nuttx/drivers/mtd/mx35.c

995 lines
32 KiB
C
Raw Normal View History

/****************************************************************************
* drivers/mtd/mx35.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/kmalloc.h>
#include <nuttx/signal.h>
#include <nuttx/fs/ioctl.h>
#include <nuttx/spi/spi.h>
#include <nuttx/mtd/mtd.h>
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Configuration ************************************************************/
/* Per the data sheet, MX35 parts can be driven with either SPI mode 0
* (CPOL=0 and CPHA=0) or mode 3 (CPOL=1 and CPHA=1). If CONFIG_MX35_SPIMODE
* is not defined, mode 0 will be used.
*/
#ifndef CONFIG_MX35_SPIMODE
# define CONFIG_MX35_SPIMODE SPIDEV_MODE0
#endif
#ifndef CONFIG_MX35_SPIFREQUENCY
# define CONFIG_MX35_SPIFREQUENCY 104000000
#endif
#ifndef CONFIG_MX35_MANUFACTURER
# define CONFIG_MX35_MANUFACTURER 0xC2
#endif
/* Debug ********************************************************************/
#ifdef CONFIG_MX35_DEBUG
# define mx35err(format, ...) _err(format, ##__VA_ARGS__)
# define mx35info(format, ...) _info(format, ##__VA_ARGS__)
#else
# define mx35err(x...)
# define mx35info(x...)
#endif
/* Identification register values *******************************************/
#define MX35_MANUFACTURER CONFIG_MX35_MANUFACTURER
#define MX35_MX35LF1GE4AB_CAPACITY 0x12 /* 1 Gb */
#define MX35_MX35LF2GE4AB_CAPACITY 0x22 /* 2 Gb */
/* Chip Geometries **********************************************************/
/* MX35LF1GE4AB capacity is 1 G-bit */
#define MX35_MX35LF1GE4AB_SECTOR_SHIFT 17 /* Sector size 1 << 17 = 128 Kb */
#define MX35_MX35LF1GE4AB_NSECTORS 1024
#define MX35_MX35LF1GE4AB_PAGE_SHIFT 11 /* Page size 1 << 11 = 2 Kb */
/* MX35LF2GE4AB capacity is 2 G-bit */
#define MX35_MX35LF2GE4AB_SECTOR_SHIFT 17 /* Sector size 1 << 17 = 128 Kb */
#define MX35_MX35LF2GE4AB_NSECTORS 2048
#define MX35_MX35LF2GE4AB_PAGE_SHIFT 11 /* Page size 1 << 11 = 2 Kb */
/* MX35 Instructions ********************************************************/
/* Command Value Description Addr Data */
/* Dummy */
#define MX35_GET_FEATURE 0x0F /* Get features 1 0 1 */
#define MX35_SET_FEATURE 0x1F /* Set features 1 0 1 */
#define MX35_PAGE_READ 0x13 /* Array read 3 0 0 */
#define MX35_READ_FROM_CACHE 0x03 /* Output cache data
* on SO 2 1 1-2112 */
#define MX35_READ_FROM_CACHE_X1 0x0B /* Output cache data
* on SO 2 1 1-2112 */
#define MX35_READ_FROM_CACHE_X2 0x3B /* Output cache data
* on SI and SO 2 1 1-2112 */
#define MX35_READ_FROM_CACHE_X4 0x6B /* Output cache data
* on SI, SO, WP, HOLD 2 1 1-2112 */
#define MX35_READ_ID 0x9F /* Read device ID 0 1 2 */
#define MX35_ECC_STATUS_READ 0x7C /* Internal ECC status
