->CMD = ADC_CMD_SINGLESTOP;
/* Load proper calibration data depending on selected reference */
2015-09-05 10:51:33 +02:00
ADC_CalibrateLoadSingle(adc, init->reference);
tmp = ((uint32_t)(init->prsSel) << _ADC_SINGLECTRL_PRSSEL_SHIFT) |
((uint32_t)(init->acqTime) << _ADC_SINGLECTRL_AT_SHIFT) |
((uint32_t)(init->reference) << _ADC_SINGLECTRL_REF_SHIFT) |
((uint32_t)(init->input) << _ADC_SINGLECTRL_INPUTSEL_SHIFT) |
((uint32_t)(init->resolution) << _ADC_SINGLECTRL_RES_SHIFT);
if (init->prsEnable)
{
tmp |= ADC_SINGLECTRL_PRSEN;
}
2015-09-05 10:51:33 +02:00
if (init->leftAdjust)
{
tmp |= ADC_SINGLECTRL_ADJ_LEFT;
}
2015-09-05 10:51:33 +02:00
if (init->diff)
{
tmp |= ADC_SINGLECTRL_DIFF;
}
2015-09-05 10:51:33 +02:00
if (init->rep)
{
tmp |= ADC_SINGLECTRL_REP;
}
2015-09-05 10:51:33 +02:00
adc->SINGLECTRL = tmp;
}
/****************************************************************************
* Name: ADC_PrescaleCalc
*
* Description:
2015-09-05 10:51:33 +02:00
* Calculate prescaler value used to determine ADC clock.
*
* The ADC clock is given by: HFPERCLK / (prescale + 1).
*
* Input Parameters:
* adcFreq ADC frequency wanted. The frequency will automatically
* be adjusted to be within valid range according to reference manual.
* hfperFreq Frequency in Hz of reference HFPER clock. Set to 0 to
* use currently defined HFPER clock setting.
2015-09-05 10:51:33 +02:00
*
* Returned Value:
2015-09-05 10:51:33 +02:00
* Prescaler value to use for ADC in order to achieve a clock value
* <= @p adcFreq.
*
****************************************************************************/
2015-09-05 10:51:33 +02:00
uint8_t ADC_PrescaleCalc(uint32_t adcFreq, uint32_t hfperFreq)
{
uint32_t ret;
/* Make sure selected ADC clock is within valid range */
2015-09-05 10:51:33 +02:00
if (adcFreq > ADC_MAX_CLOCK)
{
adcFreq = ADC_MAX_CLOCK;
}
2015-09-05 10:51:33 +02:00
else if (adcFreq < ADC_MIN_CLOCK)
{
adcFreq = ADC_MIN_CLOCK;
}
2015-09-05 10:51:33 +02:00
/* Use current HFPER frequency? */
2015-09-05 10:51:33 +02:00
if (!hfperFreq)
{
hfperFreq = CMU_ClockFreqGet(cmuClock_HFPER);
}
2015-09-05 10:51:33 +02:00
ret = (hfperFreq + adcFreq - 1) / adcFreq;
if (ret)
{
ret--;
}
2015-09-05 10:51:33 +02:00
return (uint8_t)ret;
}
/****************************************************************************
* Name: ADC_Reset
*
* Description:
2015-09-05 10:51:33 +02:00
* Reset ADC to same state as after a HW reset.
*
* @note
* The ROUTE register is NOT reset by this function, in order to allow for
* centralized setup of this feature.
*
* Input Parameters:
* adc - Pointer to ADC peripheral register block.
