nuttx/arch/arm/include/armv8-m/irq.h

507 lines
14 KiB
C
Raw Normal View History

/****************************************************************************
* arch/arm/include/armv8-m/irq.h
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/* This file should never be included directly but, rather, only indirectly
* through nuttx/irq.h
*/
#ifndef __ARCH_ARM_INCLUDE_ARMV8_M_IRQ_H
#define __ARCH_ARM_INCLUDE_ARMV8_M_IRQ_H
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <nuttx/irq.h>
#ifndef __ASSEMBLY__
# include <nuttx/compiler.h>
# include <arch/armv8-m/nvicpri.h>
# include <stdint.h>
#endif
/****************************************************************************
* Pre-processor Prototypes
****************************************************************************/
/* Configuration ************************************************************/
/* If this is a kernel build, how many nested system calls should we
* support?
*/
#ifndef CONFIG_SYS_NNEST
# define CONFIG_SYS_NNEST 2
#endif
/* IRQ Stack Frame Format: */
/* The following additional registers are stored by the interrupt handling
* logic.
*/
#define REG_R13 (0) /* R13 = SP at time of interrupt */
#ifdef CONFIG_ARMV8M_USEBASEPRI
# define REG_BASEPRI (1) /* BASEPRI */
#else
# define REG_PRIMASK (1) /* PRIMASK */
#endif
#define REG_R4 (2) /* R4 */
#define REG_R5 (3) /* R5 */
#define REG_R6 (4) /* R6 */
#define REG_R7 (5) /* R7 */
#define REG_R8 (6) /* R8 */
#define REG_R9 (7) /* R9 */
#define REG_R10 (8) /* R10 */
#define REG_R11 (9) /* R11 */
#define REG_EXC_RETURN (10) /* EXC_RETURN */
#define SW_INT_REGS (11)
#ifdef CONFIG_ARCH_FPU
/* If the MCU supports a floating point unit, then it will be necessary
* to save the state of the non-volatile registers before calling code
* that may save and overwrite them.
*/
# define REG_S16 (SW_INT_REGS + 0) /* S16 */
# define REG_S17 (SW_INT_REGS + 1) /* S17 */
# define REG_S18 (SW_INT_REGS + 2) /* S18 */
# define REG_S19 (SW_INT_REGS + 3) /* S19 */
# define REG_S20 (SW_INT_REGS + 4) /* S20 */
# define REG_S21 (SW_INT_REGS + 5) /* S21 */
# define REG_S22 (SW_INT_REGS + 6) /* S22 */
# define REG_S23 (SW_INT_REGS + 7) /* S23 */
# define REG_S24 (SW_INT_REGS + 8) /* S24 */
# define REG_S25 (SW_INT_REGS + 9) /* S25 */
# define REG_S26 (SW_INT_REGS + 10) /* S26 */
# define REG_S27 (SW_INT_REGS + 11) /* S27 */
# define REG_S28 (SW_INT_REGS + 12) /* S28 */
# define REG_S29 (SW_INT_REGS + 13) /* S29 */
# define REG_S30 (SW_INT_REGS + 14) /* S30 */
# define REG_S31 (SW_INT_REGS + 15) /* S31 */
# define SW_FPU_REGS (16)
#else
# define SW_FPU_REGS (0)
#endif
/* The total number of registers saved by software */
#ifdef CONFIG_ARMV8M_STACKCHECK_HARDWARE
# define REG_SPLIM (SW_INT_REGS + SW_FPU_REGS + 0) /* REG_SPLIM */
# define SW_XCPT_REGS (SW_INT_REGS + SW_FPU_REGS + 1)
#else
# define SW_XCPT_REGS (SW_INT_REGS + SW_FPU_REGS)
#endif
#define SW_XCPT_SIZE (4 * SW_XCPT_REGS)
/* On entry into an IRQ, the hardware automatically saves the following
* registers on the stack in this (address) order:
*/
#define REG_R0 (SW_XCPT_REGS + 0) /* R0 */
#define REG_R1 (SW_XCPT_REGS + 1) /* R1 */
#define REG_R2 (SW_XCPT_REGS + 2) /* R2 */
#define REG_R3 (SW_XCPT_REGS + 3) /* R3 */
#define REG_R12 (SW_XCPT_REGS + 4) /* R12 */
#define REG_R14 (SW_XCPT_REGS + 5) /* R14 = LR */
#define REG_R15 (SW_XCPT_REGS + 6) /* R15 = PC */
#define REG_XPSR (SW_XCPT_REGS + 7) /* xPSR */
#define HW_INT_REGS (8)
#ifdef CONFIG_ARCH_FPU
/* If the FPU is enabled, the hardware also saves the volatile FP registers.