* output 0 1 1 */
#define MX35_BLOCK_ERASE 0xD8 /* Block erase 3 0 0 */
#define MX35_PROGRAM_EXECUTE 0x10 /* Enter block/page
* address, execute 3 0 0 */
#define MX35_PROGRAM_LOAD 0x02 /* Load program data with
* cache reset first 2 0 1-2112 */
#define MX35_PROGRAM_LOAD_RANDOM 0x84 /* Load program data
* without cache reset 2 0 1-2112 */
#define MX35_PROGRAM_LOAD_X4 0x32 /* Program load operation
* with x4 data input 2 0 1-2112 */
#define MX35_PROGRAM_LOAD_RANDOM_X4 0x34 /* Load random operation
* with x4 data input 2 0 1-2112 */
#define MX35_WRITE_ENABLE 0x06 /* 0 0 0 */
#define MX35_WRITE_DISABLE 0x04 /* 0 0 0 */
#define MX35_RESET 0xFF /* Reset the device 0 0 0 */
#define MX35_DUMMY 0x00 /* No Operation 0 0 0 */
/* Feature register *********************************************************/
/* Register address */
#define MX35_SECURE_OTP 0xB0
#define MX35_STATUS 0xC0
#define MX35_BLOCK_PROTECTION 0xA0
/* Bit definitions */
/* Secure OTP (On-Time-Programmable) register */
#define MX35_SOTP_QE (1 << 0) /* Bit 0: Quad Enable */
#define MX35_SOTP_ECC (1 << 4) /* Bit 4: ECC enabled */
#define MX35_SOTP_SOTP_EN (1 << 6) /* Bit 6: Secure OTP Enable */
#define MX35_SOTP_SOTP_PROT (1 << 7) /* Bit 7: Secure OTP Protect */
/* Status register */
#define MX35_SR_OIP (1 << 0) /* Bit 0: Operation in progress */
#define MX35_SR_WEL (1 << 1) /* Bit 1: Write enable latch */
#define MX35_SR_E_FAIL (1 << 2) /* Bit 2: Erase fail */
#define MX35_SR_P_FAIL (1 << 3) /* Bit 3: Program Fail */
#define MX35_SR_ECC_S0 (1 << 4) /* Bit 4-5: ECC Status */
#define MX35_SR_ECC_S1 (1 << 5)
/* Block Protection register */
#define MX35_BP_SP (1 << 0) /* Bit 0: Solid-protection (1Gb only) */
#define MX35_BP_COMPL (1 << 1) /* Bit 1: Complementary (1Gb only) */
#define MX35_BP_INV (1 << 2) /* Bit 2: Invert (1Gb only) */
#define MX35_BP_BP0 (1 << 3) /* Bit 3: Block Protection 0 */
#define MX35_BP_BP1 (1 << 4) /* Bit 4: Block Protection 1 */
#define MX35_BP_BP2 (1 << 5) /* Bit 5: Block Protection 2 */
#define MX35_BP_BPRWD (1 << 7) /* Bit 7: Block Protection Register
* Write Disable */
/* ECC Status register */
#define MX35_FEATURE_ECC_MASK (0x03 << 4)
#define MX35_FEATURE_ECC_INCORRECTABLE (0x02 << 4)
#define MX35_FEATURE_ECC_OFFSET 4
#define MX35_ECC_STATUS_MASK 0x0F
#define MX35_ECC_INCORRECTABLE 0x0F
/****************************************************************************
* Private Types
****************************************************************************/
/* This type represents the state of the MTD device. The struct mtd_dev_s
* must appear at the beginning of the definition so that you can freely
* cast between pointers to struct mtd_dev_s and struct m25p_dev_s.
