836 lines
26 KiB
ArmAsm
836 lines
26 KiB
ArmAsm
/****************************************************************************
|
|
* arch/arm/src/armv7-a/arm_pghead.S
|
|
*
|
|
* Copyright (C) 2013-2014 Gregory Nutt. All rights reserved.
|
|
* Author: Gregory Nutt <gnutt@nuttx.org>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name NuttX nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Included Files
|
|
****************************************************************************/
|
|
|
|
#include <nuttx/config.h>
|
|
#include <nuttx/page.h>
|
|
|
|
#include <arch/board/board.h>
|
|
|
|
#include "arm.h"
|
|
#include "cp15.h"
|
|
#include "sctlr.h"
|
|
#include "mmu.h"
|
|
#include "pg_macros.h"
|
|
|
|
#include "chip.h"
|
|
#include "up_internal.h"
|
|
|
|
.file "arm_pghead.S"
|
|
|
|
/**********************************************************************************
|
|
* Configuration
|
|
**********************************************************************************/
|
|
/* Assume these are not needed */
|
|
|
|
#undef ALIGNMENT_TRAP
|
|
#undef CPU_CACHE_ROUND_ROBIN
|
|
#undef CPU_DCACHE_DISABLE
|
|
#undef CPU_ICACHE_DISABLE
|
|
|
|
/* The page table cannot be in ROM if we are going to do pagin! */
|
|
|
|
#ifndef CONFIG_ARCH_ROMPGTABLE
|
|
# error CONFIG_PAGING and CONFIG_ARCH_ROMPGTABLE are incompatible options
|
|
#endif
|
|
|
|
/* There are three operational memory configurations:
|
|
*
|
|
* 1. We execute in place in FLASH (CONFIG_BOOT_RUNFROMFLASH=y). In this case
|
|
* the boot logic must:
|
|
*
|
|
* - Configure SDRAM,
|
|
* - Initialize the .data section in RAM, and
|
|
* - Clear .bss section
|
|
*/
|
|
|
|
#ifdef CONFIG_BOOT_RUNFROMFLASH
|
|
/* Check for the identity mapping: For this configuration, this would be
|
|
* the case where the virtual beginning of FLASH is the same as the physical
|
|
* beginning of FLASH.
|
|
*/
|
|
|
|
# if !defined(CONFIG_FLASH_START) || !defined(CONFIG_FLASH_VSTART)
|
|
# error "CONFIG_FLASH_START or CONFIG_FLASH_VSTART is not defined"
|
|
# endif
|
|
|
|
# if CONFIG_FLASH_START == CONFIG_FLASH_VSTART
|
|
# define CONFIG_IDENTITY_TEXTMAP 1
|
|
# endif
|
|
|
|
/* 2. We boot in FLASH but copy ourselves to DRAM from better performance.
|
|
* (CONFIG_BOOT_RUNFROMFLASH=n && CONFIG_BOOT_COPYTORAM=y). In this case
|
|
* the boot logic must:
|
|
*
|
|
* - Configure SDRAM,
|
|
* - Copy ourself to DRAM (after mapping it), and
|
|
* - Clear .bss section
|
|
*
|
|
* In this case, we assume that the logic within this file executes from FLASH.
|
|
*/
|
|
|
|
#elif defined(CONFIG_BOOT_COPYTORAM)
|
|
# error "configuration not implemented
|
|
|
|
/* Check for the identity mapping: For this configuration, this would be
|
|
* the case where the virtual beginning of FLASH is the same as the physical
|
|
* beginning of FLASH.
|
|
*/
|
|
|
|
# if !defined(CONFIG_FLASH_START) || !defined(CONFIG_FLASH_VSTART)
|
|
# error "CONFIG_FLASH_START or CONFIG_FLASH_VSTART is not defined"
|
|
# endif
|
|
|
|
# if CONFIG_FLASH_START == CONFIG_FLASH_VSTART
|
|
# define CONFIG_IDENTITY_TEXTMAP 1
|
|
# endif
|
|
|
|
/* 3. There is bootloader that copies us to DRAM (but probably not to the beginning)
|
|
* (CONFIG_BOOT_RUNFROMFLASH=n && CONFIG_BOOT_COPYTORAM=n). In this case SDRAM
|
|
* was initialized by the boot loader, and this boot logic must:
|
|
*
|
|
* - Clear .bss section
|
|
*/
|
|
|
|
#else
|
|
|
|
/* Check for the identity mapping: For this configuration, this would be
|
|
* the case where the virtual beginning of RAM is the same as the physical
|
|
* beginning of RAM.