*/
# define REG_S0 (SW_XCPT_REGS + 8) /* S0 */
# define REG_S1 (SW_XCPT_REGS + 9) /* S1 */
# define REG_S2 (SW_XCPT_REGS + 10) /* S2 */
# define REG_S3 (SW_XCPT_REGS + 11) /* S3 */
# define REG_S4 (SW_XCPT_REGS + 12) /* S4 */
# define REG_S5 (SW_XCPT_REGS + 13) /* S5 */
# define REG_S6 (SW_XCPT_REGS + 14) /* S6 */
# define REG_S7 (SW_XCPT_REGS + 15) /* S7 */
# define REG_S8 (SW_XCPT_REGS + 16) /* S8 */
# define REG_S9 (SW_XCPT_REGS + 17) /* S9 */
# define REG_S10 (SW_XCPT_REGS + 18) /* S10 */
# define REG_S11 (SW_XCPT_REGS + 19) /* S11 */
# define REG_S12 (SW_XCPT_REGS + 20) /* S12 */
# define REG_S13 (SW_XCPT_REGS + 21) /* S13 */
# define REG_S14 (SW_XCPT_REGS + 22) /* S14 */
# define REG_S15 (SW_XCPT_REGS + 23) /* S15 */
# define REG_FPSCR (SW_XCPT_REGS + 24) /* FPSCR */
# define REG_FP_RESERVED (SW_XCPT_REGS + 25) /* Reserved */
# define HW_FPU_REGS (18)
#else
# define HW_FPU_REGS (0)
#endif
#define HW_XCPT_REGS (HW_INT_REGS + HW_FPU_REGS)
#define HW_XCPT_SIZE (4 * HW_XCPT_REGS)
#define XCPTCONTEXT_REGS (HW_XCPT_REGS + SW_XCPT_REGS)
#define XCPTCONTEXT_SIZE (4 * XCPTCONTEXT_REGS)
/* Alternate register names *************************************************/
#define REG_A1 REG_R0
#define REG_A2 REG_R1
#define REG_A3 REG_R2
#define REG_A4 REG_R3
#define REG_V1 REG_R4
#define REG_V2 REG_R5
#define REG_V3 REG_R6
#define REG_V4 REG_R7
#define REG_V5 REG_R8
#define REG_V6 REG_R9
#define REG_V7 REG_R10
#define REG_SB REG_R9
#define REG_SL REG_R10
#define REG_FP REG_R7
#define REG_IP REG_R12
#define REG_SP REG_R13
#define REG_LR REG_R14
#define REG_PC REG_R15
/* The PIC register is usually R10. It can be R9 is stack checking is enabled
* or if the user changes it with -mpic-register on the GCC command line.
*/
#define REG_PIC REG_R10
/* CONTROL register */
#define CONTROL_UPAC_EN (1 << 7) /* Bit 7: Unprivileged pointer authentication enable */
#define CONTROL_PAC_EN (1 << 6) /* Bit 6: Privileged pointer authentication enable */
#define CONTROL_UBTI_EN (1 << 5) /* Bit 5: Unprivileged branch target identification enable */
#define CONTROL_BTI_EN (1 << 4) /* Bit 4: Privileged branch target identification enable */
#define CONTROL_SFPA (1 << 3) /* Bit 3: Secure Floating-point active */
#define CONTROL_FPCA (1 << 2) /* Bit 2: Floating-point context active */
#define CONTROL_SPSEL (1 << 1) /* Bit 1: Stack-pointer select */
#define CONTROL_NPRIV (1 << 0) /* Bit 0: Not privileged */
/****************************************************************************
* Public Types
****************************************************************************/
#ifndef __ASSEMBLY__
/* This structure represents the return state from a system call */
#ifdef CONFIG_LIB_SYSCALL
struct xcpt_syscall_s
{
uint32_t excreturn; /* The EXC_RETURN value */
uint32_t sysreturn; /* The return PC */
};
#endif
/* The following structure is included in the TCB and defines the complete
* state of the thread.
*/
struct xcptcontext
{
/* The following function pointer is non-zero if there
* are pending signals to be processed.
*/
void *sigdeliver; /* Actual type is sig_deliver_t */
/* These are saved copies of the context used during
* signal processing.
*/
uint32_t *saved_regs;
#ifdef CONFIG_BUILD_PROTECTED
/* This is the saved address to use when returning from a user-space
* signal handler.
*/
uint32_t sigreturn;
#endif
#ifdef CONFIG_LIB_SYSCALL
/* The following array holds the return address and the exc_return value
* needed to return from each nested system call.
*/
uint8_t nsyscalls;
struct xcpt_syscall_s syscall[CONFIG_SYS_NNEST];
#endif
/* Register save area with XCPTCONTEXT_SIZE, only valid when:
* 1.The task isn't running or
* 2.The task is interrupted
* otherwise task is running, and regs contain the stale value.
*/
uint32_t *regs;
};
#endif
/****************************************************************************
* Inline functions
****************************************************************************/
#ifndef __ASSEMBLY__
/* Name: up_irq_save, up_irq_restore, and friends.
*
* NOTE: This function should never be called from application code and,
* as a general rule unless you really know what you are doing, this
* function should not be called directly from operation system code either:
* Typically, the wrapper functions, enter_critical_section() and
* leave_critical section(), are probably what you really want.
