nuttx/arch/arm/src/stm32/stm32_adc.c

1542 lines
41 KiB
C
Raw Normal View History

/****************************************************************************
* arch/arm/src/stm32/stm32_adc.c
*
* Copyright (C) 2011 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
* Diego Sanchez <dsanchez@nx-engineering.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <stdio.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <unistd.h>
#include <string.h>
#include <semaphore.h>
#include <errno.h>
#include <assert.h>
#include <debug.h>
#include <unistd.h>
#include <arch/board/board.h>
#include <nuttx/arch.h>
#include <nuttx/analog/adc.h>
#include "up_internal.h"
#include "up_arch.h"
#include "chip.h"
#include "stm32_internal.h"
#include "stm32_adc.h"
#ifdef CONFIG_ADC
#if defined(CONFIG_STM32_ADC1) || defined(CONFIG_STM32_ADC2) || defined(CONFIG_STM32_ADC3)
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* ADC interrupts ***********************************************************/
#ifdef CONFIG_STM32_STM32F10XX
# define ADC_SR_ALLINTS (ADC_SR_AWD | ADC_SR_EOC | ADC_SR_JEOC)
#else
# define ADC_SR_ALLINTS (ADC_SR_AWD | ADC_SR_EOC | ADC_SR_JEOC | ADC_SR_OVR)
#endif
#ifdef CONFIG_STM32_STM32F10XX
# define ADC_CR1_ALLINTS (ADC_CR1_AWDIE | ADC_CR1_EOCIE | ADC_CR1_JEOCIE)
#else
# define ADC_CR1_ALLINTS (ADC_CR1_AWDIE | ADC_CR1_EOCIE | ADC_CR1_JEOCIE | ADC_CR1_OVRIE)
#endif
/* The maximum number of channels that can be sampled. If dma support is
* not enabled, then only a single channel can be sampled. Otherwise,
* data overruns would occur.
*/
#ifdef CONFIG_ADC_DMA
# define ADC_MAX_SAMPLES 16
#else
# define ADC_MAX_SAMPLES 1
#endif
/****************************************************************************
* Private Types
****************************************************************************/
/* This structure describes the state of one ADC block */
struct stm32_dev_s
{
uint8_t irq; /* Interrupt generated by this ADC block */
uint8_t nchannels; /* Number of channels */
uint8_t intf; /* ADC interface number */
uint8_t current; /* Current ADC channel being converted */
#ifdef ADC_HAVE_TIMER
uint8_t trigger; /* Timer trigger channel: 0=CC1, 1=CC2, 2=CC3, 3=CC4, 4=TRGO */
#endif
xcpt_t isr; /* Interrupt handler for this ADC block */
uint32_t base; /* Base address of registers unique to this ADC block */
#ifdef ADC_HAVE_TIMER
uint32_t tbase; /* Base address of timer used by this ADC block */
uint32_t extsel; /* EXTSEL value used by this ADC block */
uint32_t pclck; /* The PCLK frequency that drives this timer */
uint32_t freq; /* The desired frequency of conversions */
#endif
uint8_t chanlist[ADC_MAX_SAMPLES];
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* ADC Register access */
static uint32_t adc_getreg(struct stm32_dev_s *priv, int offset);
static void adc_putreg(struct stm32_dev_s *priv, int offset, uint32_t value);
#ifdef ADC_HAVE_TIMER
static uint16_t tim_getreg(struct stm32_dev_s *priv, int offset);
static void tim_putreg(struct stm32_dev_s *priv, int offset, uint16_t value);
static void adc_tim_dumpregs(struct stm32_dev_s *priv, FAR const char *msg);
#endif
static void adc_rccreset(struct stm32_dev_s *priv, bool reset);
/* ADC Interrupt Handler */
static int adc_interrupt(FAR struct adc_dev_s *dev);
#if defined(CONFIG_STM32_STM32F10XX) && (defined(CONFIG_STM32_ADC1) || defined(CONFIG_STM32_ADC2))
static int adc12_interrupt(int irq, void *context);
#endif
#if defined(CONFIG_STM32_STM32F10XX) && defined (CONFIG_STM32_ADC3)
static int adc3_interrupt(int irq, void *context);
#endif
#if defined(CONFIG_STM32_STM32F20XX) || defined(CONFIG_STM32_STM32F40XX)
static int adc123_interrupt(int irq, void *context);
#endif
/* ADC Driver Methods */
static void adc_reset(FAR struct adc_dev_s *dev);
static int adc_setup(FAR struct adc_dev_s *dev);
static void adc_shutdown(FAR struct adc_dev_s *dev);
static void adc_rxint(FAR struct adc_dev_s *dev, bool enable);
static int adc_ioctl(FAR struct adc_dev_s *dev, int cmd, unsigned long arg);
static void adc_enable(FAR struct stm32_dev_s *priv, bool enable);
#ifdef ADC_HAVE_TIMER
static void adc_timstart(FAR struct stm32_dev_s *priv, bool enable);