*
****************************************************************************/
2015-09-05 10:51:33 +02:00
void ADC_Reset(ADC_TypeDef *adc)
{
/* Stop conversions, before resetting other registers. */
2015-09-05 10:51:33 +02:00
adc->CMD = ADC_CMD_SINGLESTOP | ADC_CMD_SCANSTOP;
adc->SINGLECTRL = _ADC_SINGLECTRL_RESETVALUE;
adc->SCANCTRL = _ADC_SCANCTRL_RESETVALUE;
adc->CTRL = _ADC_CTRL_RESETVALUE;
adc->IEN = _ADC_IEN_RESETVALUE;
adc->IFC = _ADC_IFC_MASK;
adc->BIASPROG = _ADC_BIASPROG_RESETVALUE;
/* Load calibration values for the 1V25 internal reference. */
2015-09-05 10:51:33 +02:00
ADC_CalibrateLoadSingle(adc, adcRef1V25);
ADC_CalibrateLoadScan(adc, adcRef1V25);
/* Do not reset route register, setting should be done independently */
}
/****************************************************************************
* Name: ADC_TimebaseCalc
*
* Description:
2015-09-05 10:51:33 +02:00
* Calculate timebase value in order to get a timebase providing at least 1us.
*
* Input Parameters:
* hfperFreq Frequency in Hz of reference HFPER clock. Set to 0 to
* use currently defined HFPER clock setting.
2015-09-05 10:51:33 +02:00
*
* Returned Value:
2015-09-05 10:51:33 +02:00
* Timebase value to use for ADC in order to achieve at least 1 us.
*
****************************************************************************/
2015-09-05 10:51:33 +02:00
uint8_t ADC_TimebaseCalc(uint32_t hfperFreq)
{
if (!hfperFreq)
{
hfperFreq = CMU_ClockFreqGet(cmuClock_HFPER);
/* Just in case, make sure we get non-zero freq for below calculation */
if (!hfperFreq)
2015-10-06 01:13:53 +02:00
{
hfperFreq = 1;
}
2015-09-05 10:51:33 +02:00
}
2015-09-05 10:51:33 +02:00
#if defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY)
/* Handle errata on Giant Gecko, max TIMEBASE is 5 bits wide or max 0x1F
* cycles. This will give a warmp up time of e.g. 0.645us, not the
* required 1us when operating at 48MHz. One must also increase acqTime
* to compensate for the missing clock cycles, adding up to 1us in total.
* See reference manual for details.
*/
2015-10-06 01:13:53 +02:00
if (hfperFreq > 32000000)
{
hfperFreq = 32000000;
}
2015-09-05 10:51:33 +02:00
#endif
2015-09-05 10:51:33 +02:00
/* Determine number of HFPERCLK cycle >= 1us */
2015-09-05 10:51:33 +02:00
hfperFreq += 999999;
hfperFreq /= 1000000;
/* Return timebase value (N+1 format) */
2015-09-05 10:51:33 +02:00
return (uint8_t)(hfperFreq - 1);
}
endif /* defined(ADC_COUNT) && (ADC_COUNT > 0) */
2015-09-05 10:51:33 +02:00
/****************************************************************************
* Name: adc_tim_dumpregs
*
* Description:
* Dump all timer registers.