*/
struct mx35_dev_s
{
struct mtd_dev_s mtd; /* MTD interface */
FAR struct spi_dev_s *dev; /* Saved SPI interface instance */
uint8_t highcapacity;
uint8_t sectorshift; /* 17 */
uint16_t nsectors; /* 1024 or 2048 */
uint8_t pageshift; /* 11 */
uint8_t eccstatus; /* Internal ECC status */
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
static inline void mx35_lock(FAR struct spi_dev_s *dev);
static inline void mx35_unlock(FAR struct spi_dev_s *dev);
static int mx35_readid(FAR struct mx35_dev_s *priv);
static bool mx35_waitstatus(FAR struct mx35_dev_s *priv, uint8_t mask,
bool successif);
static inline void mx35_writeenable(struct mx35_dev_s *priv);
static inline void mx35_writedisable(struct mx35_dev_s *priv);
static inline uint32_t mx35_addresstorow(FAR struct mx35_dev_s *priv,
uint32_t address);
static inline uint32_t mx35_addresstocolumn(FAR struct mx35_dev_s *priv,
uint32_t address);
static bool mx35_sectorerase(FAR struct mx35_dev_s *priv,
off_t startsector);
static int mx35_erase(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks);
static void mx35_readbuffer(FAR struct mx35_dev_s *priv,
uint32_t address,
uint8_t *buffer, size_t length);
static bool mx35_read_page(FAR struct mx35_dev_s *priv,
uint32_t position);
static ssize_t mx35_read(FAR struct mtd_dev_s *dev,
off_t offset,
size_t nbytes,
FAR uint8_t *buffer);
static void mx35_write_to_cache(FAR struct mx35_dev_s *priv,
uint32_t address,
const uint8_t *buffer,
size_t length);
static bool mx35_execute_write(FAR struct mx35_dev_s *priv,
uint32_t position);
static ssize_t mx35_write(FAR struct mtd_dev_s *dev,
off_t offset,
size_t nbytes,
FAR const uint8_t *buffer);
static int mx35_ioctl(FAR struct mtd_dev_s *dev,
int cmd,
unsigned long arg);
static inline void mx35_eccstatusread(struct mx35_dev_s *priv);
static inline void mx35_enableecc(struct mx35_dev_s *priv);
static inline void mx35_unlockblocks(struct mx35_dev_s *priv);
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: mx35_lock
****************************************************************************/
static inline void mx35_lock(FAR struct spi_dev_s *dev)
{
/* On SPI buses where there are multiple devices, it will be necessary to
* lock SPI to have exclusive access to the buses for a sequence of
* transfers. The bus should be locked before the chip is selected.
*
* This is a blocking call and will not return until we have exclusive
* access to the SPI bus.
* We will retain that exclusive access until the bus is unlocked.
*/
SPI_LOCK(dev, true);
/* After locking the SPI bus, the we also need call the setfrequency,
* setbits, and setmode methods to make sure that the SPI is properly
* configured for the device.
* If the SPI bus is being shared, then it may have been left in an
* incompatible state.
*/
SPI_SETMODE(dev, CONFIG_MX35_SPIMODE);
SPI_SETBITS(dev, 8);
SPI_HWFEATURES(dev, 0);
SPI_SETFREQUENCY(dev, CONFIG_MX35_SPIFREQUENCY);
}
/****************************************************************************
* Name: mx35_unlock
****************************************************************************/
static inline void mx35_unlock(FAR struct spi_dev_s *dev)
{
SPI_LOCK(dev, false);
}
/****************************************************************************
* Name: m25p_readid
****************************************************************************/
static int mx35_readid(struct mx35_dev_s *priv)
{
uint16_t manufacturer;
uint16_t capacity;
mx35info("priv: %p\n", priv);
/* Lock the SPI bus, configure the bus, and select this FLASH part. */
mx35_lock(priv->dev);
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send the "Read ID" command and read two ID bytes */
SPI_SEND(priv->dev, MX35_READ_ID);
SPI_SEND(priv->dev, MX35_DUMMY);
manufacturer = SPI_SEND(priv->dev, MX35_DUMMY);
capacity = SPI_SEND(priv->dev, MX35_DUMMY);
/* Deselect the FLASH and unlock the bus */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