static int adc_timinit(FAR struct stm32_dev_s *priv);
#endif
#if defined(CONFIG_STM32_STM32F20XX) || defined(CONFIG_STM32_STM32F40XX)
static void adc_startconv(FAR struct stm32_dev_s *priv, bool enable);
#endif
/****************************************************************************
* Private Data
****************************************************************************/
/* ADC interface operations */
static const struct adc_ops_s g_adcops =
{
.ao_reset = adc_reset,
.ao_setup = adc_setup,
.ao_shutdown = adc_shutdown,
.ao_rxint = adc_rxint,
.ao_ioctl = adc_ioctl,
};
/* ADC1 state */
#ifdef CONFIG_STM32_ADC1
static struct stm32_dev_s g_adcpriv1 =
{
#ifdef CONFIG_STM32_STM32F10XX
.irq = STM32_IRQ_ADC12,
.isr = adc12_interrupt,
#else
.irq = STM32_IRQ_ADC,
.isr = adc123_interrupt,
#endif
.intf = 1,
.base = STM32_ADC1_BASE,
#ifdef ADC1_HAVE_TIMER
.trigger = CONFIG_STM32_ADC1_TIMTRIG,
.tbase = ADC1_TIMER_BASE,
.extsel = ADC1_EXTSEL_VALUE,
.pclck = ADC1_TIMER_PCLK_FREQUENCY,
.freq = CONFIG_STM32_ADC1_SAMPLE_FREQUENCY,
#endif
};
static struct adc_dev_s g_adcdev1 =
{
.ad_ops = &g_adcops,
.ad_priv= &g_adcpriv1,
};
#endif
/* ADC2 state */
#ifdef CONFIG_STM32_ADC2
static struct stm32_dev_s g_adcpriv2 =
{
#ifdef CONFIG_STM32_STM32F10XX
.irq = STM32_IRQ_ADC12,
.isr = adc12_interrupt,
#else
.irq = STM32_IRQ_ADC,
.isr = adc123_interrupt,
#endif
.intf = 2,
.base = STM32_ADC2_BASE,
#ifdef ADC2_HAVE_TIMER
.trigger = CONFIG_STM32_ADC2_TIMTRIG,
.tbase = ADC2_TIMER_BASE,
.extsel = ADC2_EXTSEL_VALUE,
.pclck = ADC2_TIMER_PCLK_FREQUENCY,
.freq = CONFIG_STM32_ADC2_SAMPLE_FREQUENCY,
#endif
};
static struct adc_dev_s g_adcdev2 =
{
.ad_ops = &g_adcops,
.ad_priv= &g_adcpriv2,
};
#endif
/* ADC3 state */
#ifdef CONFIG_STM32_ADC3
static struct stm32_dev_s g_adcpriv3 =
{
#ifdef CONFIG_STM32_STM32F10XX
.irq = STM32_IRQ_ADC3,
.isr = adc3_interrupt,
#else
.irq = STM32_IRQ_ADC,
.isr = adc123_interrupt,
#endif
.intf = 3,
.base = STM32_ADC3_BASE,
#ifdef ADC3_HAVE_TIMER
.trigger = CONFIG_STM32_ADC3_TIMTRIG,
.tbase = ADC3_TIMER_BASE,
.extsel = ADC3_EXTSEL_VALUE,
.pclck = ADC3_TIMER_PCLK_FREQUENCY,
.freq = CONFIG_STM32_ADC3_SAMPLE_FREQUENCY,
#endif
};
static struct adc_dev_s g_adcdev3 =
{
.ad_ops = &g_adcops,
.ad_priv= &g_adcpriv3,
};
#endif
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: adc_getreg
*
* Description:
* Read the value of an ADC register.
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to read
*
* Returned Value:
*
****************************************************************************/
static uint32_t adc_getreg(struct stm32_dev_s *priv, int offset)
{
return getreg32(priv->base + offset);
}
/****************************************************************************
* Name: adc_getreg
*
* Description:
* Read the value of an ADC register.
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to read
*
* Returned Value:
*
****************************************************************************/
static void adc_putreg(struct stm32_dev_s *priv, int offset, uint32_t value)
{
putreg32(value, priv->base + offset);
}
/****************************************************************************
* Name: tim_getreg
*
* Description:
* Read the value of an ADC timer register.
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to read
*
* Returned Value:
* The current contents of the specified register
*
****************************************************************************/
#ifdef ADC_HAVE_TIMER
static uint16_t tim_getreg(struct stm32_dev_s *priv, int offset)
{
return getreg16(priv->tbase + offset);
}
#endif
/****************************************************************************
* Name: tim_putreg
*
* Description:
* Read the value of an ADC timer register.
*
* Input Parameters:
* priv - A reference to the ADC block status
* offset - The offset to the register to read
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef ADC_HAVE_TIMER
static void tim_putreg(struct stm32_dev_s *priv, int offset, uint16_t value)
{
putreg16(value, priv->tbase + offset);
}
#endif
/****************************************************************************
* Name: adc_tim_dumpregs
*
* Description:
* Dump all timer registers.