*
* Input parameters:
* priv - A reference to the ADC block status
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef ADC_HAVE_TIMER
static void adc_tim_dumpregs(struct efm32_dev_s *priv, FAR const char *msg)
2015-09-05 10:51:33 +02:00
{
#if defined(CONFIG_DEBUG_ANALOG) && defined(CONFIG_DEBUG_INFO)
ainfo("%s:\n", msg);
ainfo(" CR1: %04x CR2: %04x SMCR: %04x DIER: %04x\n",
tim_getreg(priv, EFM32_GTIM_CR1_OFFSET),
tim_getreg(priv, EFM32_GTIM_CR2_OFFSET),
tim_getreg(priv, EFM32_GTIM_SMCR_OFFSET),
tim_getreg(priv, EFM32_GTIM_DIER_OFFSET));
ainfo(" SR: %04x EGR: 0000 CCMR1: %04x CCMR2: %04x\n",
tim_getreg(priv, EFM32_GTIM_SR_OFFSET),
tim_getreg(priv, EFM32_GTIM_CCMR1_OFFSET),
tim_getreg(priv, EFM32_GTIM_CCMR2_OFFSET));
ainfo(" CCER: %04x CNT: %04x PSC: %04x ARR: %04x\n",
tim_getreg(priv, EFM32_GTIM_CCER_OFFSET),
tim_getreg(priv, EFM32_GTIM_CNT_OFFSET),
tim_getreg(priv, EFM32_GTIM_PSC_OFFSET),
tim_getreg(priv, EFM32_GTIM_ARR_OFFSET));
ainfo(" CCR1: %04x CCR2: %04x CCR3: %04x CCR4: %04x\n",
tim_getreg(priv, EFM32_GTIM_CCR1_OFFSET),
tim_getreg(priv, EFM32_GTIM_CCR2_OFFSET),
tim_getreg(priv, EFM32_GTIM_CCR3_OFFSET),
tim_getreg(priv, EFM32_GTIM_CCR4_OFFSET));
2015-09-05 10:51:33 +02:00
if (priv->tbase == EFM32_TIM1_BASE || priv->tbase == EFM32_TIM8_BASE)
2015-09-05 10:51:33 +02:00
{
ainfo(" RCR: %04x BDTR: %04x DCR: %04x DMAR: %04x\n",
tim_getreg(priv, EFM32_ATIM_RCR_OFFSET),
tim_getreg(priv, EFM32_ATIM_BDTR_OFFSET),
tim_getreg(priv, EFM32_ATIM_DCR_OFFSET),
tim_getreg(priv, EFM32_ATIM_DMAR_OFFSET));
2015-09-05 10:51:33 +02:00
}
else
{
ainfo(" DCR: %04x DMAR: %04x\n",
tim_getreg(priv, EFM32_GTIM_DCR_OFFSET),
tim_getreg(priv, EFM32_GTIM_DMAR_OFFSET));
2015-09-05 10:51:33 +02:00
}
#endif
}
#endif
/****************************************************************************
* Name: adc_startconv
*
* Description:
* Start (or stop) the ADC conversion process in DMA mode
*
* Input Parameters:
* priv - A reference to the ADC block status
* enable - True: Start conversion
*
* Returned Value:
*
****************************************************************************/
#if defined(CONFIG_EFM32_EFM32GG)
static void adc_startconv(struct efm32_dev_s *priv, bool enable)
2015-09-05 10:51:33 +02:00
{
uint32_t regval;
ainfo("enable: %d\n", enable);
2015-09-05 10:51:33 +02:00
regval = adc_getreg(priv, EFM32_ADC_CR2_OFFSET);
2015-09-05 10:51:33 +02:00
if (enable)
{
/* Start conversion of regular channles */
regval |= ADC_CR2_SWSTART;
}
else
{
/* Disable the conversion of regular channels */
regval &= ~ADC_CR2_SWSTART;
}
2015-10-07 19:39:06 +02:00
adc_putreg(priv, EFM32_ADC_CR2_OFFSET, regval);
2015-09-05 10:51:33 +02:00
}
#endif
/****************************************************************************
* Name: adc_hw_reset
2015-09-05 10:51:33 +02:00
*
* Description:
* Deinitializes the ADCx peripheral registers to their default
* reset values. It could set all the ADCs configured.
*
* Input Parameters:
* regaddr - The register to read
* reset - Condition, set or reset
*
* Returned Value:
*
****************************************************************************/
static void adc_hw_reset(struct efm32_dev_s *priv, bool reset)
2015-09-05 10:51:33 +02:00
{
irqstate_t flags;
uint32_t regval;
uint32_t adcbit;
/* Pick the appropriate bit in the APB2 reset register */
/* Disable interrupts. This is necessary because the APB2RTSR register
* is used by several different drivers.