|
|
*/
|
|
|
|
# if !defined(CONFIG_RAM_START) || !defined(CONFIG_RAM_VSTART)
|
|
# error "CONFIG_RAM_START or CONFIG_RAM_VSTART is not defined"
|
|
# endif
|
|
|
|
# if CONFIG_RAM_START == CONFIG_RAM_VSTART
|
|
# define CONFIG_IDENTITY_TEXTMAP 1
|
|
# endif
|
|
|
|
#endif
|
|
|
|
/* For each page table offset, the following provide (1) the physical address of
|
|
* the start of the page table and (2) the number of page table entries in the
|
|
* first page table.
|
|
*
|
|
* Coarse: PG_L1_PADDRMASK=0xfffffc00
|
|
* NPAGE1=(256 -((a) & 0x000003ff) >> 2) NPAGE1=1-256
|
|
* Fine: PG_L1_PADDRMASK=0xfffff000
|
|
* NPAGE1=(1024 -((a) & 0x00000fff) >> 2) NPAGE1=1-1024
|
|
*/
|
|
|
|
#define PG_L2_TEXT_PBASE (PG_L2_TEXT_PADDR & PG_L1_PADDRMASK)
|
|
#define PG_L2_TEXT_NPAGE1 (PTE_NPAGES - ((PG_L2_TEXT_PADDR & ~PG_L1_PADDRMASK) >> 2))
|
|
#define PG_L2_PGTABLE_PBASE (PG_L2_PGTABLE_PADDR & PG_L1_PADDRMASK)
|
|
#define PG_L2_PGTABLE_NPAGE1 (PTE_NPAGES - ((PG_L2_PGTABLE_PADDR & ~PG_L1_PADDRMASK) >> 2))
|
|
#define PG_L2_DATA_PBASE (PG_L2_DATA_PADDR & PG_L1_PADDRMASK)
|
|
#define PG_L2_DATA_NPAGE1 (PTE_NPAGES - ((PG_L2_DATA_PADDR & ~PG_L1_PADDRMASK) >> 2))
|
|
|
|
/****************************************************************************
|
|
* Pre-processor Definitions
|
|
****************************************************************************/
|
|
|
|
/* RX_NSECTIONS determines the number of 1Mb sections to map for the
|
|
* Read/eXecute address region. This is based on NUTTX_TEXT_SIZE.
|
|
*/
|
|
|
|
#define RX_NSECTIONS ((NUTTX_TEXT_SIZE+0x000fffff) >> 20)
|
|
#define WR_NSECTIONS ((NUTTX_RAM_SIZE+0x000fffff) >> 20)
|
|
|
|
/****************************************************************************
|
|
* Assembly Macros
|
|
****************************************************************************/
|
|
|
|
/* The ARMv7-A L1 page table can be placed at the beginning or at the end of
|
|
* the RAM space. This decision is based on the placement of the vector
|
|
* area: If the vectors are place in low memory at address 0x0000 0000, then
|
|
* the page table is placed in high memory; if the vectors are placed in
|
|
* high memory at address 0xfff0 0000, then the page table is locating at
|
|
* the beginning of RAM.
|
|
*
|
|
* For the special case where (1) the program executes out of RAM, and (2)
|
|
* the page is located at the beginning of RAM (i.e., the high vector case),
|
|
* then the following macro can easily find the physical address of the
|
|
* section that includes the first part of the text region: Since the page
|
|
* table is closely related to the NuttX base address in this case, we can
|
|
* convert the page table base address to the base address of the section
|
|
* containing both.
|
|
*/
|
|
|
|
/* This macro will modify r0, r1, r2 and r14 */
|
|
|
|
#ifdef CONFIG_DEBUG
|
|
.macro showprogress, code
|
|
mov r0, #\code
|
|
bl up_lowputc
|
|
.endm
|
|
#else
|
|
.macro showprogress, code
|
|
.endm
|
|
#endif
|
|
|
|
/****************************************************************************
|
|
* Name: __start
|
|
****************************************************************************/
|
|
|
|
.text
|
|
.global __start
|
|
.type __start, #function
|
|
|
|
__start:
|
|
/* Make sure that we are in SVC mode with IRQs and FIQs disabled */
|
|
|
|
mov r0, #(PSR_MODE_SVC | PSR_I_BIT | PSR_F_BIT)
|
|
msr cpsr_c, r0
|
|
|
|
/* Clear the 16K level 1 page table */
|
|
|
|
ldr r4, .LCppgtable /* r4=phys. page table */
|
|
mov r0, r4
|
|
mov r1, #0
|
|
add r2, r0, #PGTABLE_SIZE
|
|
.Lpgtableclear:
|
|
str r1, [r0], #4
|
|
str r1, [r0], #4
|
|
str r1, [r0], #4
|
|
str r1, [r0], #4
|
|
teq r0, r2
|
|
bne .Lpgtableclear
|
|
|
|
#ifdef ARMV7A_PGTABLE_MAPPING
|
|
/* If the page table does not lie in the same address space as does the
|
|
* mapped RAM in either case. So we will need to create a special
|
|
* mapping for the page table.