*
* Input parameters:
* priv - A reference to the ADC block status
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef ADC_HAVE_TIMER
static void adc_tim_dumpregs(struct stm32_dev_s *priv, FAR const char *msg)
{
#if defined(CONFIG_DEBUG_ANALOG) && defined(CONFIG_DEBUG_VERBOSE)
avdbg("%s:\n", msg);
avdbg(" CR1: %04x CR2: %04x SMCR: %04x DIER: %04x\n",
tim_getreg(priv, STM32_GTIM_CR1_OFFSET),
tim_getreg(priv, STM32_GTIM_CR2_OFFSET),
tim_getreg(priv, STM32_GTIM_SMCR_OFFSET),
tim_getreg(priv, STM32_GTIM_DIER_OFFSET));
avdbg(" SR: %04x EGR: 0000 CCMR1: %04x CCMR2: %04x\n",
tim_getreg(priv, STM32_GTIM_SR_OFFSET),
tim_getreg(priv, STM32_GTIM_CCMR1_OFFSET),
tim_getreg(priv, STM32_GTIM_CCMR2_OFFSET));
avdbg(" CCER: %04x CNT: %04x PSC: %04x ARR: %04x\n",
tim_getreg(priv, STM32_GTIM_CCER_OFFSET),
tim_getreg(priv, STM32_GTIM_CNT_OFFSET),
tim_getreg(priv, STM32_GTIM_PSC_OFFSET),
tim_getreg(priv, STM32_GTIM_ARR_OFFSET));
avdbg(" CCR1: %04x CCR2: %04x CCR3: %04x CCR4: %04x\n",
tim_getreg(priv, STM32_GTIM_CCR1_OFFSET),
tim_getreg(priv, STM32_GTIM_CCR2_OFFSET),
tim_getreg(priv, STM32_GTIM_CCR3_OFFSET),
tim_getreg(priv, STM32_GTIM_CCR4_OFFSET));
if (priv->tbase == STM32_TIM1_BASE || priv->tbase == STM32_TIM8_BASE)
{
avdbg(" RCR: %04x BDTR: %04x DCR: %04x DMAR: %04x\n",
tim_getreg(priv, STM32_ATIM_RCR_OFFSET),
tim_getreg(priv, STM32_ATIM_BDTR_OFFSET),
tim_getreg(priv, STM32_ATIM_DCR_OFFSET),
tim_getreg(priv, STM32_ATIM_DMAR_OFFSET));
}
else
{
avdbg(" DCR: %04x DMAR: %04x\n",
tim_getreg(priv, STM32_GTIM_DCR_OFFSET),
tim_getreg(priv, STM32_GTIM_DMAR_OFFSET));
}
#endif
}
#endif
/****************************************************************************
* Name: adc_timstart
*
* Description:
* Start (or stop) the timer counter
*
* Input Parameters:
* priv - A reference to the ADC block status
* enable - True: Start conversion
*
* Returned Value:
*
****************************************************************************/
#ifdef ADC_HAVE_TIMER
static void adc_timstart(struct stm32_dev_s *priv, bool enable)
{
uint16_t regval;
avdbg("enable: %d\n", enable);
regval = tim_getreg(priv, STM32_GTIM_CR1_OFFSET);
if (enable)
{
/* Start the counter */
regval |= ATIM_CR1_CEN;
}
else
{
/* Disable the counter */
regval &= ~ATIM_CR1_CEN;
}
tim_putreg(priv, STM32_GTIM_CR1_OFFSET, regval);
}
#endif
/****************************************************************************
* Name: adc_timinit
*
* Description:
* Initialize the timer that drivers the ADC sampling for this channel using
* the pre-calculated timer divider definitions.
*
* Input Parameters:
* priv - A reference to the ADC block status
*
* Returned Value:
* Zero on success; a negated errno value on failure.
*
****************************************************************************/
#ifdef ADC_HAVE_TIMER
static int adc_timinit(FAR struct stm32_dev_s *priv)
{
uint32_t prescaler;
uint32_t reload;
uint32_t regval;
uint32_t timclk;
uint16_t cr1;
uint16_t cr2;
uint16_t ccmr1;
uint16_t ccmr2;
uint16_t ocmode1;
uint16_t ocmode2;
uint16_t ccenable;
uint16_t ccer;
uint16_t egr;
avdbg("Initializing timers extsel = %d\n", priv->extsel);
/* If the timer base address is zero, then this ADC was not configured to
* use a timer.
*/
regval = adc_getreg(priv, STM32_ADC_CR2_OFFSET);
#ifdef CONFIG_STM32_STM32F10XX
if (!priv->tbase)
{
/* Configure the ADC to use the selected timer and timer channel as the trigger
* EXTTRIG: External Trigger Conversion mode for regular channels DISABLE
*/
regval &= ~ADC_CR2_EXTTRIG;
adc_putreg(priv, STM32_ADC_CR2_OFFSET, regval);
return OK;
}
else
{
regval |= ADC_CR2_EXTTRIG;
}
#endif
/* EXTSEL selection: These bits select the external event used to trigger
* the start of conversion of a regular group. NOTE:
*
* - The position with with of the EXTSEL field varies from one STM32 MCU
* to another.
* - The width of the EXTSEL field varies from one STM3 MCU to another.
* - The value in priv->extsel is already shifted into the correct bit position.
*/
regval &= ~ADC_CR2_EXTSEL_MASK;
regval |= priv->extsel;
adc_putreg(priv, STM32_ADC_CR2_OFFSET, regval);
/* Configure the timer channel to drive the ADC */
/* Caculate optimal values for the timer prescaler and for the timer reload
* register. If freq is the desired frequency, then
*
* reload = timclk / freq
* reload = (pclck / prescaler) / freq
*
* There are many solutions to do this, but the best solution will be the
* one that has the largest reload value and the smallest prescaler value.
* That is the solution that should give us the most accuracy in the timer
* control. Subject to:
*
* 0 <= prescaler <= 65536
* 1 <= reload <= 65535
*
* So ( prescaler = pclck / 65535 / freq ) would be optimal.
*/
prescaler = (priv->pclck / priv->freq + 65534) / 65535;
/* We need to decrement the prescaler value by one, but only, the value does
* not underflow.
*/
if (prescaler < 1)
{
adbg("WARNING: Prescaler underflowed.\n");
prescaler = 1;
}
/* Check for overflow */
else if (prescaler > 65536)
{
adbg("WARNING: Prescaler overflowed.\n");
prescaler = 65536;
}
timclk = priv->pclck / prescaler;
reload = timclk / priv->freq;
if (reload < 1)
{
adbg("WARNING: Reload value underflowed.\n");
reload = 1;
}
else if (reload > 65535)
{
adbg("WARNING: Reload value overflowed.\n");
reload = 65535;
}
/* Set up the timer CR1 register */
cr1 = tim_getreg(priv, STM32_GTIM_CR1_OFFSET);
/* Disable the timer until we get it configured */
adc_timstart(priv, false);
/* Select the Counter Mode == count up:
*
* ATIM_CR1_EDGE: The counter counts up or down depending on the
* direction bit(DIR).