*/
/* Get/set the PRIMASK register */
static inline uint8_t getprimask(void) inline_function;
static inline uint8_t getprimask(void)
{
uint32_t primask;
__asm__ __volatile__
(
"\tmrs %0, primask\n"
: "=r" (primask)
:
: "memory");
return (uint8_t)primask;
}
static inline void setprimask(uint32_t primask) inline_function;
static inline void setprimask(uint32_t primask)
{
__asm__ __volatile__
(
"\tmsr primask, %0\n"
:
: "r" (primask)
: "memory");
}
static inline void cpsie(void) inline_function;
static inline void cpsie(void)
{
__asm__ __volatile__ ("\tcpsie i\n");
}
static inline void cpsid(void) inline_function;
static inline void cpsid(void)
{
__asm__ __volatile__ ("\tcpsid i\n");
}
/* Get/set the BASEPRI register. The BASEPRI register defines the minimum
* priority for exception processing. When BASEPRI is set to a nonzero
* value, it prevents the activation of all exceptions with the same or
* lower priority level as the BASEPRI value.
*/
static inline uint8_t getbasepri(void) inline_function;
static inline uint8_t getbasepri(void)
{
uint32_t basepri;
__asm__ __volatile__
(
"\tmrs %0, basepri\n"
: "=r" (basepri)
:
: "memory");
return (uint8_t)basepri;
}
static inline void setbasepri(uint32_t basepri) inline_function;
static inline void setbasepri(uint32_t basepri)
{
__asm__ __volatile__
(
"\tmsr basepri, %0\n"
:
: "r" (basepri)
: "memory");
}
# define raisebasepri(b) setbasepri(b);
/* Disable IRQs */
static inline void up_irq_disable(void) inline_function;
static inline void up_irq_disable(void)
{
#ifdef CONFIG_ARMV8M_USEBASEPRI
/* Probably raising priority */
raisebasepri(NVIC_SYSH_DISABLE_PRIORITY);
#else
__asm__ __volatile__ ("\tcpsid i\n");
#endif
}
/* Save the current primask state & disable IRQs */
static inline irqstate_t up_irq_save(void) inline_function;
static inline irqstate_t up_irq_save(void)
{
#ifdef CONFIG_ARMV8M_USEBASEPRI
/* Probably raising priority */
uint8_t basepri = getbasepri();
raisebasepri(NVIC_SYSH_DISABLE_PRIORITY);
return (irqstate_t)basepri;
#else
unsigned short primask;
/* Return the current value of primask register and set
* bit 0 of the primask register to disable interrupts
*/
__asm__ __volatile__
(
"\tmrs %0, primask\n"
"\tcpsid i\n"
: "=r" (primask)
:
: "memory");
return primask;
#endif
}
/* Enable IRQs */
static inline void up_irq_enable(void) inline_function;
static inline void up_irq_enable(void)
{
/* In this case, we are always retaining or lowering the priority value */
setbasepri(NVIC_SYSH_PRIORITY_MIN);
__asm__ __volatile__ ("\tcpsie i\n");
}
/* Restore saved primask state */
static inline void up_irq_restore(irqstate_t flags) inline_function;
static inline void up_irq_restore(irqstate_t flags)
{
#ifdef CONFIG_ARMV8M_USEBASEPRI
/* In this case, we are always retaining or lowering the priority value */
setbasepri((uint32_t)flags);
#else
/* If bit 0 of the primask is 0, then we need to restore
* interrupts.
*/
__asm__ __volatile__
(
"\ttst %0, #1\n"
"\tbne.n 1f\n"
"\tcpsie i\n"
"1:\n"
:
: "r" (flags)
: "memory");
#endif
}
/* Get/set IPSR */
static inline uint32_t getipsr(void) inline_function;
static inline uint32_t getipsr(void)
{
uint32_t ipsr;
__asm__ __volatile__
(
"\tmrs %0, ipsr\n"
: "=r" (ipsr)
:
: "memory");
return ipsr;
}
/* Get/set CONTROL */
static inline uint32_t getcontrol(void) inline_function;
static inline uint32_t getcontrol(void)
{
uint32_t control;
__asm__ __volatile__
(
"\tmrs %0, control\n"
: "=r" (control)
:
: "memory");
return control;
}
static inline void setcontrol(uint32_t control) inline_function;
static inline void setcontrol(uint32_t control)
{
__asm__ __volatile__
(
"\tmsr control, %0\n"
:
: "r" (control)
: "memory");
}
#endif /* __ASSEMBLY__ */
/****************************************************************************
* Public Data
****************************************************************************/
/****************************************************************************
* Public Function Prototypes
****************************************************************************/
#ifndef __ASSEMBLY__
#ifdef __cplusplus
#define EXTERN extern "C"
extern "C"
{
#else
#define EXTERN extern
#endif
#undef EXTERN
#ifdef __cplusplus
}
#endif
#endif
#endif /* __ARCH_ARM_INCLUDE_ARMV8_M_IRQ_H */