|
|
*
|
|
* Load information needed to map the page table. After the ldmia, we
|
|
* will have
|
|
*
|
|
* R1 = The aligned, physical base address of the page table
|
|
* R2 = The aligned, virtual base address of the page table
|
|
* R3 = The MMU flags to use with the .text space mapping
|
|
* R5 = The physical address of the L1 page table (from above)
|
|
*
|
|
* The value in R1 could have been obtained by simply masking R5.
|
|
*/
|
|
|
|
adr r0, .LCptinfo /* Address of page table description */
|
|
ldmia r0, {r1, r2, r3} /* Load the page table description */
|
|
|
|
/* A single page is sufficient to map the page table */
|
|
|
|
orr r0, r1, r3 /* OR MMU flags into physical address */
|
|
str r0, [r5, r2, lsr #18] /* Map using the virtual address as an index */
|
|
#endif
|
|
|
|
#ifndef CONFIG_IDENTITY_TEXTMAP
|
|
/* Create identity mapping for first MB of the .text section to support
|
|
* this start-up logic executing out of the physical address space. This
|
|
* identity mapping will be removed by .Lvstart (see below). Of course,
|
|
* we would only do this if the physical-virtual mapping is not already
|
|
* the identity mapping.
|
|
*/
|
|
|
|
ldr r0, .LCptextbase /* r0=phys. base address of .text section */
|
|
ldr r1, .LCtextflags /* R1=.text section MMU flags */
|
|
orr r3, r1, r0 /* r3=flags + base */
|
|
str r3, [r4, r0, lsr #18] /* identity mapping */
|
|
#endif
|
|
|
|
/* Map the read-only .text region in place. This must be done
|
|
* before the MMU is enabled and the virtual addressing takes
|
|
* effect. First populate the L1 table for the locked and paged
|
|
* text regions.
|
|
*
|
|
* We could probably make the pg_l1span and pg_l2map macros into
|
|
* call-able subroutines, but we would have to be carefully during
|
|
* this phase while we are operating in a physical address space.
|
|
*
|
|
* NOTE: That the value of r5 (L1 table base address) must be
|
|
* preserved through the following.
|
|
*/
|
|
|
|
adr r0, .Ltxtspan
|
|
ldmia r0, {r0, r1, r2, r3, r5}
|
|
pg_l1span r0, r1, r2, r3, r5, r6
|
|
|
|
/* Then populate the L2 table for the locked text region only. */
|
|
|
|
adr r0, .Ltxtmap
|
|
ldmia r0, {r0, r1, r2, r3}
|
|
pg_l2map r0, r1, r2, r3, r5
|
|
|
|
/* Make sure that the page table is itself mapped and and read/write-able.
|
|
* First, populate the L1 table:
|
|
*/
|
|
|
|
adr r0, .Lptabspan
|
|
ldmia r0, {r0, r1, r2, r3, r5}
|
|
pg_l1span r0, r1, r2, r3, r5, r6
|
|
|
|
/* Then populate the L2 table. */
|
|
|
|
adr r0, .Lptabmap
|
|
ldmia r0, {r0, r1, r2, r3}
|
|
pg_l2map r0, r1, r2, r3, r5
|
|
|
|
/* The following logic will set up the ARMv7-A for normal operation.
|
|
*
|
|
* Here we expect to have:
|
|
* r4 = Address of the base of the L1 table
|
|
*/
|
|
|
|
/* Invalidate caches and TLBs.
|
|
*
|
|
* NOTE: "The ARMv7 Virtual Memory System Architecture (VMSA) does not
|
|
* support a CP15 operation to invalidate the entire data cache. ...
|
|
* In normal usage the only time the entire data cache has to be
|
|
* invalidated is on reset."
|
|
*
|
|
* The instruction cache is virtually indexed and physically tagged but
|
|
* the data cache is physically indexed and physically tagged. So it
|
|
* should not be an issue if the system comes up with a dirty Dcache;
|
|
* the ICache, however, must be invalidated.