* ATIM_CR1_DIR: 0: count up, 1: count down
*/
cr1 &= ~(ATIM_CR1_DIR | ATIM_CR1_CMS_MASK);
cr1 |= ATIM_CR1_EDGE;
/* Set the clock division to zero for all */
cr1 &= ~GTIM_CR1_CKD_MASK;
tim_putreg(priv, STM32_GTIM_CR1_OFFSET, cr1);
/* Set the reload and prescaler values */
tim_putreg(priv, STM32_GTIM_PSC_OFFSET, prescaler-1);
tim_putreg(priv, STM32_GTIM_ARR_OFFSET, reload);
/* Clear the advanced timers repitition counter in TIM1 */
if (priv->tbase == STM32_TIM1_BASE || priv->tbase == STM32_TIM8_BASE)
{
tim_putreg(priv, STM32_ATIM_RCR_OFFSET, 0);
tim_putreg(priv, STM32_ATIM_BDTR_OFFSET, ATIM_BDTR_MOE); /* Check me */
}
/* TIMx event generation: Bit 0 UG: Update generation */
tim_putreg(priv, STM32_GTIM_EGR_OFFSET, ATIM_EGR_UG);
/* Handle channel specific setup */
ocmode1 = 0;
ocmode2 = 0;
switch (priv->trigger)
{
case 0: /* TimerX CC1 event */
{
ccenable = ATIM_CCER_CC1E;
ocmode1 = (ATIM_CCMR_CCS_CCOUT << ATIM_CCMR1_CC1S_SHIFT) |
(ATIM_CCMR_MODE_PWM1 << ATIM_CCMR1_OC1M_SHIFT) |
ATIM_CCMR1_OC1PE;
/* Set the event CC1 */
egr = ATIM_EGR_CC1G;
/* Set the duty cycle by writing to the CCR register for this channel */
tim_putreg(priv, STM32_GTIM_CCR1_OFFSET, (uint16_t)(reload >> 1));
}
break;
case 1: /* TimerX CC2 event */
{
ccenable = ATIM_CCER_CC2E;
ocmode1 = (ATIM_CCMR_CCS_CCOUT << ATIM_CCMR1_CC2S_SHIFT) |
(ATIM_CCMR_MODE_PWM1 << ATIM_CCMR1_OC2M_SHIFT) |
ATIM_CCMR1_OC2PE;
/* Set the event CC2 */
egr = ATIM_EGR_CC2G;
/* Set the duty cycle by writing to the CCR register for this channel */
tim_putreg(priv, STM32_GTIM_CCR2_OFFSET, (uint16_t)(reload >> 1));
}
break;
case 2: /* TimerX CC3 event */
{
ccenable = ATIM_CCER_CC3E;
ocmode2 = (ATIM_CCMR_CCS_CCOUT << ATIM_CCMR2_CC3S_SHIFT) |
(ATIM_CCMR_MODE_PWM1 << ATIM_CCMR2_OC3M_SHIFT) |
ATIM_CCMR2_OC3PE;
/* Set the event CC3 */
egr = ATIM_EGR_CC3G;
/* Set the duty cycle by writing to the CCR register for this channel */
tim_putreg(priv, STM32_GTIM_CCR3_OFFSET, (uint16_t)(reload >> 1));
}
break;
case 3: /* TimerX CC4 event */
{
ccenable = ATIM_CCER_CC4E;
ocmode2 = (ATIM_CCMR_CCS_CCOUT << ATIM_CCMR2_CC4S_SHIFT) |
(ATIM_CCMR_MODE_PWM1 << ATIM_CCMR2_OC4M_SHIFT) |
ATIM_CCMR2_OC4PE;
/* Set the event CC4 */
egr = ATIM_EGR_CC4G;
/* Set the duty cycle by writing to the CCR register for this channel */
tim_putreg(priv, STM32_GTIM_CCR4_OFFSET, (uint16_t)(reload >> 1));
}
break;
case 4: /* TimerX TRGO event */
{
#warning "TRGO support not yet implemented"
/* Set the event TRGO */
egr = GTIM_EGR_TG;
/* Set the duty cycle by writing to the CCR register for this channel */
tim_putreg(priv, STM32_GTIM_CCR4_OFFSET, (uint16_t)(reload >> 1));
}
break;
default:
adbg("No such trigger: %d\n", priv->trigger);
return -EINVAL;
}
/* Disable the Channel by resetting the CCxE Bit in the CCER register */
ccer = tim_getreg(priv, STM32_GTIM_CCER_OFFSET);
ccer &= ~ccenable;
tim_putreg(priv, STM32_GTIM_CCER_OFFSET, ccer);
/* Fetch the CR2, CCMR1, and CCMR2 register (already have cr1 and ccer) */
cr2 = tim_getreg(priv, STM32_GTIM_CR2_OFFSET);
ccmr1 = tim_getreg(priv, STM32_GTIM_CCMR1_OFFSET);
ccmr2 = tim_getreg(priv, STM32_GTIM_CCMR2_OFFSET);
/* Reset the Output Compare Mode Bits and set the select output compare mode */
ccmr1 &= ~(ATIM_CCMR1_CC1S_MASK | ATIM_CCMR1_OC1M_MASK | ATIM_CCMR1_OC1PE |
ATIM_CCMR1_CC2S_MASK | ATIM_CCMR1_OC2M_MASK | ATIM_CCMR1_OC2PE);
ccmr2 &= ~(ATIM_CCMR2_CC3S_MASK | ATIM_CCMR2_OC3M_MASK | ATIM_CCMR2_OC3PE |
ATIM_CCMR2_CC4S_MASK | ATIM_CCMR2_OC4M_MASK | ATIM_CCMR2_OC4PE);
ccmr1 |= ocmode1;
ccmr2 |= ocmode2;
/* Reset the output polarity level of all channels (selects high polarity)*/
ccer &= ~(ATIM_CCER_CC1P | ATIM_CCER_CC2P | ATIM_CCER_CC3P | ATIM_CCER_CC4P);
/* Enable the output state of the selected channel (only) */
ccer &= ~(ATIM_CCER_CC1E | ATIM_CCER_CC2E | ATIM_CCER_CC3E | ATIM_CCER_CC4E);
ccer |= ccenable;
if (priv->tbase == STM32_TIM1_BASE || priv->tbase == STM32_TIM8_BASE)
{
/* Reset output N polarity level, output N state, output compre state,
* output compare N idle state.