mx35_unlock(priv->dev);
mx35info("manufacturer: %02x capacity: %02x\n",
manufacturer, capacity);
/* Check for a valid manufacturer */
if (manufacturer == MX35_MANUFACTURER)
{
/* Okay.. is it a FLASH capacity that we understand? */
if (capacity == MX35_MX35LF1GE4AB_CAPACITY)
{
/* Save the FLASH geometry */
priv->highcapacity = 0;
priv->sectorshift = MX35_MX35LF1GE4AB_SECTOR_SHIFT;
priv->nsectors = MX35_MX35LF1GE4AB_NSECTORS;
priv->pageshift = MX35_MX35LF1GE4AB_PAGE_SHIFT;
return OK;
}
else if (capacity == MX35_MX35LF2GE4AB_CAPACITY)
{
/* Save the FLASH geometry */
priv->highcapacity = 1;
priv->sectorshift = MX35_MX35LF2GE4AB_SECTOR_SHIFT;
priv->nsectors = MX35_MX35LF2GE4AB_NSECTORS;
priv->pageshift = MX35_MX35LF2GE4AB_PAGE_SHIFT;
return OK;
}
}
return -ENODEV;
}
/****************************************************************************
* Name: mx35_waitstatus
****************************************************************************/
static bool mx35_waitstatus(FAR struct mx35_dev_s *priv,
uint8_t mask,
bool successif)
{
uint8_t status;
/* Loop as long as the memory is busy with a write cycle */
do
{
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Get feature command */
SPI_SEND(priv->dev, MX35_GET_FEATURE);
SPI_SEND(priv->dev, MX35_STATUS);
status = SPI_SEND(priv->dev, MX35_DUMMY);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
/* Given that writing could take up to few tens of milliseconds, and
* erasing could take more. The following short delay in the "busy"
* case will allow other peripherals to access the SPI bus.
*/
}
while (((status & MX35_SR_OIP) != 0) && (!nxsig_usleep(1000)));
mx35info("Complete\n");
return successif ? ((status & mask) != 0) : ((status & mask) == 0);
}
/****************************************************************************
* Name: mx35_writeenable
****************************************************************************/
static inline void mx35_writeenable(struct mx35_dev_s *priv)
{
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send Write Enable command */
SPI_SEND(priv->dev, MX35_WRITE_ENABLE);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
}
/****************************************************************************
* Name: mx35_writedisable
****************************************************************************/
static inline void mx35_writedisable(struct mx35_dev_s *priv)
{
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send Write Enable command */
SPI_SEND(priv->dev, MX35_WRITE_DISABLE);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
}
/****************************************************************************
* Name: mx35_addresstorow
****************************************************************************/
static inline uint32_t mx35_addresstorow(FAR struct mx35_dev_s *priv,
uint32_t address)
{
/* Convert to page */
uint32_t row = address >> priv->pageshift;
if (priv->highcapacity)
{
const uint32_t plane = (row >> (16 - 6)) & 0x40;
/* Shift block address */
row = ((row & ~0x3f) << 1) | (row & 0x3f);
/* Insert plane select bit */
row = row | plane;
}
return row;
}
/****************************************************************************
* Name: mx35_addresstocolumn
****************************************************************************/
static inline uint32_t mx35_addresstocolumn(FAR struct mx35_dev_s *priv,
uint32_t address)
{
uint32_t column = address % (1 << priv->pageshift);
if (priv->highcapacity)
{
/* Convert to page */
const uint32_t row = address >> priv->pageshift;
const uint32_t plane = (row >> (16 - 12)) & 0x1000;
/* Insert plane select bit */
column = column | plane;
}
else
{
uint16_t wraplength = 0x00;
column |= (wraplength & 0xc000);
}
return column;
}
/****************************************************************************
* Name: mx35_sectorerase (128K)