|
|
*/
|
|
|
|
mov r0, #0
|
|
mcr CP15_TLBIALL(r0,c7) /* Invalidate the entire unified TLB */
|
|
mcr CP15_TLBIALL(r0,c6)
|
|
mcr CP15_TLBIALL(r0,c5)
|
|
mcr CP15_BPIALL(r0) /* Invalidate entire branch prediction array */
|
|
mcr CP15_ICIALLU(r0) /* Invalidate I-cache */
|
|
|
|
/* Load the page table address.
|
|
*
|
|
* NOTES:
|
|
* - Here we assume that the page table address is aligned to at least
|
|
* least a 16KB boundary (bits 0-13 are zero). No masking is provided
|
|
* to protect against an unaligned page table address.
|
|
* - The Cortex-A5 has two page table address registers, TTBR0 and 1.
|
|
* Only TTBR0 is used in this implementation but both are initialized.
|
|
*
|
|
* Here we expect to have:
|
|
* r0 = Zero
|
|
* r4 = Address of the base of the L1 table
|
|
*/
|
|
|
|
orr r1, r4, #0x48
|
|
mcr CP15_TTBR0(r1)
|
|
mcr CP15_TTBR1(r1)
|
|
|
|
/* Set the TTB control register (TTBCR) to indicate that we are using
|
|
* TTBR0. r0 still holds the value of zero.
|
|
*
|
|
* N : 0=Selects TTBR0 and 16KB page table size indexed by VA[31:20]
|
|
* PD0 : 0=Perform translation table walks using TTBR0
|
|
* PD1 : 0=Perform translation table walks using TTBR1 (but it is disabled)
|
|
* EAE : 0=Use 32-bit translation system
|
|
*/
|
|
|
|
mcr CP15_TTBCR(r0)
|
|
|
|
/* Enable the MMU and caches
|
|
* lr = Resume at .Lvstart with the MMU enabled
|
|
*/
|
|
|
|
ldr lr, .LCvstart /* Abs. virtual address */
|
|
|
|
/* Configure the domain access register (see mmu.h). Only domain 0 is
|
|
* supported and it uses the permissions in the TLB.
|
|
*/
|
|
|
|
mov r0, #DACR_CLIENT(0)
|
|
mcr CP15_DACR(r0) /* Set domain access register */
|
|
|
|
/* Configure the system control register (see sctrl.h) */
|
|
|
|
mrc CP15_SCTLR(r0) /* Get control register */
|
|
|
|
/* Clear bits to reset values. This is only necessary in situations like, for
|
|
* example, we get here via a bootloader and the control register is in some
|
|
* unknown state.
|
|
*
|
|
* SCTLR_A Bit 1: Strict alignment disabled (reset value)
|
|
* SCTLR_C Bit 2: DCache disabled (reset value)
|
|
*
|
|
* SCTLR_SW Bit 10: SWP/SWPB not enabled (reset value)
|
|
* SCTLR_I Bit 12: ICache disabled (reset value)
|
|
* SCTLR_V Bit 13: Assume low vectors (reset value)
|
|
* SCTLR_RR Bit 14: The Cortex-A5 processor only supports a fixed random
|
|
* replacement strategy.
|
|
* SCTLR_HA Bit 17: Not supported by A5
|
|
*
|
|
* SCTLR_EE Bit 25: Little endian (reset value).
|
|
* SCTLR_TRE Bit 28: No memory region remapping (reset value)
|
|
* SCTLR_AFE Bit 29: Full, legacy access permissions behavior (reset value).
|
|
* SCTLR_TE Bit 30: All exceptions handled in ARM state (reset value).
|
|
*/
|
|
|
|
bic r0, r0, #(SCTLR_A | SCTLR_C)
|
|
bic r0, r0, #(SCTLR_SW | SCTLR_I | SCTLR_V | SCTLR_RR | SCTLR_HA)
|
|
bic r0, r0, #(SCTLR_EE | SCTLR_TRE | SCTLR_AFE | SCTLR_TE)
|
|
|
|
/* Set bits to enable the MMU
|
|
*
|
|
* SCTLR_M Bit 0: Enable the MMU
|
|
* SCTLR_Z Bit 11: Program flow prediction control always enabled on A5
|
|
*/
|
|
|
|
orr r0, r0, #(SCTLR_M)
|
|
#ifndef CONFIG_ARCH_CORTEXA5
|
|
orr r0, r0, #(SCTLR_Z)
|
|
#endif
|
|
|
|
#ifndef CONFIG_ARCH_LOWVECTORS
|
|
/* Position vectors to 0xffff0000 if so configured.