*/
#if defined(CONFIG_STM32_STM32F20XX) || defined(CONFIG_STM32_STM32F40XX)
ccer &= ~(ATIM_CCER_CC1NE | ATIM_CCER_CC1NP | ATIM_CCER_CC2NE | ATIM_CCER_CC2NP |
ATIM_CCER_CC3NE | ATIM_CCER_CC3NP | ATIM_CCER_CC4NP);
#else
ccer &= ~(ATIM_CCER_CC1NE | ATIM_CCER_CC1NP | ATIM_CCER_CC2NE | ATIM_CCER_CC2NP |
ATIM_CCER_CC3NE | ATIM_CCER_CC3NP);
#endif
/* Reset the output compare and output compare N IDLE State */
cr2 &= ~(ATIM_CR2_OIS1 | ATIM_CR2_OIS1N | ATIM_CR2_OIS2 | ATIM_CR2_OIS2N |
ATIM_CR2_OIS3 | ATIM_CR2_OIS3N | ATIM_CR2_OIS4);
}
#if defined(CONFIG_STM32_STM32F20XX) || defined(CONFIG_STM32_STM32F40XX)
else
{
ccer &= ~(GTIM_CCER_CC1NP | GTIM_CCER_CC2NP | GTIM_CCER_CC3NP | GTIM_CCER_CC4NP);
}
#endif
/* Save the modified register values */
tim_putreg(priv, STM32_GTIM_CR2_OFFSET, cr2);
tim_putreg(priv, STM32_GTIM_CCMR1_OFFSET, ccmr1);
tim_putreg(priv, STM32_GTIM_CCMR2_OFFSET, ccmr2);
tim_putreg(priv, STM32_GTIM_CCER_OFFSET, ccer);
tim_putreg(priv, STM32_GTIM_EGR_OFFSET, egr);
/* Set the ARR Preload Bit */
cr1 = tim_getreg(priv, STM32_GTIM_CR1_OFFSET);
cr1 |= GTIM_CR1_ARPE;
tim_putreg(priv, STM32_GTIM_CR1_OFFSET, cr1);
/* Enable the timer counter
* All but the CEN bit with the default config in CR1
*/
adc_timstart(priv, true);
adc_tim_dumpregs(priv, "After starting Timers");
return OK;
}
#endif
/****************************************************************************
* Name: adc_startconv
*
* Description:
* Start (or stop) the ADC conversion process in DMA mode
*
* Input Parameters:
* priv - A reference to the ADC block status
* enable - True: Start conversion
*
* Returned Value:
*
****************************************************************************/
#if defined(CONFIG_STM32_STM32F20XX) || defined(CONFIG_STM32_STM32F40XX)
static void adc_startconv(struct stm32_dev_s *priv, bool enable)
{
uint32_t regval;
avdbg("enable: %d\n", enable);
regval = adc_getreg(priv, STM32_ADC_CR2_OFFSET);
if (enable)
{
/* Start conversion of regular channles */
regval |= ADC_CR2_SWSTART;
}
else
{
/* Disable the conversion of regular channels */
regval &= ~ADC_CR2_SWSTART;
}
adc_putreg(priv, STM32_ADC_CR2_OFFSET,regval);
}
#endif
/****************************************************************************
* Name: adc_rccreset
*
* Description:
* Deinitializes the ADCx peripheral registers to their default
* reset values. It could set all the ADCs configured.
*
* Input Parameters:
* regaddr - The register to read
* reset - Condition, set or reset
*
* Returned Value:
*
****************************************************************************/
static void adc_rccreset(struct stm32_dev_s *priv, bool reset)
{
irqstate_t flags;
uint32_t regval;
uint32_t adcbit;
/* Pick the appropriate bit in the APB2 reset register */
#ifdef CONFIG_STM32_STM32F10XX
/* For the STM32 F1, there is an individual bit to reset each ADC. */
switch (priv->intf)
{
#ifdef CONFIG_STM32_ADC1
case 1:
adcbit = RCC_APB2RSTR_ADC1RST;
break;
#endif
#ifdef CONFIG_STM32_ADC2
case 2:
adcbit = RCC_APB2RSTR_ADC2RST;
break;
#endif
#ifdef CONFIG_STM32_ADC3
case 3:
adcbit = RCC_APB2RSTR_ADC3RST;
break;
#endif
default:
return;
}
#else
/* For the STM32 F4, there is one common reset for all ADC block.
* THIS will probably cause some problems!
*/
adcbit = RCC_APB2RSTR_ADCRST;
#endif
/* Disable interrupts. This is necessary because the APB2RTSR register
* is used by several different drivers.
