nuttx/drivers/mtd/m25px.c

1130 lines
36 KiB
C
Raw Normal View History

/****************************************************************************
* drivers/mtd/m25px.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/* Driver for SPI-based M25P1 (128Kbit), M25P64 (32Mbit), M25P64 (64Mbit),
* and M25P128 (128Mbit) FLASH (and compatible).
*/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/kmalloc.h>
#include <nuttx/signal.h>
#include <nuttx/fs/ioctl.h>
#include <nuttx/spi/spi.h>
#include <nuttx/mtd/mtd.h>
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
2020-11-25 08:52:26 +01:00
/* Configuration ************************************************************/
2020-11-25 08:52:26 +01:00
/* Per the data sheet, M25P10 parts can be driven with either SPI mode 0
* (CPOL=0 and CPHA=0) or mode 3 (CPOL=1 and CPHA=1). But I have heard that
* other devices can operated in mode 0 or 1.
* So you may need to specify CONFIG_M25P_SPIMODE to
* select the best mode for your device.
* If CONFIG_M25P_SPIMODE is not defined, mode 0 will be used.
*/
#ifndef CONFIG_M25P_SPIMODE
# define CONFIG_M25P_SPIMODE SPIDEV_MODE0
#endif
2016-03-17 14:37:45 +01:00
#ifndef CONFIG_M25P_SPIFREQUENCY
# define CONFIG_M25P_SPIFREQUENCY 20000000
#endif
/* Various manufacturers may have produced the parts.
* 0x20 is the manufacturer ID for the STMicro MP25x serial FLASH.
* If, for example, you are using the a Macronix International MX25
* serial FLASH, the correct manufacturer ID would be 0xc2.
*/
#ifndef CONFIG_M25P_MANUFACTURER
# define CONFIG_M25P_MANUFACTURER 0x20
#endif
#ifndef CONFIG_M25P_MEMORY_TYPE
# define CONFIG_M25P_MEMORY_TYPE 0x20
#endif
#ifndef CONFIG_MT25Q_MEMORY_TYPE
# define CONFIG_MT25Q_MEMORY_TYPE 0xBA
#endif
/* M25P Registers ***********************************************************/
2020-11-25 08:52:26 +01:00
/* Identification register values */
#define M25P_MANUFACTURER CONFIG_M25P_MANUFACTURER
#define M25P_MEMORY_TYPE CONFIG_M25P_MEMORY_TYPE
#define MT25Q_MEMORY_TYPE CONFIG_MT25Q_MEMORY_TYPE
#define M25P_RES_ID 0x13
#define M25P_M25P1_CAPACITY 0x11 /* 1 M-bit */
#define M25P_EN25F80_CAPACITY 0x14 /* 8 M-bit */
#define M25P_M25P16_CAPACITY 0x15 /* 16 M-bit */
#define M25P_M25P32_CAPACITY 0x16 /* 32 M-bit */
#define M25P_M25P64_CAPACITY 0x17 /* 64 M-bit */
#define M25P_M25P128_CAPACITY 0x18 /* 128 M-bit */
#define M25P_MT25Q128_CAPACITY 0x18 /* 128 M-bit */
/* M25P1 capacity is 131,072 bytes:
* (4 sectors) * (32,768 bytes per sector)
* (512 pages) * (256 bytes per page)
*/
#define M25P_M25P1_SECTOR_SHIFT 15 /* Sector size 1 << 15 = 65,536 */
#define M25P_M25P1_NSECTORS 4
#define M25P_M25P1_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */
#define M25P_M25P1_NPAGES 512
/* EN25F80 capacity is 1,048,576 bytes:
* (16 sectors) * (65,536 bytes per sector)
* (512 pages) * (256 bytes per page)
*/
#define M25P_EN25F80_SECTOR_SHIFT 16 /* Sector size 1 << 15 = 65,536 */
#define M25P_EN25F80_NSECTORS 16
#define M25P_EN25F80_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */
#define M25P_EN25F80_NPAGES 4096