|
|
*
|
|
* SCTLR_V Bit 13: High vectors
|
|
*/
|
|
|
|
orr r0, r0, #(SCTLR_V)
|
|
#endif
|
|
|
|
#if defined(CPU_CACHE_ROUND_ROBIN) && !defined(CONFIG_ARCH_CORTEXA5)
|
|
/* Round Robin cache replacement
|
|
*
|
|
* SCTLR_RR Bit 14: The Cortex-A5 processor only supports a fixed random
|
|
* replacement strategy.
|
|
*/
|
|
|
|
orr r0, r0, #(SCTLR_RR)
|
|
#endif
|
|
|
|
#ifndef CPU_DCACHE_DISABLE
|
|
/* Dcache enable
|
|
*
|
|
* SCTLR_C Bit 2: DCache enable
|
|
*/
|
|
|
|
orr r0, r0, #(SCTLR_C)
|
|
#endif
|
|
|
|
#ifndef CPU_ICACHE_DISABLE
|
|
/* Icache enable
|
|
*
|
|
* SCTLR_I Bit 12: ICache enable
|
|
*/
|
|
|
|
orr r0, r0, #(SCTLR_I)
|
|
#endif
|
|
|
|
#ifdef ALIGNMENT_TRAP
|
|
/* Alignment abort enable
|
|
*
|
|
* SCTLR_A Bit 1: Strict alignment enabled
|
|
*/
|
|
|
|
orr r0, r0, #(SCTLR_A)
|
|
#endif
|
|
|
|
#ifdef CPU_AFE_ENABLE
|
|
/* AP[0:2] Permissions model
|
|
*
|
|
* SCTLR_AFE Bit 29: Full, legacy access permissions behavior (reset value).
|
|
*
|
|
* When AFE=1, the page table AP[0] is used as an access flag and AP[2:1]
|
|
* control. When AFE=0, AP[2:0] control access permissions.
|
|
*/
|
|
|
|
orr r0, r0, #(SCTLR_AFE)
|
|
#endif
|
|
|
|
/* Then write the configured control register */
|
|
|
|
mcr CP15_SCTLR(r0) /* Write control reg */
|
|
.rept 12 /* Cortex A8 wants lots of NOPs here */
|
|
nop
|
|
.endr
|
|
|
|
/* And "jump" to .Lvstart in the newly mapped virtual address space */
|
|
|
|
mov pc, lr
|
|
|
|
/****************************************************************************
|
|
* PC_Relative Data
|
|
****************************************************************************/
|
|
|
|
/* The virtual start address of the second phase boot logic */
|
|
|
|
.type .LCvstart, %object
|
|
.LCvstart:
|
|
.long .Lvstart
|
|
.size .LCvstart, . -.LCvstart
|
|
|
|
#ifdef ARMV7A_PGTABLE_MAPPING
|
|
/* Page table region description. The order of these fields must not
|
|
* change because the values are loaded using ldmia:
|
|
*
|
|
* 1) The aligned, physical base address of the page table
|
|
* 2) The aligned, virtual base address of the page table
|
|
* 3) The MMU flags to use with the .text space mapping
|
|
*/
|
|
|
|
.type .LCptinfo, %object
|
|
.LCptinfo:
|
|
.long (PGTABLE_BASE_PADDR & 0xfff00000) /* Physical base address */
|
|
.long (PGTABLE_BASE_VADDR & 0xfff00000) /* Virtual base address */
|
|
.long MMU_MEMFLAGS /* MMU flags for text section in RAM */
|
|
.size .LCptinfo, . -.LCptinfo
|
|
#endif
|
|
|
|
/* The aligned, physical base address of the .text section */
|
|
|
|
.type .LCptextbase, %object
|
|
.LCptextbase:
|
|
.long NUTTX_TEXT_PADDR & 0xfff00000
|
|
.size .LCptextbase, . -.LCptextbase
|
|
|
|
/* The aligned, virtual base address of the .text section */
|
|
|
|
.type .LCvtextbase, %object
|
|
.LCvtextbase:
|
|
.long NUTTX_TEXT_VADDR & 0xfff00000
|
|
.size .LCvtextbase, . -.LCvtextbase
|
|
|
|
/* The MMU flags used with the .text mapping */
|
|
|
|
.type .LCtextflags, %object
|
|
.LCtextflags:
|
|
#ifdef CONFIG_BOOT_RUNFROMFLASH
|
|
.long MMU_ROMFLAGS /* MMU flags text section in FLASH/ROM */
|
|
#else
|
|
.long MMU_MEMFLAGS /* MMU flags for text section in RAM */
|
|
#endif
|
|
.size .LCtextflags, . -.LCtextflags
|
|
|
|
/* The physical base address of the page table */
|
|
|
|
.type .LCppgtable, %object
|
|
.LCppgtable:
|
|
.long PGTABLE_BASE_PADDR /* Physical start of page table */
|
|