****************************************************************************/
static bool mx35_sectorerase(FAR struct mx35_dev_s *priv, off_t startsector)
{
off_t address = (off_t)startsector << priv->sectorshift;
const uint32_t block = mx35_addresstorow(priv, address);
mx35info("sector: %08lx\n", (long)startsector);
/* Send write enable instruction */
mx35_writeenable(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send the Block Erase instruction */
SPI_SEND(priv->dev, MX35_BLOCK_ERASE);
SPI_SEND(priv->dev, (block >> 16) & 0xff);
SPI_SEND(priv->dev, (block >> 8) & 0xff);
SPI_SEND(priv->dev, block & 0xff);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
mx35info("Erased\n");
return mx35_waitstatus(priv, MX35_SR_E_FAIL, false);
}
/****************************************************************************
* Name: mx35_erase
****************************************************************************/
static int mx35_erase(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks)
{
FAR struct mx35_dev_s *priv = (FAR struct mx35_dev_s *)dev;
size_t blocksleft = nblocks;
mx35info("startblock: %08lx nblocks: %d\n",
(long)startblock,
(int)nblocks);
/* Lock access to the SPI bus until we complete the erase */
mx35_lock(priv->dev);
/* Wait all operations complete */
mx35_waitstatus(priv, MX35_SR_OIP, false);
while (blocksleft-- > 0)
{
mx35_sectorerase(priv, startblock);
startblock++;
}
mx35_unlock(priv->dev);
return (int)nblocks;
}
/****************************************************************************
* Name: mx35_readbuffer
****************************************************************************/
static void mx35_readbuffer(FAR struct mx35_dev_s *priv, uint32_t address,
uint8_t *buffer, size_t length)
{
const uint16_t offset = mx35_addresstocolumn(priv, address);
/* Select the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
SPI_SEND(priv->dev, MX35_READ_FROM_CACHE);
/* Send the address high byte first. */
SPI_SEND(priv->dev, (offset >> 8) & 0xff);
SPI_SEND(priv->dev, (offset) & 0xff);
/* Send a dummy byte */
SPI_SEND(priv->dev, MX35_DUMMY);
/* Then read all of the requested bytes */
SPI_RECVBLOCK(priv->dev, buffer, length);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
}
/****************************************************************************
* Name: mx35_read_page
****************************************************************************/
static bool mx35_read_page(FAR struct mx35_dev_s *priv, uint32_t pageaddress)
{
const uint32_t row = mx35_addresstorow(priv, pageaddress);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send the Read Page instruction */
SPI_SEND(priv->dev, MX35_PAGE_READ);
SPI_SEND(priv->dev, (row >> 16) & 0xff);
SPI_SEND(priv->dev, (row >> 8) & 0xff);
SPI_SEND(priv->dev, row & 0xff);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
mx35_waitstatus(priv, MX35_SR_OIP, false);
mx35_eccstatusread(priv);
if ((priv->eccstatus & MX35_FEATURE_ECC_MASK) ==
MX35_FEATURE_ECC_INCORRECTABLE)
{
return false;
}
return true;
}
/****************************************************************************
* Name: mx35_read
****************************************************************************/
static ssize_t mx35_read(FAR struct mtd_dev_s *dev,
off_t offset,
size_t nbytes,
FAR uint8_t *buffer)
{
FAR struct mx35_dev_s *priv = (FAR struct mx35_dev_s *)dev;
size_t bytesleft = nbytes;
uint32_t position = offset;
mx35info("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes);
/* Lock the SPI bus and select this FLASH part */
mx35_lock(priv->dev);
/* Wait all operations complete */
mx35_waitstatus(priv, MX35_SR_OIP, false);
while (bytesleft)
{
const uint32_t pageaddress = (position >> priv->pageshift) <<
priv->pageshift;
const uint32_t spaceleft = pageaddress + (1 << priv->pageshift) -
position;
const size_t chunklength = bytesleft < spaceleft ?