#define M25P_EN25F80_SUBSECT_SHIFT 12 /* Sub-Sector size 1 << 12 = 4,096 */
#define M25P_EN25F80_NSUBSECTORS 256
/* M25P16 capacity is 2,097,152 bytes:
* (32 sectors) * (65,536 bytes per sector)
* (8192 pages) * (256 bytes per page)
*/
#define M25P_M25P16_SECTOR_SHIFT 16 /* Sector size 1 << 16 = 65,536 */
#define M25P_M25P16_NSECTORS 32
#define M25P_M25P16_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */
#define M25P_M25P16_NPAGES 8192
#define M25P_M25PX16_SUBSECT_SHIFT 12 /* Sub-Sector size 1 << 12 = 4,096 */
/* M25P32 capacity is 4,194,304 bytes:
* (64 sectors) * (65,536 bytes per sector)
* (16384 pages) * (256 bytes per page)
*/
#define M25P_M25P32_SECTOR_SHIFT 16 /* Sector size 1 << 16 = 65,536 */
#define M25P_M25P32_NSECTORS 64
#define M25P_M25P32_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */
#define M25P_M25P32_NPAGES 16384
2016-03-17 14:37:45 +01:00
#define M25P_M25PX32_SUBSECT_SHIFT 12 /* Sub-Sector size 1 << 12 = 4,096 */
/* M25P64 capacity is 8,338,608 bytes:
* (128 sectors) * (65,536 bytes per sector)
* (32768 pages) * (256 bytes per page)
*/
#define M25P_M25P64_SECTOR_SHIFT 16 /* Sector size 1 << 16 = 65,536 */
#define M25P_M25P64_NSECTORS 128
#define M25P_M25P64_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */
#define M25P_M25P64_NPAGES 32768
/* M25P128 capacity is 16,777,216 bytes:
* (64 sectors) * (262,144 bytes per sector)
* (65536 pages) * (256 bytes per page)
*/
#define M25P_M25P128_SECTOR_SHIFT 18 /* Sector size 1 << 18 = 262,144 */
#define M25P_M25P128_NSECTORS 64
#define M25P_M25P128_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */
#define M25P_M25P128_NPAGES 65536
/* MT25Q128 capacity is 16,777,216 bytes:
* (256 sectors) * (65,536 bytes per sector)
* (65536 pages) * (256 bytes per page)
*/
#define M25P_MT25Q128_SECTOR_SHIFT 16 /* Sector size 1 << 16 = 65,536 */
#define M25P_MT25Q128_NSECTORS 256
#define M25P_MT25Q128_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */
#define M25P_MT25Q128_NPAGES 65536
#define M25P_MT25Q128_SUBSECT_SHIFT 12 /* Sub-Sector size 1 << 12 = 4,096 */
/* Instructions */
2020-11-25 08:52:26 +01:00
/* Command Value N Description Addr Dummy Data */
#define M25P_WREN 0x06 /* 1 Write Enable 0 0 0 */
#define M25P_WRDI 0x04 /* 1 Write Disable 0 0 0 */
#define M25P_RDID 0x9f /* 1 Read Identification 0 0 1-3 */
#define M25P_RDSR 0x05 /* 1 Read Status Register 0 0 >=1 */
#define M25P_WRSR 0x01 /* 1 Write Status Register 0 0 1 */
#define M25P_READ 0x03 /* 1 Read Data Bytes 3 0 >=1 */
#define M25P_FAST_READ 0x0b /* 1 Higher speed read 3 1 >=1 */
#define M25P_PP 0x02 /* 1 Page Program 3 0 1-256 */
#define M25P_SE 0xd8 /* 1 Sector Erase 3 0 0 */
#define M25P_BE 0xc7 /* 1 Bulk Erase 0 0 0 */
#define M25P_DP 0xb9 /* 2 Deep power down 0 0 0 */
#define M25P_RES 0xab /* 2 Read Electronic Signature 0 3 >=1 */
#define M25P_SSE 0x20 /* 3 Sub-Sector Erase 0 0 0 */
2013-05-01 19:42:36 +02:00
/* NOTE 1: All parts.
* NOTE 2: M25P632/M25P64
* NOTE 3: EN25F80. In EN25F80 terminology, 0xd8 is a block erase and 0x20
* is a sector erase.