.size .LCppgtable, . -.LCppgtable
|
|
|
|
/* The virtual base address of the page table */
|
|
|
|
.type .LCvpgtable, %object
|
|
.LCvpgtable:
|
|
.long PGTABLE_BASE_VADDR /* Virtual start of page table */
|
|
.size .LCvpgtable, . -.LCvpgtable
|
|
|
|
.type .Ltxtspan, %object
|
|
.Ltxtspan:
|
|
.long PG_L1_TEXT_PADDR /* Physical address in the L1 table */
|
|
.long PG_L2_TEXT_PBASE /* Physical address of the start of the L2 page table */
|
|
.long PG_TEXT_NVPAGES /* Total (virtual) text pages to be mapped */
|
|
.long PG_L2_TEXT_NPAGE1 /* The number of text pages in the first page table */
|
|
.long MMU_L1_TEXTFLAGS /* L1 MMU flags to use */
|
|
.size .Ltxtspan, . -.Ltxtspan
|
|
|
|
.type .Ltxtmap, %object
|
|
.Ltxtmap:
|
|
.long PG_L2_LOCKED_PADDR /* Physical address in the L2 table */
|
|
.long PG_LOCKED_PBASE /* Physical address of locked base memory */
|
|
.long CONFIG_PAGING_NLOCKED /* Number of pages in the locked region */
|
|
.long MMU_L2_TEXTFLAGS /* L2 MMU flags to use */
|
|
.size .Ltxtmap, . -.Ltxtmap
|
|
|
|
.type .Lptabspan, %object
|
|
.Lptabspan:
|
|
.long PG_L1_PGTABLE_PADDR /* Physical address in the L1 table */
|
|
.long PG_L2_PGTABLE_PBASE /* Physical address of the start of the L2 page table */
|
|
.long PG_PGTABLE_NPAGES /* Total mapped page table pages */
|
|
.long PG_L2_PGTABLE_NPAGE1 /* The number of text pages in the first page table */
|
|
.long MMU_L1_PGTABFLAGS /* L1 MMU flags to use */
|
|
.size .Lptabspan, . -.Lptabspan
|
|
|
|
.type .Lptabmap, %object
|
|
.Lptabmap:
|
|
.long PG_L2_PGTABLE_PADDR /* Physical address in the L2 table */
|
|
.long PGTABLE_BASE_PADDR /* Physical address of the page table memory */
|
|
.long PG_PGTABLE_NPAGES /* Total mapped page table pages */
|
|
.long MMU_L2_PGTABFLAGS /* L2 MMU flags to use */
|
|
.size .Lptabmap, . -.Lptabmap
|
|
|
|
.size __start, .-__start
|
|
|
|
/****************************************************************************
|
|
* Name: .Lvstart
|
|
***************************************************************************/
|
|
|
|
/* The following is executed after the MMU has been enabled. This uses
|
|
* absolute addresses; this is not position independent.
|
|
*/
|
|
.align 5
|
|
.local .Lvstart
|
|
.type .Lvstart, %function
|
|
|
|
.Lvstart:
|
|
|
|
#ifndef CONFIG_IDENTITY_TEXTMAP
|
|
/* Remove the temporary mapping (if one was made). The following assumes
|
|
* that the total RAM size is > 1Mb and extends that initial mapping to
|
|
* cover additional RAM sections.
|
|
*/
|
|
|
|
ldr r4, .LCvpgtable /* r4=virtual page table base address */
|
|
ldr r3, .LCvtextbase /* r0=virtual base address of .text section */
|
|
mov r0, #0 /* flags + base = 0 */
|
|
str r3, [r4, r3, lsr #18] /* identity mapping */
|
|
#endif
|
|
|
|
/* Populate the L1 table for the data region */
|
|
|
|
adr r0, .Ldataspan
|
|
ldmia r0, {r0, r1, r2, r3, r4}
|
|
pg_l1span r0, r1, r2, r3, r4, r5
|
|
|
|
/* Populate the L2 table for the data region */
|
|
|
|
adr r0, .Ldatamap
|
|
ldmia r0, {r0, r1, r2, r3}
|
|
pg_l2map r0, r1, r2, r3, r4
|
|
|
|
#ifdef CONFIG_BOOT_RUNFROMFLASH
|
|
/* Get R3 = Value of RAM L1 page table entry */
|
|
|
|
ldr r3, .LCprambase /* r3=Aligned Nuttx RAM address (physical) */
|
|
ldr r1, .LCramflags /* R1=.bss/.data section MMU flags */
|
|
add r3, r3, r1 /* r3=flags + base */
|
|
|
|
/* Now setup the page tables for our normal mapped RAM region.