*/
flags = irqsave();
/* Set or clear the selected bit in the APB2 reset register */
regval = getreg32(STM32_RCC_APB2RSTR);
if (reset)
{
/* Enable ADC reset state */
regval |= adcbit;
}
else
{
/* Release ADC from reset state */
regval &= ~adcbit;
}
putreg32(regval, STM32_RCC_APB2RSTR);
irqrestore(flags);
}
/*******************************************************************************
* Name: adc_enable
*
* Description : Enables or disables the specified ADC peripheral.
* Also, starts a conversion when the ADC is not
* triggered by timers
*
* Input Parameters:
*
* enable - true: enable ADC conversion
* false: disable ADC conversion
*
* Returned Value:
*
*******************************************************************************/
static void adc_enable(FAR struct stm32_dev_s *priv, bool enable)
{
uint32_t regval;
avdbg("enable: %d\n", enable);
regval = adc_getreg(priv, STM32_ADC_CR2_OFFSET);
if (enable)
{
regval |= ADC_CR2_ADON;
}
else
{
regval &= ~ADC_CR2_ADON;
}
adc_putreg(priv, STM32_ADC_CR2_OFFSET, regval);
}
/****************************************************************************
* Name: adc_reset
*
* Description:
* Reset the ADC device. Called early to initialize the hardware. This
* is called, before adc_setup() and on error conditions.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static void adc_reset(FAR struct adc_dev_s *dev)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
irqstate_t flags;
uint32_t regval;
int offset;
int i;
int ret;
avdbg("intf: ADC%d\n", priv->intf);
flags = irqsave();
/* Enable ADC reset state */
adc_rccreset(priv, true);
/* Release ADC from reset state */
adc_rccreset(priv, false);
/* Initialize the ADC data structures */
/* Initialize the watchdog high threshold register */
adc_putreg(priv, STM32_ADC_HTR_OFFSET, 0x00000fff);
/* Initialize the watchdog low threshold register */
adc_putreg(priv, STM32_ADC_LTR_OFFSET, 0x00000000);
/* Initialize the same sample time for each ADC 55.5 cycles
*
* During sample cycles channel selection bits must remain unchanged.
*
* 000: 1.5 cycles
* 001: 7.5 cycles
* 010: 13.5 cycles
* 011: 28.5 cycles
* 100: 41.5 cycles
* 101: 55.5 cycles
* 110: 71.5 cycles
* 111: 239.5 cycles
*/
adc_putreg(priv, STM32_ADC_SMPR1_OFFSET, 0x00b6db6d);
adc_putreg(priv, STM32_ADC_SMPR2_OFFSET, 0x00b6db6d);
/* ADC CR1 Configuration */
regval = adc_getreg(priv, STM32_ADC_CR1_OFFSET);
/* Set mode configuration (Independent mode) */
#ifdef CONFIG_STM32_STM32F10XX
regval |= ADC_CR1_IND;
#endif
/* Initialize the Analog watchdog enable */
regval |= ADC_CR1_AWDEN;
regval |= (priv->chanlist[0] << ADC_CR1_AWDCH_SHIFT);
/* Enable interrupt flags */
regval |= ADC_CR1_ALLINTS;
#if defined(CONFIG_STM32_STM32F20XX) || defined(CONFIG_STM32_STM32F40XX)
/* Enable or disable Overrun interrupt */
regval &= ~ADC_CR1_OVRIE;
/* Set the resolution of the conversion */
regval |= ACD_CR1_RES_12BIT;
#endif
adc_putreg(priv, STM32_ADC_CR1_OFFSET, regval);
/* ADC CR2 Configuration */
regval = adc_getreg(priv, STM32_ADC_CR2_OFFSET);
/* Clear CONT, continuous mode disable */
regval &= ~ADC_CR2_CONT;
/* Set ALIGN (Right = 0) */
regval &= ~ADC_CR2_ALIGN;
#if defined(CONFIG_STM32_STM32F20XX) || defined(CONFIG_STM32_STM32F40XX)
/* External trigger enable for regular channels */
regval |= ACD_CR2_EXTEN_RISING;
#endif
adc_putreg(priv, STM32_ADC_CR2_OFFSET, regval);
/* Configuration of the channel conversions */
regval = adc_getreg(priv, STM32_ADC_SQR3_OFFSET) & ADC_SQR3_RESERVED;
for (i = 0, offset = 0; i < priv->nchannels && i < 6; i++, offset += 5)
{
regval |= (uint32_t)priv->chanlist[i] << offset;
}
adc_putreg(priv, STM32_ADC_SQR3_OFFSET, regval);
regval = adc_getreg(priv, STM32_ADC_SQR2_OFFSET) & ADC_SQR2_RESERVED;
for (i = 6, offset = 0; i < priv->nchannels && i < 12; i++, offset += 5)
{
regval |= (uint32_t)priv->chanlist[i] << offset;
}
adc_putreg(priv, STM32_ADC_SQR2_OFFSET, regval);
regval = adc_getreg(priv, STM32_ADC_SQR1_OFFSET) & ADC_SQR1_RESERVED;
for (i = 12, offset = 0; i < priv->nchannels && i < 16; i++, offset += 5)
{
regval |= (uint32_t)priv->chanlist[i] << offset;
}
/* ADC CCR configuration */
#if defined(CONFIG_STM32_STM32F20XX) || defined(CONFIG_STM32_STM32F40XX)
regval = getreg32(STM32_ADC_CCR);
regval &= ~(ADC_CCR_MULTI_MASK | ADC_CCR_DELAY_MASK | ADC_CCR_DDS | ADC_CCR_DMA_MASK |
ADC_CCR_ADCPRE_MASK | ADC_CCR_VBATE | ADC_CCR_TSVREFE);
regval |= (ADC_CCR_MULTI_NONE | ADC_CCR_DMA_DISABLED | ADC_CCR_ADCPRE_DIV2);
putreg32(regval, STM32_ADC_CCR);
#endif
/* Set the number of conversions */
DEBUGASSERT(priv->nchannels <= ADC_MAX_SAMPLES);