*/
/* Status register bit definitions */
#define M25P_SR_WIP (1 << 0) /* Bit 0: Write in progress bit */
#define M25P_SR_WEL (1 << 1) /* Bit 1: Write enable latch bit */
#define M25P_SR_BP_SHIFT (2) /* Bits 2-4: Block protect bits */
#define M25P_SR_BP_MASK (7 << M25P_SR_BP_SHIFT)
# define M25P_SR_BP_NONE (0 << M25P_SR_BP_SHIFT) /* Unprotected */
# define M25P_SR_BP_UPPER64th (1 << M25P_SR_BP_SHIFT) /* Upper 64th */
# define M25P_SR_BP_UPPER32nd (2 << M25P_SR_BP_SHIFT) /* Upper 32nd */
# define M25P_SR_BP_UPPER16th (3 << M25P_SR_BP_SHIFT) /* Upper 16th */
# define M25P_SR_BP_UPPER8th (4 << M25P_SR_BP_SHIFT) /* Upper 8th */
# define M25P_SR_BP_UPPERQTR (5 << M25P_SR_BP_SHIFT) /* Upper quarter */
# define M25P_SR_BP_UPPERHALF (6 << M25P_SR_BP_SHIFT) /* Upper half */
# define M25P_SR_BP_ALL (7 << M25P_SR_BP_SHIFT) /* All sectors */
/* Bits 5-6: Unused, read zero */
#define M25P_SR_SRWD (1 << 7) /* Bit 7: Status register write protect */
#define M25P_DUMMY 0xa5
/****************************************************************************
* Private Types
****************************************************************************/
/* This type represents the state of the MTD device. The struct mtd_dev_s
* must appear at the beginning of the definition so that you can freely
* cast between pointers to struct mtd_dev_s and struct m25p_dev_s.
*/
struct m25p_dev_s
{
struct mtd_dev_s mtd; /* MTD interface */
FAR struct spi_dev_s *dev; /* Saved SPI interface instance */
uint8_t sectorshift; /* 16 or 18 */
uint8_t pageshift; /* 8 */
uint16_t nsectors; /* 128 or 64 */
uint32_t npages; /* 32,768 or 65,536 */
#ifdef CONFIG_M25P_SUBSECTOR_ERASE
uint8_t subsectorshift; /* 0, 12 or 13 (4K or 8K) */
#endif
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Helpers */
static void m25p_lock(FAR struct spi_dev_s *dev);
static inline void m25p_unlock(FAR struct spi_dev_s *dev);
static inline int m25p_readid(struct m25p_dev_s *priv);
static void m25p_waitwritecomplete(struct m25p_dev_s *priv);
static void m25p_writeenable(struct m25p_dev_s *priv);
static inline void m25p_sectorerase(struct m25p_dev_s *priv,
off_t offset,
2020-11-25 08:52:26 +01:00
uint8_t type);
static inline int m25p_bulkerase(struct m25p_dev_s *priv);
static inline void m25p_pagewrite(struct m25p_dev_s *priv,
FAR const uint8_t *buffer,
off_t offset);
/* MTD driver methods */
static int m25p_erase(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks);
static ssize_t m25p_bread(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks,
FAR uint8_t *buf);
static ssize_t m25p_bwrite(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks,
FAR const uint8_t *buf);
static ssize_t m25p_read(FAR struct mtd_dev_s *dev,
off_t offset, size_t nbytes,
FAR uint8_t *buffer);
#ifdef CONFIG_MTD_BYTE_WRITE
static ssize_t m25p_write(FAR struct mtd_dev_s *dev,
off_t offset,
size_t nbytes,
FAR const uint8_t *buffer);
#endif
static int m25p_ioctl(FAR struct mtd_dev_s *dev,
int cmd,
unsigned long arg);
/****************************************************************************
* Private Data
****************************************************************************/
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: m25p_lock
****************************************************************************/
static void m25p_lock(FAR struct spi_dev_s *dev)
{
/* On SPI buses where there are multiple devices, it will be necessary to
* lock SPI to have exclusive access to the buses for a sequence of
* transfers. The bus should be locked before the chip is selected.
*
* This is a blocking call and will not return until we have exclusive
* access to the SPI bus. We will retain that exclusive access until the
* bus is unlocked.
*/
SPI_LOCK(dev, true);
/* After locking the SPI bus, the we also need call the setfrequency,
* setbits, and setmode methods to make sure that the SPI is properly
* configured for the device.
* If the SPI bus is being shared, then it may have been left in an
* incompatible state.