|
|
* We round NUTTX_RAM_VADDR down to the nearest megabyte boundary.
|
|
*/
|
|
|
|
add r0, r4, #(NUTTX_RAM_VADDR & 0xfff00000) >> 18
|
|
str r3, [r0], #4
|
|
|
|
/* Now map the remaining WR_NSECTIONS-1 sections of the RAM memory
|
|
* region.
|
|
*/
|
|
|
|
.rept WR_NSECTIONS-1
|
|
add r3, r3, #SECTION_SIZE
|
|
str r3, [r0], #4
|
|
.endr
|
|
#endif /* CONFIG_BOOT_RUNFROMFLASH */
|
|
|
|
/* Initialize .bss and .data ONLY if .bss and .data lie in SRAM that is
|
|
* ready to use. Other memory, such as SDRAM, must be initialized before
|
|
* it can be used. up_boot() will perform that memory initialization and
|
|
* .bss and .data can be initialized after up_boot() returns.
|
|
*/
|
|
|
|
/* Set up the stack pointer and clear the frame pointer */
|
|
|
|
ldr sp, .Lstackpointer
|
|
mov fp, #0
|
|
|
|
#ifndef CONFIG_BOOT_SDRAM_DATA
|
|
/* Initialize .bss and .data ONLY if .bss and .data lie in SRAM that is
|
|
* ready to use. Other memory, such as SDRAM, must be initialized before
|
|
* it can be used. up_boot() will perform that memory initialization and
|
|
* .bss and .data can be initialized after up_boot() returns.
|
|
*/
|
|
|
|
bl arm_data_initialize
|
|
#endif
|
|
|
|
/* Perform early C-level, platform-specific initialization. Logic
|
|
* within up_boot() must configure SDRAM and call arm_ram_initailize.
|
|
*/
|
|
|
|
bl up_boot
|
|
|
|
#ifdef CONFIG_STACK_COLORATION
|
|
/* Write a known value to the IDLE thread stack to support stack
|
|
* monitoring logic
|
|
*/
|
|
|
|
adr r3, .Lstkinit
|
|
ldmia r3, {r0, r1, r2} /* R0 = start of IDLE stack; R1 = Size of tack; R2 = coloration */
|
|
|
|
1: /* Top of the loop */
|
|
sub r1, r1, #1 /* R1 = Number of words remaining */
|
|
cmp r1, #0 /* Check (nwords == 0) */
|
|
str r2, [r0], #4 /* Save stack color word, increment stack address */
|
|
bne 1b /* Bottom of the loop */
|
|
#endif
|
|
|
|
/* Finally branch to the OS entry point */
|
|
|
|
mov lr, #0 /* LR = return address (none) */
|
|
b os_start /* Branch to os_start */
|
|
.size .Lvstart, .-.Lvstart
|
|
|
|
/***************************************************************************
|
|
* Name: arm_data_initialize
|
|
***************************************************************************/
|
|
|
|
.global arm_data_initialize
|
|
.type arm_data_initialize, #function
|
|
|
|
arm_data_initialize:
|
|
|
|
/* Zero BSS */
|
|
|
|
adr r0, .Linitparms
|
|
ldmia r0, {r0, r1}
|
|
|
|
mov r2, #0
|
|
1:
|
|
cmp r0, r1 /* Clear up to _bss_end_ */
|
|
strcc r2, [r0],#4
|
|
bcc 1b
|
|
|
|
#ifdef CONFIG_BOOT_RUNFROMFLASH
|
|
/* If the .data section is in a separate, uninitialized address space,
|
|
* then we will also need to copy the initial values of of the .data
|
|
* section from the .text region into that .data region. This would
|
|
* be the case if we are executing from FLASH and the .data section
|
|
* lies in a different physical address region OR if we are support
|
|
* on-demand paging and the .data section lies in a different virtual
|
|
* address region.