*/
flags = enter_critical_section();
2015-09-05 10:51:33 +02:00
/* Set or clear the selected bit in the APB2 reset register */
regval = getreg32(EFM32_RCC_APB2RSTR);
2015-09-05 10:51:33 +02:00
if (reset)
{
/* Enable ADC reset state */
regval |= adcbit;
}
else
{
/* Release ADC from reset state */
regval &= ~adcbit;
}
putreg32(regval, EFM32_RCC_APB2RSTR);
leave_critical_section(flags);
2015-09-05 10:51:33 +02:00
}
/****************************************************************************
2015-09-05 10:51:33 +02:00
* Name: adc_enable
*
* Description : Enables or disables the specified ADC peripheral.
* Also, starts a conversion when the ADC is not
* triggered by timers
*
* Input Parameters:
*
* enable - true: enable ADC conversion
* false: disable ADC conversion
*
* Returned Value:
*
****************************************************************************/
2015-09-05 10:51:33 +02:00
static void adc_enable(FAR struct efm32_dev_s *priv, bool enable)
2015-09-05 10:51:33 +02:00
{
uint32_t regval;
ainfo("enable: %d\n", enable);
2015-09-05 10:51:33 +02:00
regval = adc_getreg(priv, EFM32_ADC_CR2_OFFSET);
2015-09-05 10:51:33 +02:00
if (enable)
{
regval |= ADC_CR2_ADON;
}
else
{
regval &= ~ADC_CR2_ADON;
}
adc_putreg(priv, EFM32_ADC_CR2_OFFSET, regval);
2015-09-05 10:51:33 +02:00
}
/****************************************************************************
* Name: adc_bind
*
* Description:
* Bind the upper-half driver callbacks to the lower-half implementation. This
* must be called early in order to receive ADC event notifications.
*
****************************************************************************/
static int adc_bind(FAR struct adc_dev_s *dev,
FAR const struct adc_callback_s *callback)
{
FAR struct efm32_dev_s *priv = (FAR struct efm32_dev_s *)dev->ad_priv;
DEBUGASSERT(priv != NULL);
priv->cb = callback;
return OK;
}
2015-09-05 10:51:33 +02:00
/****************************************************************************
* Name: adc_reset
*
* Description:
* Reset the ADC device. Called early to initialize the hardware. This
* is called, before adc_setup() and on error conditions.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static void adc_reset(FAR struct adc_dev_s *dev)
{
FAR struct efm32_dev_s *priv = (FAR struct efm32_dev_s *)dev->ad_priv;
2015-09-05 10:51:33 +02:00
irqstate_t flags;
uint32_t regval;
int offset;
int i;
#ifdef ADC_HAVE_TIMER
int ret;
#endif
ainfo("intf: ADC%d\n", priv->intf);
flags = enter_critical_section();
2015-09-05 10:51:33 +02:00
/* Enable ADC reset state */
adc_hw_reset(priv, true);
/* Release ADC from reset state */
adc_hw_reset(priv, false);
/* Initialize the ADC data structures */
/* Initialize the watchdog high threshold register */
adc_putreg(priv, EFM32_ADC_HTR_OFFSET, 0x00000fff);
2015-09-05 10:51:33 +02:00
/* Initialize the watchdog low threshold register */
adc_putreg(priv, EFM32_ADC_LTR_OFFSET, 0x00000000);
2015-09-05 10:51:33 +02:00
/* Initialize the same sample time for each ADC 55.5 cycles
*
* During sample cycles channel selection bits must remain unchanged.