*/
SPI_SETMODE(dev, CONFIG_M25P_SPIMODE);
SPI_SETBITS(dev, 8);
SPI_HWFEATURES(dev, 0);
SPI_SETFREQUENCY(dev, CONFIG_M25P_SPIFREQUENCY);
}
/****************************************************************************
* Name: m25p_unlock
****************************************************************************/
static inline void m25p_unlock(FAR struct spi_dev_s *dev)
{
SPI_LOCK(dev, false);
}
/****************************************************************************
* Name: m25p_readid
****************************************************************************/
static inline int m25p_readid(struct m25p_dev_s *priv)
{
uint16_t manufacturer;
uint16_t memory;
uint16_t capacity;
finfo("priv: %p\n", priv);
/* Lock the SPI bus, configure the bus, and select this FLASH part. */
m25p_lock(priv->dev);
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send the "Read ID (RDID)" command and read the first three ID bytes */
SPI_SEND(priv->dev, M25P_RDID);
manufacturer = SPI_SEND(priv->dev, M25P_DUMMY);
memory = SPI_SEND(priv->dev, M25P_DUMMY);
capacity = SPI_SEND(priv->dev, M25P_DUMMY);
/* Deselect the FLASH and unlock the bus */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
m25p_unlock(priv->dev);
finfo("manufacturer: %02x memory: %02x capacity: %02x\n",
manufacturer, memory, capacity);
/* Check for a valid manufacturer and memory type */
if (manufacturer == M25P_MANUFACTURER && memory == M25P_MEMORY_TYPE)
{
/* Okay.. is it a FLASH capacity that we understand? */
#ifdef CONFIG_M25P_SUBSECTOR_ERASE
priv->subsectorshift = 0;
#endif
if (capacity == M25P_M25P1_CAPACITY)
{
2020-11-25 08:52:26 +01:00
/* Save the FLASH geometry */
2020-11-25 08:52:26 +01:00
priv->sectorshift = M25P_M25P1_SECTOR_SHIFT;
priv->nsectors = M25P_M25P1_NSECTORS;
priv->pageshift = M25P_M25P1_PAGE_SHIFT;
priv->npages = M25P_M25P1_NPAGES;
return OK;
}
else if (capacity == M25P_EN25F80_CAPACITY)
{
2020-11-25 08:52:26 +01:00
/* Save the FLASH geometry */
2020-11-25 08:52:26 +01:00
priv->pageshift = M25P_EN25F80_PAGE_SHIFT;
priv->npages = M25P_EN25F80_NPAGES;
priv->sectorshift = M25P_EN25F80_SECTOR_SHIFT;
priv->nsectors = M25P_EN25F80_NSECTORS;
#ifdef CONFIG_M25P_SUBSECTOR_ERASE
2020-11-25 08:52:26 +01:00
priv->subsectorshift = M25P_EN25F80_SUBSECT_SHIFT;
#endif
2020-11-25 08:52:26 +01:00
return OK;
}
else if (capacity == M25P_M25P16_CAPACITY)
{
2020-11-25 08:52:26 +01:00
/* Save the FLASH geometry */
2020-11-25 08:52:26 +01:00
priv->sectorshift = M25P_M25P16_SECTOR_SHIFT;
priv->nsectors = M25P_M25P16_NSECTORS;
priv->pageshift = M25P_M25P16_PAGE_SHIFT;
priv->npages = M25P_M25P16_NPAGES;
#ifdef CONFIG_M25P_SUBSECTOR_ERASE
2020-11-25 08:52:26 +01:00
priv->subsectorshift = M25P_M25PX16_SUBSECT_SHIFT;
#endif
2020-11-25 08:52:26 +01:00
return OK;
}
else if (capacity == M25P_M25P32_CAPACITY)
{
2020-11-25 08:52:26 +01:00
/* Save the FLASH geometry */
2020-11-25 08:52:26 +01:00
priv->sectorshift = M25P_M25P32_SECTOR_SHIFT;
priv->nsectors = M25P_M25P32_NSECTORS;
priv->pageshift = M25P_M25P32_PAGE_SHIFT;
priv->npages = M25P_M25P32_NPAGES;
2016-03-17 14:37:45 +01:00
#ifdef CONFIG_M25P_SUBSECTOR_ERASE
2020-11-25 08:52:26 +01:00
priv->subsectorshift = M25P_M25PX32_SUBSECT_SHIFT;
2016-03-17 14:37:45 +01:00
#endif
2020-11-25 08:52:26 +01:00
return OK;
}
else if (capacity == M25P_M25P64_CAPACITY)
{
2020-11-25 08:52:26 +01:00
/* Save the FLASH geometry */
2020-11-25 08:52:26 +01:00
priv->sectorshift = M25P_M25P64_SECTOR_SHIFT;
priv->nsectors = M25P_M25P64_NSECTORS;
priv->pageshift = M25P_M25P64_PAGE_SHIFT;
priv->npages = M25P_M25P64_NPAGES;
return OK;
}
else if (capacity == M25P_M25P128_CAPACITY)