|
|
*/
|
|
|
|
adr r3, .Ldatainit
|
|
ldmia r3, {r0, r1, r2}
|
|
|
|
2:
|
|
ldr r3, [r0], #4
|
|
str r3, [r1], #4
|
|
cmp r1, r2
|
|
blt 2b
|
|
#endif
|
|
|
|
/* And return to the caller */
|
|
|
|
bx lr
|
|
.size arm_data_initialize, . - arm_data_initialize
|
|
|
|
/***************************************************************************
|
|
* Text-section constants
|
|
***************************************************************************/
|
|
|
|
/* Text-section constants:
|
|
*
|
|
* _sbss is the start of the BSS region (see ld.script)
|
|
* _ebss is the end of the BSS regsion (see ld.script)
|
|
*
|
|
* The idle task stack usually starts at the end of BSS and is of size
|
|
* CONFIG_IDLETHREAD_STACKSIZE. The heap continues from there until the
|
|
* end of memory. See g_idle_topstack below.
|
|
*
|
|
* In the case where CONFIG_BOOT_SDRAM_DATA is defined, the IDLE stack is
|
|
* in ISRAM, but the heap is in SDRAM beginning at _ebss and extending
|
|
* to the end of SDRAM.
|
|
*/
|
|
|
|
.type .Linitparms, %object
|
|
.Linitparms:
|
|
.long _sbss
|
|
.long _ebss
|
|
.size .Linitparms, . -.Linitparms
|
|
|
|
.Lstackpointer:
|
|
#ifdef CONFIG_BOOT_SDRAM_DATA
|
|
.long IDLE_STACK_VBASE+CONFIG_IDLETHREAD_STACKSIZE-4
|
|
#else
|
|
.long _ebss+CONFIG_IDLETHREAD_STACKSIZE-4
|
|
#endif
|
|
.size .Lstackpointer, . -.Lstackpointer
|
|
|
|
.type .Ldataspan, %object
|
|
.Ldataspan:
|
|
.long PG_L1_DATA_VADDR /* Virtual address in the L1 table */
|
|
.long PG_L2_DATA_PBASE /* Physical address of the start of the L2 page table */
|
|
.long PG_DATA_NPAGES /* Number of pages in the data region */
|
|
.long PG_L2_DATA_NPAGE1 /* The number of text pages in the first page table */
|
|
.long MMU_L1_DATAFLAGS /* L1 MMU flags to use */
|
|
.size .Ldataspan, . -.Ldataspan
|
|
|
|
.type .Ldatamap, %object
|
|
.Ldatamap:
|
|
.long PG_L2_DATA_VADDR /* Virtual address in the L2 table */
|
|
.long PG_DATA_PBASE /* Physical address of data memory */
|
|
.long PG_DATA_NPAGES /* Number of pages in the data region */
|
|
.long MMU_L2_DATAFLAGS /* L2 MMU flags to use */
|
|
.size .Ldatamap, . -.Ldatamap
|
|
|
|
.type .Ldatainit, %object
|
|
.Ldatainit:
|
|
.long _eronly /* Where .data defaults are stored in FLASH */
|
|
.long _sdata /* Where .data needs to reside in SDRAM */
|
|
.long _edata
|
|
.size .Ldatainit, . -.Ldatainit
|
|
|
|
#ifdef CONFIG_STACK_COLORATION
|
|
.type .Lstkinit, %object
|
|
.Lstkinit:
|
|
#ifdef CONFIG_BOOT_SDRAM_DATA
|
|
.long IDLE_STACK_VBASE /* Beginning of the IDLE stack, then words of IDLE stack */
|
|
#else
|
|
.long _ebss /* Beginning of the IDLE stack, then words of IDLE stack */
|
|
#endif
|
|
.long (CONFIG_IDLETHREAD_STACKSIZE >> 2)
|
|
.long STACK_COLOR /* Stack coloration word */
|
|
.size .Lstkinit, . -.Lstkinit
|
|
#endif
|
|
|
|
/***************************************************************************
|
|
* Data section variables
|
|
***************************************************************************/
|
|
|
|
/* This global variable is unsigned long g_idle_topstack and is
|
|
* exported from here only because of its coupling to .Linitparms
|
|
* above.
|
|
*/
|
|
|
|
.section .rodata, "a"
|
|
.align 4
|
|
.globl g_idle_topstack
|
|
.type g_idle_topstack, object
|
|
|
|
g_idle_topstack:
|
|
|
|
#ifdef CONFIG_BOOT_SDRAM_DATA
|
|
.long IDLE_STACK_VBASE+CONFIG_IDLETHREAD_STACKSIZE
|
|
#else
|
|
.long _ebss+CONFIG_IDLETHREAD_STACKSIZE
|
|
#endif
|
|
.size g_idle_topstack, .-g_idle_topstack
|
|
.end
|