regval |= (((uint32_t)priv->nchannels-1) << ADC_SQR1_L_SHIFT);
adc_putreg(priv, STM32_ADC_SQR1_OFFSET, regval);
/* Set the channel index of the first conversion */
priv->current = 0;
/* Set ADON to wake up the ADC from Power Down state. */
adc_enable(priv, true);
#ifdef ADC_HAVE_TIMER
ret = adc_timinit(priv);
if (ret!=OK)
{
adbg("Error initializing the timers\n");
}
#else
#ifdef CONFIG_STM32_STM32F10XX
/* Set ADON (Again) to start the conversion. Only if Timers are not
* configured as triggers
*/
adc_enable(priv, true);
#else
adc_startconv(priv, true);
#endif /* CONFIG_STM32_STM32F10XX */
#endif /* ADC_HAVE_TIMER */
irqrestore(flags);
avdbg("SR: 0x%08x CR1: 0x%08x CR2: 0x%08x\n",
adc_getreg(priv, STM32_ADC_SR_OFFSET),
adc_getreg(priv, STM32_ADC_CR1_OFFSET),
adc_getreg(priv, STM32_ADC_CR2_OFFSET));
avdbg("SQR1: 0x%08x SQR2: 0x%08x SQR3: 0x%08x\n",
adc_getreg(priv, STM32_ADC_SQR1_OFFSET),
adc_getreg(priv, STM32_ADC_SQR2_OFFSET),
adc_getreg(priv, STM32_ADC_SQR3_OFFSET));
#if defined(CONFIG_STM32_STM32F20XX) || defined(CONFIG_STM32_STM32F40XX)
avdbg("CCR: 0x%08x\n",
getreg32(STM32_ADC_CCR));
#endif
}
/****************************************************************************
* Name: adc_setup
*
* Description:
* Configure the ADC. This method is called the first time that the ADC
* device is opened. This will occur when the port is first opened.
* This setup includes configuring and attaching ADC interrupts. Interrupts
* are all disabled upon return.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static int adc_setup(FAR struct adc_dev_s *dev)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
int ret;
/* Attach the ADC interrupt */
ret = irq_attach(priv->irq, priv->isr);
if (ret == OK)
{
/* Enable the ADC interrupt */
avdbg("Enable the ADC interrupt: irq=%d\n", priv->irq);
up_enable_irq(priv->irq);
}
return ret;
}
/****************************************************************************
* Name: adc_shutdown
*
* Description:
* Disable the ADC. This method is called when the ADC device is closed.
* This method reverses the operation the setup method.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static void adc_shutdown(FAR struct adc_dev_s *dev)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
/* Disable ADC interrupts and detach the ADC interrupt handler */
up_disable_irq(priv->irq);
irq_detach(priv->irq);
/* Disable and reset the ADC module */
adc_rccreset(priv, true);
}
/****************************************************************************
* Name: adc_rxint
*
* Description:
* Call to enable or disable RX interrupts.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static void adc_rxint(FAR struct adc_dev_s *dev, bool enable)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
uint32_t regval;
avdbg("intf: %d enable: %d\n", priv->intf, enable);
regval = adc_getreg(priv, STM32_ADC_CR1_OFFSET);
if (enable)
{
/* Enable the end-of-conversion ADC and analog watchdog interrupts */
regval |= ADC_CR1_ALLINTS;
}
else
{
/* Disable all ADC interrupts */
regval &= ~ADC_CR1_ALLINTS;
}
adc_putreg(priv, STM32_ADC_CR1_OFFSET, regval);
}
/****************************************************************************
* Name: adc_ioctl
*
* Description:
* All ioctl calls will be routed through this method.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static int adc_ioctl(FAR struct adc_dev_s *dev, int cmd, unsigned long arg)
{
return -ENOTTY;
}
/****************************************************************************
* Name: adc_interrupt
*
* Description:
* Common ADC interrupt handler.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
static int adc_interrupt(FAR struct adc_dev_s *dev)
{
FAR struct stm32_dev_s *priv = (FAR struct stm32_dev_s *)dev->ad_priv;
uint32_t adcsr;
int32_t value;
/* Identifies the interruption AWD, OVR or EOC */
adcsr = adc_getreg(priv, STM32_ADC_SR_OFFSET);
if ((adcsr & ADC_SR_AWD) != 0)
{
alldbg("WARNING: Analog Watchdog, Value converted out of range!\n");
}
#if defined(CONFIG_STM32_STM32F20XX) || defined(CONFIG_STM32_STM32F40XX)
if ((adcsr & ADC_SR_OVR) != 0)
{
alldbg("WARNING: Overrun has ocurred!\n");
}
#endif
/* EOC: End of conversion */
if ((adcsr & ADC_SR_EOC) != 0)
{
/* Read the converted value and clear EOC bit
* (It is cleared by reading the ADC_DR)
*/
value = adc_getreg(priv, STM32_ADC_DR_OFFSET);
value &= ADC_DR_DATA_MASK;
/* Give the ADC data to the ADC driver. adc_receive accepts 3 parameters:
*
* 1) The first is the ADC device instance for this ADC block.
* 2) The second is the channel number for the data, and
* 3) The third is the converted data for the channel.