{
2020-11-25 08:52:26 +01:00
/* Save the FLASH geometry */
2020-11-25 08:52:26 +01:00
priv->sectorshift = M25P_M25P128_SECTOR_SHIFT;
priv->nsectors = M25P_M25P128_NSECTORS;
priv->pageshift = M25P_M25P128_PAGE_SHIFT;
priv->npages = M25P_M25P128_NPAGES;
return OK;
}
}
else if (manufacturer == M25P_MANUFACTURER && memory == MT25Q_MEMORY_TYPE)
{
/* Also okay.. is it a FLASH capacity that we understand? */
#ifdef CONFIG_M25P_SUBSECTOR_ERASE
priv->subsectorshift = 0;
#endif
if (capacity == M25P_MT25Q128_CAPACITY)
{
2020-11-25 08:52:26 +01:00
/* Save the FLASH geometry */
2020-11-25 08:52:26 +01:00
priv->sectorshift = M25P_MT25Q128_SECTOR_SHIFT;
priv->nsectors = M25P_MT25Q128_NSECTORS;
priv->pageshift = M25P_MT25Q128_PAGE_SHIFT;
priv->npages = M25P_MT25Q128_NPAGES;
#ifdef CONFIG_M25P_SUBSECTOR_ERASE
2020-11-25 08:52:26 +01:00
priv->subsectorshift = M25P_MT25Q128_SUBSECT_SHIFT;
#endif
2020-11-25 08:52:26 +01:00
return OK;
}
}
return -ENODEV;
}
/****************************************************************************
* Name: m25p_waitwritecomplete
****************************************************************************/
static void m25p_waitwritecomplete(struct m25p_dev_s *priv)
{
uint8_t status;
/* Loop as long as the memory is busy with a write cycle */
do
{
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send "Read Status Register (RDSR)" command */
SPI_SEND(priv->dev, M25P_RDSR);
/* Send a dummy byte to generate the clock needed to shift out the
* status
*/
status = SPI_SEND(priv->dev, M25P_DUMMY);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
/* Given that writing could take up to few tens of milliseconds, and
* erasing could take more.
* The following short delay in the "busy" case will allow other
* peripherals to access the SPI bus.
*/
if ((status & M25P_SR_WIP) != 0)
{
m25p_unlock(priv->dev);
nxsig_usleep(1000);
m25p_lock(priv->dev);
}
}
while ((status & M25P_SR_WIP) != 0);
finfo("Complete\n");
}
/****************************************************************************
* Name: m25p_writeenable
****************************************************************************/
static void m25p_writeenable(struct m25p_dev_s *priv)
{
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send "Write Enable (WREN)" command */
SPI_SEND(priv->dev, M25P_WREN);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
finfo("Enabled\n");
}
/****************************************************************************
* Name: m25p_sectorerase
****************************************************************************/
static void m25p_sectorerase(struct m25p_dev_s *priv,
off_t sector,
uint8_t type)
{
off_t offset;
#ifdef CONFIG_M25P_SUBSECTOR_ERASE
if (priv->subsectorshift > 0)
{
offset = sector << priv->subsectorshift;
}
else
#endif
{
offset = sector << priv->sectorshift;
}
finfo("sector: %08lx\n", (long)sector);
/* Wait for any preceding write to complete. We could simplify things by
* perform this wait at the end of each write operation (rather than at
* the beginning of ALL operations), but have the wait first will slightly
* improve performance.
*/
m25p_waitwritecomplete(priv);
/* Send write enable instruction */
m25p_writeenable(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send the "Sector Erase (SE)" or Sub-Sector Erase (SSE) instruction
* that was passed in as the erase type.
*/
SPI_SEND(priv->dev, type);
/* Send the sector offset high byte first. For all of the supported
* parts, the sector number is completely contained in the first byte
* and the values used in the following two bytes don't really matter.