bytesleft : spaceleft;
if (!mx35_read_page(priv, pageaddress))
{
break;
}
mx35_readbuffer(priv, position, buffer, chunklength);
position += chunklength;
buffer += chunklength;
bytesleft -= chunklength;
}
mx35_unlock(priv->dev);
mx35info("return nbytes: %d\n", (int)(nbytes - bytesleft));
return nbytes - bytesleft;
}
/****************************************************************************
* Name: mx35_write_to_cache
****************************************************************************/
static void mx35_write_to_cache(FAR struct mx35_dev_s *priv,
uint32_t address,
const uint8_t *buffer,
size_t length)
{
const uint16_t offset = mx35_addresstocolumn(priv, address);
/* Select the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send the Program Load command */
SPI_SEND(priv->dev, MX35_PROGRAM_LOAD);
/* Send the address high byte first. */
SPI_SEND(priv->dev, (offset >> 8) & 0xff);
SPI_SEND(priv->dev, (offset) & 0xff);
/* Send block of bytes */
SPI_SNDBLOCK(priv->dev, buffer, length);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
}
/****************************************************************************
* Name: mx35_write_to_cache
****************************************************************************/
static bool mx35_execute_write(FAR struct mx35_dev_s *priv,
uint32_t pageaddress)
{
const uint32_t row = mx35_addresstorow(priv, pageaddress);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send the Pragram Execute instruction */
SPI_SEND(priv->dev, MX35_PROGRAM_EXECUTE);
SPI_SEND(priv->dev, (row >> 16) & 0xff);
SPI_SEND(priv->dev, (row >> 8) & 0xff);
SPI_SEND(priv->dev, row & 0xff);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
return mx35_waitstatus(priv, MX35_SR_P_FAIL, false);
}
/****************************************************************************
* Name: mx35_write
****************************************************************************/
static ssize_t mx35_write(FAR struct mtd_dev_s *dev,
off_t offset,
size_t nbytes,
FAR const uint8_t *buffer)
{
FAR struct mx35_dev_s *priv = (FAR struct mx35_dev_s *)dev;
size_t bytesleft = nbytes;
uint32_t position = offset;
mx35_lock(priv->dev);
/* Wait all operations complete */
mx35_waitstatus(priv, MX35_SR_OIP, false);
while (bytesleft)
{
const uint32_t pageaddress = (position >> priv->pageshift) <<
priv->pageshift;
const uint32_t spaceleft = pageaddress + (1 << priv->pageshift) -
position;
const size_t chunklength = bytesleft < spaceleft ?
bytesleft : spaceleft;
mx35_writeenable(priv);
mx35_write_to_cache(priv, position, buffer, chunklength);
if (!mx35_execute_write(priv, pageaddress))
{
continue;
}
position += chunklength;
buffer += chunklength;
bytesleft -= chunklength;
}
mx35_unlock(priv->dev);
return nbytes - bytesleft;
}
/****************************************************************************
* Name: mx25l_ioctl
****************************************************************************/
static int mx35_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg)
{
FAR struct mx35_dev_s *priv = (FAR struct mx35_dev_s *)dev;
int ret = -EINVAL; /* Assume good command with bad parameters */
mx35info("cmd: %d\n", cmd);
switch (cmd)
{
case MTDIOC_GEOMETRY:
{
FAR struct mtd_geometry_s *geo =
(FAR struct mtd_geometry_s *)((uintptr_t)arg);
if (geo)
{
memset(geo, 0, sizeof(*geo));
/* Populate the geometry structure with information need to
* know the capacity and how to access the device.
*
* NOTE:
* that the device is treated as though it where just an array
* of fixed size blocks. That is most likely not true, but the
* client will expect the device logic to do whatever is
* necessary to make it appear so.