*
* 000: 1.5 cycles
* 001: 7.5 cycles
* 010: 13.5 cycles
* 011: 28.5 cycles
* 100: 41.5 cycles
* 101: 55.5 cycles
* 110: 71.5 cycles
* 111: 239.5 cycles
*/
adc_putreg(priv, EFM32_ADC_SMPR1_OFFSET, 0x00b6db6d);
adc_putreg(priv, EFM32_ADC_SMPR2_OFFSET, 0x00b6db6d);
2015-09-05 10:51:33 +02:00
/* ADC CR1 Configuration */
regval = adc_getreg(priv, EFM32_ADC_CR1_OFFSET);
2015-09-05 10:51:33 +02:00
/* Initialize the Analog watchdog enable */
regval |= ADC_CR1_AWDEN;
regval |= (priv->chanlist[0] << ADC_CR1_AWDCH_SHIFT);
/* Enable interrupt flags */
regval |= ADC_CR1_ALLINTS;
adc_putreg(priv, EFM32_ADC_CR1_OFFSET, regval);
2015-09-05 10:51:33 +02:00
/* ADC CR2 Configuration */
regval = adc_getreg(priv, EFM32_ADC_CR2_OFFSET);
2015-09-05 10:51:33 +02:00
/* Clear CONT, continuous mode disable */
regval &= ~ADC_CR2_CONT;
/* Set ALIGN (Right = 0) */
regval &= ~ADC_CR2_ALIGN;
adc_putreg(priv, EFM32_ADC_CR2_OFFSET, regval);
2015-09-05 10:51:33 +02:00
/* Configuration of the channel conversions */
regval = adc_getreg(priv, EFM32_ADC_SQR3_OFFSET) & ADC_SQR3_RESERVED;
2015-09-05 10:51:33 +02:00
for (i = 0, offset = 0; i < priv->nchannels && i < 6; i++, offset += 5)
{
regval |= (uint32_t)priv->chanlist[i] << offset;
}
adc_putreg(priv, EFM32_ADC_SQR3_OFFSET, regval);
regval = adc_getreg(priv, EFM32_ADC_SQR2_OFFSET) & ADC_SQR2_RESERVED;
2015-09-05 10:51:33 +02:00
for (i = 6, offset = 0; i < priv->nchannels && i < 12; i++, offset += 5)
{
regval |= (uint32_t)priv->chanlist[i] << offset;
}
adc_putreg(priv, EFM32_ADC_SQR2_OFFSET, regval);
regval = adc_getreg(priv, EFM32_ADC_SQR1_OFFSET) & ADC_SQR1_RESERVED;
2015-09-05 10:51:33 +02:00
for (i = 12, offset = 0; i < priv->nchannels && i < 16; i++, offset += 5)
{
regval |= (uint32_t)priv->chanlist[i] << offset;
}
/* ADC CCR configuration */
regval = getreg32(EFM32_ADC_CCR);
2015-09-05 10:51:33 +02:00
regval &= ~(ADC_CCR_MULTI_MASK | ADC_CCR_DELAY_MASK | ADC_CCR_DDS | ADC_CCR_DMA_MASK |
ADC_CCR_ADCPRE_MASK | ADC_CCR_VBATE | ADC_CCR_TSVREFE);
regval |= (ADC_CCR_MULTI_NONE | ADC_CCR_DMA_DISABLED | ADC_CCR_ADCPRE_DIV2);
putreg32(regval, EFM32_ADC_CCR);
2015-09-05 10:51:33 +02:00
/* Set the number of conversions */
DEBUGASSERT(priv->nchannels <= ADC_MAX_SAMPLES);
regval |= (((uint32_t)priv->nchannels-1) << ADC_SQR1_L_SHIFT);
adc_putreg(priv, EFM32_ADC_SQR1_OFFSET, regval);
2015-09-05 10:51:33 +02:00
/* Set the channel index of the first conversion */
priv->current = 0;
/* Set ADON to wake up the ADC from Power Down state. */
adc_enable(priv, true);
adc_startconv(priv, true);
leave_critical_section(flags);
2015-09-05 10:51:33 +02:00
ainfo("SR: 0x%08x CR1: 0x%08x CR2: 0x%08x\n",
adc_getreg(priv, EFM32_ADC_SR_OFFSET),
adc_getreg(priv, EFM32_ADC_CR1_OFFSET),
adc_getreg(priv, EFM32_ADC_CR2_OFFSET));
ainfo("SQR1: 0x%08x SQR2: 0x%08x SQR3: 0x%08x\n",
adc_getreg(priv, EFM32_ADC_SQR1_OFFSET),
adc_getreg(priv, EFM32_ADC_SQR2_OFFSET),
adc_getreg(priv, EFM32_ADC_SQR3_OFFSET));
2015-09-05 10:51:33 +02:00
}
/****************************************************************************
* Name: adc_setup
*
* Description:
* Configure the ADC. This method is called the first time that the ADC
* device is opened. This will occur when the port is first opened.