*/
SPI_SEND(priv->dev, (offset >> 16) & 0xff);
SPI_SEND(priv->dev, (offset >> 8) & 0xff);
SPI_SEND(priv->dev, offset & 0xff);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
finfo("Erased\n");
}
/****************************************************************************
* Name: m25p_bulkerase
****************************************************************************/
static inline int m25p_bulkerase(struct m25p_dev_s *priv)
{
finfo("priv: %p\n", priv);
/* Wait for any preceding write to complete. We could simplify things by
* perform this wait at the end of each write operation (rather than at
* the beginning of ALL operations), but have the wait first will slightly
* improve performance.
*/
m25p_waitwritecomplete(priv);
/* Send write enable instruction */
m25p_writeenable(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send the "Bulk Erase (BE)" instruction */
SPI_SEND(priv->dev, M25P_BE);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
finfo("Return: OK\n");
return OK;
}
/****************************************************************************
* Name: m25p_pagewrite
****************************************************************************/
static inline void m25p_pagewrite(struct m25p_dev_s *priv,
FAR const uint8_t *buffer,
off_t page)
{
off_t offset = page << priv->pageshift;
finfo("page: %08lx offset: %08lx\n", (long)page, (long)offset);
/* Wait for any preceding write to complete. We could simplify things by
* perform this wait at the end of each write operation (rather than at
* the beginning of ALL operations), but have the wait first will slightly
* improve performance.
*/
m25p_waitwritecomplete(priv);
/* Enable the write access to the FLASH */
m25p_writeenable(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send "Page Program (PP)" command */
SPI_SEND(priv->dev, M25P_PP);
/* Send the page offset high byte first. */
SPI_SEND(priv->dev, (offset >> 16) & 0xff);
SPI_SEND(priv->dev, (offset >> 8) & 0xff);
SPI_SEND(priv->dev, offset & 0xff);
/* Then write the specified number of bytes */
SPI_SNDBLOCK(priv->dev, buffer, 1 << priv->pageshift);
/* Deselect the FLASH: Chip Select high */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
finfo("Written\n");
}
/****************************************************************************
* Name: m25p_bytewrite
****************************************************************************/
#ifdef CONFIG_MTD_BYTE_WRITE
static inline void m25p_bytewrite(struct m25p_dev_s *priv,
FAR const uint8_t *buffer,
off_t offset,
uint16_t count)
{
finfo("offset: %08lx count:%d\n", (long)offset, count);
/* Wait for any preceding write to complete. We could simplify things by
* perform this wait at the end of each write operation (rather than at
* the beginning of ALL operations), but have the wait first will slightly
* improve performance.
*/
m25p_waitwritecomplete(priv);
/* Enable the write access to the FLASH */
m25p_writeenable(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send "Page Program (PP)" command */
SPI_SEND(priv->dev, M25P_PP);
/* Send the page offset high byte first. */
SPI_SEND(priv->dev, (offset >> 16) & 0xff);
SPI_SEND(priv->dev, (offset >> 8) & 0xff);
SPI_SEND(priv->dev, offset & 0xff);
/* Then write the specified number of bytes */
SPI_SNDBLOCK(priv->dev, buffer, count);
/* Deselect the FLASH: Chip Select high */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
finfo("Written\n");
}
#endif
/****************************************************************************
* Name: m25p_erase
****************************************************************************/
static int m25p_erase(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks)
{
FAR struct m25p_dev_s *priv = (FAR struct m25p_dev_s *)dev;
size_t blocksleft = nblocks;
finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* Lock access to the SPI bus until we complete the erase */
m25p_lock(priv->dev);
while (blocksleft > 0)
{
#ifdef CONFIG_M25P_SUBSECTOR_ERASE
size_t sectorboundry;
size_t blkper;
/* If we have a smaller erase size, then we will find as many full
* sector erase blocks as possible to speed up the process instead of
* erasing everything in smaller chunks.
*/
if (priv->subsectorshift > 0)
{
blkper = 1 << (priv->sectorshift - priv->subsectorshift);
sectorboundry = (startblock + blkper - 1) / blkper;
sectorboundry *= blkper;
/* If we are on a sector boundary and have at least a full sector
* of blocks left to erase, then we can do a full sector erase.