*/
adc_receive(dev, priv->chanlist[priv->current], value);
/* Set the channel number of the next channel that will complete conversion */
priv->current++;
if (priv->current >= priv->nchannels)
{
/* Restart the conversion sequence from the beginning */
priv->current = 0;
}
}
return OK;
}
/****************************************************************************
* Name: adc12_interrupt
*
* Description:
* ADC12 interrupt handler for the STM32 F1 family.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
#if defined(CONFIG_STM32_STM32F10XX) && (defined(CONFIG_STM32_ADC1) || defined(CONFIG_STM32_ADC2))
static int adc12_interrupt(int irq, void *context)
{
uint32_t regval;
uint32_t pending;
/* Check for pending ADC1 interrupts */
#ifdef CONFIG_STM32_ADC1
regval = getreg32(STM32_ADC1_SR);
pending = regval & ADC_SR_ALLINTS;
if (pending != 0)
{
adc_interrupt(&g_adcdev1);
regval &= ~pending;
putreg32(regval, STM32_ADC1_SR);
}
#endif
/* Check for pending ADC2 interrupts */
#ifdef CONFIG_STM32_ADC2
regval = getreg32(STM32_ADC2_SR);
pending = regval & ADC_SR_ALLINTS;
if (pending != 0)
{
adc_interrupt(&g_adcdev2);
regval &= ~pending;
putreg32(regval, STM32_ADC2_SR);
}
#endif
return OK;
}
#endif
/****************************************************************************
* Name: adc3_interrupt
*
* Description:
* ADC1/2 interrupt handler for the STM32 F1 family.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
#if defined (CONFIG_STM32_STM32F10XX) && defined (CONFIG_STM32_ADC3)
static int adc3_interrupt(int irq, void *context)
{
uint32_t regval;
uint32_t pending;
/* Check for pending ADC3 interrupts */
regval = getreg32(STM32_ADC3_SR);
pending = regval & ADC_SR_ALLINTS;
if (pending != 0)
{
adc_interrupt(&g_adcdev3);
regval &= ~pending;
putreg32(regval, STM32_ADC3_SR);
}
return OK;
}
#endif
/****************************************************************************
* Name: adc123_interrupt
*
* Description:
* ADC1/2/3 interrupt handler for the STM32 F4 family.
*
* Input Parameters:
*
* Returned Value:
*
****************************************************************************/
#if defined(CONFIG_STM32_STM32F20XX) || defined(CONFIG_STM32_STM32F40XX)
static int adc123_interrupt(int irq, void *context)
{
uint32_t regval;
uint32_t pending;
/* Check for pending ADC1 interrupts */
#ifdef CONFIG_STM32_ADC1
regval = getreg32(STM32_ADC1_SR);
pending = regval & ADC_SR_ALLINTS;
if (pending != 0)
{
adc_interrupt(&g_adcdev1);
regval &= ~pending;
putreg32(regval, STM32_ADC1_SR);
}
#endif
/* Check for pending ADC2 interrupts */
#ifdef CONFIG_STM32_ADC2
regval = getreg32(STM32_ADC2_SR);
pending = regval & ADC_SR_ALLINTS;
if (pending != 0)
{
adc_interrupt(&g_adcdev2);
regval &= ~pending;
putreg32(regval, STM32_ADC2_SR);
}
#endif
/* Check for pending ADC3 interrupts */
#ifdef CONFIG_STM32_ADC3
regval = getreg32(STM32_ADC3_SR);
pending = regval & ADC_SR_ALLINTS;
if (pending != 0)
{
adc_interrupt(&g_adcdev3);
regval &= ~pending;
putreg32(regval, STM32_ADC3_SR);
}
#endif
return OK;
}
#endif
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: stm32_adcinitialize
*
* Description:
* Initialize the ADC.
*
* The logic is, save nchannels : # of channels (conversions) in ADC_SQR1_L
* Then, take the chanlist array and store it in the SQR Regs,
* chanlist[0] -> ADC_SQR3_SQ1
* chanlist[1] -> ADC_SQR3_SQ2
* ...
* chanlist[15]-> ADC_SQR1_SQ16
*
* up to
* chanlist[nchannels]
*
* Input Parameters:
* intf - Could be {1,2,3} for ADC1, ADC2, or ADC3
* chanlist - The list of channels
* nchannels - Number of channels
*
* Returned Value:
* Valid ADC device structure reference on succcess; a NULL on failure
*
****************************************************************************/
struct adc_dev_s *stm32_adcinitialize(int intf, const uint8_t *chanlist, int nchannels)
{
FAR struct adc_dev_s *dev;
FAR struct stm32_dev_s *priv;
avdbg("intf: %d nchannels: %d\n", intf, nchannels);
#ifdef CONFIG_STM32_ADC1
if (intf == 1)
{
avdbg("ADC1 Selected\n");
dev = &g_adcdev1;
}
else
#endif
#ifdef CONFIG_STM32_ADC2
if (intf == 2)
{
avdbg("ADC2 Selected\n");
dev = &g_adcdev2;
}
else
#endif
#ifdef CONFIG_STM32_ADC3
if (intf == 3)
{
avdbg("ADC3 Selected\n");
dev = &g_adcdev3;
}
else
#endif
{
adbg("No ADC interface defined\n");
return NULL;
}
/* Configure the selected ADC */
priv = dev->ad_priv;
DEBUGASSERT(nchannels <= ADC_MAX_SAMPLES);
priv->nchannels = nchannels;
memcpy(priv->chanlist, chanlist, nchannels);
return dev;
}
#endif /* CONFIG_STM32_ADC || CONFIG_STM32_ADC2 || CONFIG_STM32_ADC3 */
#endif /* CONFIG_ADC */