* This setup includes configuring and attaching ADC interrupts. Interrupts
* are all disabled upon return.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static int adc_setup(FAR struct adc_dev_s *dev)
{
FAR struct efm32_dev_s *priv = (FAR struct efm32_dev_s *)dev->ad_priv;
2015-09-05 10:51:33 +02:00
int ret;
/* Attach the ADC interrupt */
ret = irq_attach(priv->irq, priv->isr, dev);
2015-09-05 10:51:33 +02:00
if (ret == OK)
{
/* Make sure that the ADC device is in the powered up, reset state */
adc_reset(dev);
/* Enable the ADC interrupt */
ainfo("Enable the ADC interrupt: irq=%d\n", priv->irq);
2015-09-05 10:51:33 +02:00
up_enable_irq(priv->irq);
}
return ret;
}
/****************************************************************************
* Name: adc_shutdown
*
* Description:
* Disable the ADC. This method is called when the ADC device is closed.
* This method reverses the operation the setup method.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static void adc_shutdown(FAR struct adc_dev_s *dev)
{
FAR struct efm32_dev_s *priv = (FAR struct efm32_dev_s *)dev->ad_priv;
2015-09-05 10:51:33 +02:00
/* Disable ADC interrupts and detach the ADC interrupt handler */
up_disable_irq(priv->irq);
irq_detach(priv->irq);
/* Disable and reset the ADC module */
adc_hw_reset(priv, true);
}
/****************************************************************************
* Name: adc_rxint
*
* Description:
* Call to enable or disable RX interrupts.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static void adc_rxint(FAR struct adc_dev_s *dev, bool enable)
{
FAR struct efm32_dev_s *priv = (FAR struct efm32_dev_s *)dev->ad_priv;
2015-09-05 10:51:33 +02:00
uint32_t regval;
ainfo("intf: %d enable: %d\n", priv->intf, enable);
2015-09-05 10:51:33 +02:00
regval = adc_getreg(priv, EFM32_ADC_CR1_OFFSET);
2015-09-05 10:51:33 +02:00
if (enable)
{
/* Enable the end-of-conversion ADC and analog watchdog interrupts */
regval |= ADC_CR1_ALLINTS;
}
else
{
/* Disable all ADC interrupts */
regval &= ~ADC_CR1_ALLINTS;
}
adc_putreg(priv, EFM32_ADC_CR1_OFFSET, regval);
2015-09-05 10:51:33 +02:00
}
/****************************************************************************
* Name: adc_ioctl
*
* Description:
* All ioctl calls will be routed through this method.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static int adc_ioctl(FAR struct adc_dev_s *dev, int cmd, unsigned long arg)
{
return -ENOTTY;
}
/****************************************************************************
* Name: adc_interrupt
*
* Description:
* Common ADC interrupt handler.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static int adc_interrupt(int irq, FAR void *context, FAR struct adc_dev_s *dev)
2015-09-05 10:51:33 +02:00
{
FAR struct efm32_dev_s *priv = (FAR struct efm32_dev_s *)dev->ad_priv;
2015-09-05 10:51:33 +02:00
uint32_t adcsr;
int32_t value;
/* Identifies the interruption AWD, OVR or EOC */
adcsr = adc_getreg(priv, EFM32_ADC_SR_OFFSET);
2015-09-05 10:51:33 +02:00
if ((adcsr & ADC_SR_AWD) != 0)
{
awarn("WARNING: Analog Watchdog, Value converted out of range!\n");
2015-09-05 10:51:33 +02:00
}
/* EOC: End of conversion */
if ((adcsr & ADC_SR_EOC) != 0)
{
/* Read the converted value and clear EOC bit
* (It is cleared by reading the ADC_DR)
*/
value = adc_getreg(priv, EFM32_ADC_DR_OFFSET);
2015-09-05 10:51:33 +02:00
value &= ADC_DR_DATA_MASK;
/* Verify that the upper-half driver has bound its callback functions */
2015-09-05 10:51:33 +02:00
if (priv->cb != NULL)
{
/* Give the ADC data to the ADC driver. The ADC receive method
* accepts 3 parameters:
*
* 1) The first is the ADC device instance for this ADC block.