*/
if (startblock == sectorboundry && blocksleft >= blkper)
{
/* Do a full sector erase */
m25p_sectorerase(priv, startblock, M25P_SE);
startblock += blkper;
blocksleft -= blkper;
continue;
}
else
{
/* Just do a sub-sector erase */
m25p_sectorerase(priv, startblock, M25P_SSE);
startblock++;
blocksleft--;
continue;
}
}
#endif
/* Not using sub-sector erase. Erase each full sector */
m25p_sectorerase(priv, startblock, M25P_SE);
startblock++;
blocksleft--;
}
m25p_unlock(priv->dev);
return (int)nblocks;
}
/****************************************************************************
* Name: m25p_bread
****************************************************************************/
2020-11-25 08:52:26 +01:00
static ssize_t m25p_bread(FAR struct mtd_dev_s *dev, off_t startblock,
size_t nblocks,
FAR uint8_t *buffer)
{
FAR struct m25p_dev_s *priv = (FAR struct m25p_dev_s *)dev;
ssize_t nbytes;
finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
2020-11-25 08:52:26 +01:00
/* On this device, we can handle the block read just like the byte-oriented
* read
*/
2020-11-25 08:52:26 +01:00
nbytes = m25p_read(dev, startblock << priv->pageshift,
nblocks << priv->pageshift, buffer);
if (nbytes > 0)
{
2020-11-25 08:52:26 +01:00
return nbytes >> priv->pageshift;
}
return (int)nbytes;
}
/****************************************************************************
* Name: m25p_bwrite
****************************************************************************/
2020-11-25 08:52:26 +01:00
static ssize_t m25p_bwrite(FAR struct mtd_dev_s *dev, off_t startblock,
size_t nblocks,
FAR const uint8_t *buffer)
{
FAR struct m25p_dev_s *priv = (FAR struct m25p_dev_s *)dev;
size_t blocksleft = nblocks;
size_t pagesize = 1 << priv->pageshift;
finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* Lock the SPI bus and write each page to FLASH */
m25p_lock(priv->dev);
while (blocksleft-- > 0)
{
m25p_pagewrite(priv, buffer, startblock);
buffer += pagesize;
startblock++;
2020-11-25 08:52:26 +01:00
}
m25p_unlock(priv->dev);
return nblocks;
}
/****************************************************************************
* Name: m25p_read
****************************************************************************/
static ssize_t m25p_read(FAR struct mtd_dev_s *dev,
off_t offset,
size_t nbytes,
FAR uint8_t *buffer)
{
FAR struct m25p_dev_s *priv = (FAR struct m25p_dev_s *)dev;
finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes);
/* Lock the SPI bus NOW because the following call must be executed with
* the bus locked.
*/
m25p_lock(priv->dev);
/* Wait for any preceding write to complete. We could simplify things by
* perform this wait at the end of each write operation (rather than at
* the beginning of ALL operations), but have the wait first will slightly
* improve performance.
*/
m25p_waitwritecomplete(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send "Read from Memory" instruction */
SPI_SEND(priv->dev, M25P_READ);
/* Send the page offset high byte first. */
SPI_SEND(priv->dev, (offset >> 16) & 0xff);
SPI_SEND(priv->dev, (offset >> 8) & 0xff);
SPI_SEND(priv->dev, offset & 0xff);
/* Then read all of the requested bytes */
SPI_RECVBLOCK(priv->dev, buffer, nbytes);
/* Deselect the FLASH and unlock the SPI bus */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
m25p_unlock(priv->dev);
finfo("return nbytes: %d\n", (int)nbytes);
return nbytes;
}
/****************************************************************************
* Name: m25p_write
****************************************************************************/
#ifdef CONFIG_MTD_BYTE_WRITE
static ssize_t m25p_write(FAR struct mtd_dev_s *dev,
off_t offset,
size_t nbytes,
FAR const uint8_t *buffer)
{
FAR struct m25p_dev_s *priv = (FAR struct m25p_dev_s *)dev;
int startpage;
int endpage;
int count;
int index;
int pagesize;
int bytestowrite;
finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes);
/* We must test if the offset + count crosses one or more pages
* and perform individual writes. The devices can only write in
* page increments.