*/
geo->blocksize = (1 << priv->pageshift);
geo->erasesize = (1 << priv->sectorshift);
geo->neraseblocks = priv->nsectors;
ret = OK;
mx35info("blocksize: %d erasesize: %d neraseblocks: %d\n",
geo->blocksize, geo->erasesize, geo->neraseblocks);
}
}
break;
case BIOC_PARTINFO:
{
FAR struct partition_info_s *info =
(FAR struct partition_info_s *)arg;
if (info != NULL)
{
info->numsectors = priv->nsectors <<
(priv->sectorshift - priv->pageshift);
info->sectorsize = 1 << priv->pageshift;
info->startsector = 0;
info->parent[0] = '\0';
ret = OK;
}
}
break;
case MTDIOC_BULKERASE:
{
/* Erase the entire device */
ret = mx35_erase(dev, 0, priv->nsectors);
}
break;
case MTDIOC_ECCSTATUS:
{
uint8_t *result = (uint8_t *)arg;
*result =
(priv->eccstatus & MX35_FEATURE_ECC_MASK) >>
MX35_FEATURE_ECC_OFFSET;
ret = OK;
}
break;
default:
ret = -ENOTTY; /* Bad command */
break;
}
mx35info("return %d\n", ret);
return ret;
}
/****************************************************************************
* Name: mx35_eccstatusread
****************************************************************************/
static inline void mx35_eccstatusread(struct mx35_dev_s *priv)
{
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
SPI_SEND(priv->dev, MX35_GET_FEATURE);
SPI_SEND(priv->dev, MX35_STATUS);
priv->eccstatus = SPI_SEND(priv->dev, MX35_DUMMY);
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
}
/****************************************************************************
* Name: mx35_enableecc
****************************************************************************/
static inline void mx35_enableecc(struct mx35_dev_s *priv)
{
uint8_t secureotp = MX35_SOTP_ECC;
mx35_lock(priv->dev);
mx35_writeenable(priv);
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
SPI_SEND(priv->dev, MX35_SET_FEATURE);
SPI_SEND(priv->dev, MX35_SECURE_OTP);
SPI_SEND(priv->dev, secureotp);
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
mx35_writedisable(priv);
mx35_unlock(priv->dev);
}
/****************************************************************************
* Name: mx35_unlockblocks
****************************************************************************/
static inline void mx35_unlockblocks(struct mx35_dev_s *priv)
{
uint8_t blockprotection = 0x00;
mx35_lock(priv->dev);
mx35_writeenable(priv);
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
SPI_SEND(priv->dev, MX35_SET_FEATURE);
SPI_SEND(priv->dev, MX35_BLOCK_PROTECTION);
SPI_SEND(priv->dev, blockprotection);
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
mx35_writedisable(priv);
mx35_unlock(priv->dev);
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: mx35_initialize
*
* Description:
* Create an initialize MTD device instance. MTD devices are not
* registered in the file system, but are created as instances that can
* be bound to other functions (such as a block or character driver front
* end).
*
****************************************************************************/
FAR struct mtd_dev_s *mx35_initialize(FAR struct spi_dev_s *dev)
{
FAR struct mx35_dev_s *priv;
int ret;
mx35info("dev: %p\n", dev);
/* Allocate a state structure (we allocate the structure instead of using
* a fixed, static allocation so that we can handle multiple FLASH devices.
* The current implementation would handle only one FLASH part per SPI
* device (only because of the SPIDEV_FLASH(0) definition) and so would
* have to be extended to handle multiple FLASH parts on the same SPI bus.
*/
priv = kmm_zalloc(sizeof(struct mx35_dev_s));
if (priv)
{
/* Initialize the allocated structure. (unsupported methods were
* nullified by kmm_zalloc).
*/
priv->mtd.erase = mx35_erase;
priv->mtd.read = mx35_read;
priv->mtd.write = mx35_write;
priv->mtd.ioctl = mx35_ioctl;
priv->mtd.name = "mx35";
priv->dev = dev;
/* Deselect the FLASH */
SPI_SELECT(dev, SPIDEV_FLASH(0), false);
/* Reset the flash */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
SPI_SEND(priv->dev, MX35_RESET);
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
/* Wait reset complete */
mx35_waitstatus(priv, MX35_SR_OIP, false);
/* Identify the FLASH chip and get its capacity */
ret = mx35_readid(priv);
if (ret != OK)
{
/* Unrecognized! Discard all of that work we just did and
* return NULL
*/
mx35err("ERROR: Unrecognized\n");
kmm_free(priv);
return NULL;
}
mx35_enableecc(priv);
mx35_unlockblocks(priv);
}
/* Return the implementation-specific state structure as the MTD device */
mx35info("Return %p\n", priv);
return (FAR struct mtd_dev_s *)priv;
}