* 2) The second is the channel number for the data, and
* 3) The third is the converted data for the channel.
*/
DEBUGASSERT(priv->cb->au_receive != NULL);
priv->cb->au_receive(dev, priv->chanlist[priv->current], value);
}
2015-09-05 10:51:33 +02:00
/* Set the channel number of the next channel that will complete conversion */
priv->current++;
if (priv->current >= priv->nchannels)
{
/* Restart the conversion sequence from the beginning */
priv->current = 0;
}
}
return OK;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: efm32_adcinitialize
2015-09-05 10:51:33 +02:00
*
* Description:
* Initialize the ADC.
*
* The logic is, save nchannels : # of channels (conversions) in ADC_SQR1_L
* Then, take the chanlist array and store it in the SQR Regs,
* chanlist[0] -> ADC_SQR3_SQ1
* chanlist[1] -> ADC_SQR3_SQ2
* ...
* chanlist[15]-> ADC_SQR1_SQ16
*
* up to
* chanlist[nchannels]
*
* Input Parameters:
* intf - Could be {1,2,3} for ADC1, ADC2, or ADC3
* chanlist - The list of channels
* nchannels - Number of channels
*
* Returned Value:
* Valid ADC device structure reference on succcess; a NULL on failure
*
****************************************************************************/
struct adc_dev_s *efm32_adcinitialize(int intf, const uint8_t *chanlist, int nchannels)
2015-09-05 10:51:33 +02:00
{
FAR struct adc_dev_s *dev;
FAR struct efm32_dev_s *priv;
2015-09-05 10:51:33 +02:00
ainfo("intf: %d nchannels: %d\n", intf, nchannels);
2015-09-05 10:51:33 +02:00
#ifdef CONFIG_EFM32_ADC1
2015-09-05 10:51:33 +02:00
if (intf == 1)
{
ainfo("ADC1 Selected\n");
2015-09-05 10:51:33 +02:00
dev = &g_adcdev1;
}
else
#endif
#ifdef CONFIG_EFM32_ADC2
2015-09-05 10:51:33 +02:00
if (intf == 2)
{
ainfo("ADC2 Selected\n");
2015-09-05 10:51:33 +02:00
dev = &g_adcdev2;
}
else
#endif
#ifdef CONFIG_EFM32_ADC3
2015-09-05 10:51:33 +02:00
if (intf == 3)
{
ainfo("ADC3 Selected\n");
2015-09-05 10:51:33 +02:00
dev = &g_adcdev3;
}
else
#endif
{
aerr("ERROR: No ADC interface defined\n");
2015-09-05 10:51:33 +02:00
return NULL;
}
/* Configure the selected ADC */
priv = dev->ad_priv;
priv->cb = NULL;
2015-09-05 10:51:33 +02:00
DEBUGASSERT(nchannels <= ADC_MAX_SAMPLES);
priv->nchannels = nchannels;
memcpy(priv->chanlist, chanlist, nchannels);
return dev;
}
2015-09-05 15:50:02 +02:00
#endif /* CONFIG_EFM32_EFM32GG */
#endif /* CONFIG_EFM32_ADC1 */
#endif /* CONFIG_EFM32_ADC */