*/
startpage = offset / (1 << priv->pageshift);
endpage = (offset + nbytes) / (1 << priv->pageshift);
m25p_lock(priv->dev);
if (startpage == endpage)
{
/* All bytes within one programmable page. Just do the write. */
m25p_bytewrite(priv, buffer, offset, nbytes);
}
else
{
/* Write the 1st partial-page */
count = nbytes;
pagesize = (1 << priv->pageshift);
2020-11-25 08:52:26 +01:00
bytestowrite = pagesize - (offset & (pagesize - 1));
m25p_bytewrite(priv, buffer, offset, bytestowrite);
/* Update offset and count */
offset += bytestowrite;
count -= bytestowrite;
index = bytestowrite;
/* Write full pages */
while (count >= pagesize)
{
m25p_bytewrite(priv, &buffer[index], offset, pagesize);
/* Update offset and count */
offset += pagesize;
count -= pagesize;
index += pagesize;
}
/* Now write any partial page at the end */
if (count > 0)
{
m25p_bytewrite(priv, &buffer[index], offset, count);
}
}
m25p_unlock(priv->dev);
return nbytes;
}
#endif /* CONFIG_MTD_BYTE_WRITE */
/****************************************************************************
* Name: m25p_ioctl
****************************************************************************/
static int m25p_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg)
{
FAR struct m25p_dev_s *priv = (FAR struct m25p_dev_s *)dev;
int ret = -EINVAL; /* Assume good command with bad parameters */
finfo("cmd: %d \n", cmd);
switch (cmd)
{
case MTDIOC_GEOMETRY:
{
2020-11-25 08:52:26 +01:00
FAR struct mtd_geometry_s *geo = (FAR struct mtd_geometry_s *)
((uintptr_t)arg);
if (geo)
{
/* Populate the geometry structure with information need to
* know the capacity and how to access the device.
*
* NOTE:
* that the device is treated as though it where just an array
* of fixed size blocks.
* That is most likely not true, but the client will expect the
* device logic to do whatever is necessary to make it appear
* so.
*/
geo->blocksize = (1 << priv->pageshift);
#ifdef CONFIG_M25P_SUBSECTOR_ERASE
if (priv->subsectorshift > 0)
{
geo->erasesize = (1 << priv->subsectorshift);
geo->neraseblocks = priv->nsectors *
(1 << (priv->sectorshift -
priv->subsectorshift));
}
else
#endif
{
geo->erasesize = (1 << priv->sectorshift);
geo->neraseblocks = priv->nsectors;
}
ret = OK;
finfo("blocksize: %" PRId32 " erasesize: %" PRId32
" neraseblocks: %" PRId32 "\n",
geo->blocksize, geo->erasesize, geo->neraseblocks);
}
}
break;
case MTDIOC_BULKERASE:
{
/* Erase the entire device */
m25p_lock(priv->dev);
ret = m25p_bulkerase(priv);
m25p_unlock(priv->dev);
}
break;
case MTDIOC_XIPBASE:
default:
ret = -ENOTTY; /* Bad command */
break;
}
finfo("return %d\n", ret);
return ret;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: m25p_initialize
*
* Description:
* Create an initialize MTD device instance.
* MTD devices are not registered in the file system, but are created as
* instances that can be bound to other functions (such as a block or
* character driver front end).
*
****************************************************************************/
FAR struct mtd_dev_s *m25p_initialize(FAR struct spi_dev_s *dev)
{
FAR struct m25p_dev_s *priv;
int ret;
finfo("dev: %p\n", dev);
/* Allocate a state structure (we allocate the structure instead of using
* a fixed, static allocation so that we can handle multiple FLASH devices.
* The current implementation would handle only one FLASH part per SPI
* device (only because of the SPIDEV_FLASH(0) definition) and so would
* have to be extended to handle multiple FLASH parts on the same SPI bus.
*/
priv = (FAR struct m25p_dev_s *)kmm_zalloc(sizeof(struct m25p_dev_s));
if (priv)
{
/* Initialize the allocated structure. (unsupported methods were
* nullified by kmm_zalloc).
*/
priv->mtd.erase = m25p_erase;
priv->mtd.bread = m25p_bread;
priv->mtd.bwrite = m25p_bwrite;
priv->mtd.read = m25p_read;
#ifdef CONFIG_MTD_BYTE_WRITE
priv->mtd.write = m25p_write;
#endif
priv->mtd.ioctl = m25p_ioctl;
priv->mtd.name = "m25px";
priv->dev = dev;
/* Deselect the FLASH */
SPI_SELECT(dev, SPIDEV_FLASH(0), false);
/* Identify the FLASH chip and get its capacity */
ret = m25p_readid(priv);
if (ret != OK)
{
/* Unrecognized!
* Discard all of that work we just did and return NULL
*/
ferr("ERROR: Unrecognized\n");
kmm_free(priv);
return NULL;
}
}
/* Return the implementation-specific state structure as the MTD device */
finfo("Return %p\n", priv);
return (FAR struct mtd_dev_s *)priv;
}