These series have the following GPIO ports:
- STM32F03X: A to D, and F
- STM32F05/07/09X: A to F
- STM32G0X: A to F
- STM32L0X: A to E, and H
Signed-off-by: Takumi Ando <t-ando@advaly.co.jp>
If the CONFIG_MMCSD_SDIOWAIT_WRCOMPLETE is enabled and the
card is found to be ready in the waitenable call. Then
we do not need a Watchdog nor to configure the pin for
IRQ to detect ready.
This was reported as an error, and it is not, it simply means
we do not have to wait.
The following message is printed continuously and the nsh
shell is unusable on sama5d3-xplained.
"OHCI ERROR: Unhandled interrupts pending: 000001". This
happens when a keyboard is removed and reinserted on
port3 (lower port) while a bluetooth dongle is in port2.
in SMP, signal processing cannot be nested, we use xcp.sigdeliver to identify whether there is currently a signal being processed, but this state does not match the actual situation
One possible scenario is that signal processing has already been completed, but an interrupt occurs, resulting in xcp.sigdeliver not being correctly set to NULL,
At this point, a new signal arrives, which can only be placed in the queue and cannot be processed immediately
Our solution is that signal processing and signal complete status are set in the same critical section, which can ensure status synchronization
Signed-off-by: hujun5 <hujun5@xiaomi.com>
1. Get the value of sp from dump regs when an exception occurs,
to avoid getting the value of fp from up_getsp and causing
incomplete stack printing.
2. Determine which stack the value belongs to based on the value
of SP to avoid false reports of stack overflow
Signed-off-by: zhangyuan21 <zhangyuan21@xiaomi.com>
CURRENT_REGS may change during assert handling, so pass
in the 'regs' parameter at the entry point of _assert.
Signed-off-by: zhangyuan21 <zhangyuan21@xiaomi.com>
Unplugging a USB device from an OHCI root hub will cause
a deadlock if DRVR_EPFREE is called from sam_rhsc_bottomhalf. A
typical call chain looks like this: sam_rhsc_bottomhalf->
CLASS_DISCONNECTED->usbhost_destroy->DRVR_EPFREE. In this case
DRVR_EPFREE tries to lock a locked mutex. A recursive mutex
prevents this deadlock.
This commit adds deifiniton of get_timer_period() and adj_timer_period()
functions used by adjtime() interface.
Signed-off-by: Michal Lenc <michallenc@seznam.cz>
Store the old environment in a local context so another temporary address
environment can be selected. This can happen especially when a process
is being loaded (the new process's mappings are temporarily instantiated)
and and interrupt occurs.
When l2cc is already in disable state, performing a disable operation
again will flush incorrect cache data to memory
Signed-off-by: zhangyuan21 <zhangyuan21@xiaomi.com>
Invalidate operations at DDI0246H_l2c310_r3p3_trm:
If there is a stale entry in the L2 cache, the system enables the invalidation of
the L1 cache. But before the controller invalidates the L2 cache, it allocates a
line from the L2 cache to an L1 cache.
The robust code sequence for invalidation with a non-exclusive cache arrangement is:
1. InvalLevel2 Address ; forces the address out past level 2
2. CACHE SYNC ; Ensures completion of the L2 inval
3. InvalLevel1 Address ; This is broadcast within the cluster
4. DSB ; Ensure completion of the inval as far as Level 2.
This sequence ensures that, if there is an allocation to L1 after the L1 invalidation, the data
picked up is the new data and not stale data from the L2
Signed-off-by: zhangyuan21 <zhangyuan21@xiaomi.com>
Summary:
- This commit applies the changes from imxrt
- See 3a4542f3c4
Impact:
- imx6 ethernet with d-cache
Testing:
- Tested with imx6_with_ar8031 (will be added later)
Signed-off-by: Masayuki Ishikawa <Masayuki.Ishikawa@jp.sony.com>
minidump will backtrace failure when use C code to save user context,
because the stack push operation in C code can disrupt the stack information.
Signed-off-by: zhangyuan21 <zhangyuan21@xiaomi.com>
Pinmaps should not have contained GPIO_SPEED_xxx settings and
all pins should have had suffixes to allow any pins attributes to
be set. This is board dependent.
This change adds CONFIG_STM32L5_USE_LEGACY_PINMAP to allow for
lazy migration to using pinmaps with suffixes.
The work required to do this can be aided by running tools/stm32_pinmap_tool.py.
The tools will take a board.h file and a legacy pinmap and outut the required
changes that one needs to make to a board.h file.
Eventually, CONFIG_STM32L5_USE_LEGACY_PINMAP will be deprecated and the legacy
pinmaps removed from NuttX.
Any new boards added should set CONFIG_STM32L5_USE_LEGACY_PINMAP=n and
fully define the pins in board.h
Pinmaps should not have contained GPIO_SPEED_xxx settings and
all pins should have had suffixes to allow any pins attributes to
be set. This is board dependent.
This change adds CONFIG_STM32WB_USE_LEGACY_PINMAP to allow for
lazy migration to using pinmaps with suffixes.
The work required to do this can be aided by running tools/stm32_pinmap_tool.py.
The tools will take a board.h file and a legacy pinmap and outut the required
changes that one needs to make to a board.h file.
Eventually, CONFIG_STM32WB_USE_LEGACY_PINMAP will be deprecated and the legacy
pinmaps removed from NuttX.
Any new boards added should set CONFIG_STM32WB_USE_LEGACY_PINMAP=n and
fully define the pins in board.h
Pinmaps should not have contained GPIO_SPEED_xxx settings.
This is board dependent.
This change adds CONFIG_STM32F0G0L0_USE_LEGACY_PINMAP to allow for
lazy migration to using pinmaps without speeds.
The work required to do this can be aided by running tools/stm32_pinmap_tool.py.
The tools will take a board.h file and a legacy pinmap and outut the required
changes that one needs to make to a board.h file.
Eventually, CONFIG_STM32F0G0L0_USE_LEGACY_PINMAP will be deprecated and the legacy
pinmaps removed from NuttX.
Any new boards added should set CONFIG_STM32F0G0L0_USE_LEGACY_PINMAP=n and
fully define the pins in board.h
Pinmaps should not have contained GPIO_SPEED_xxx settings.
This is board dependent.
This change adds CONFIG_STM32L4_USE_LEGACY_PINMAP to allow for
lazy migration to using pinmaps without speeds.
The work required to do this can be aided by running tools/stm32_pinmap_tool.py.
The tools will take a board.h file and a legacy pinmap and outut the required
changes that one needs to make to a board.h file.
Eventually, CONFIG_STM32L4_USE_LEGACY_PINMAP will be deprecated and the legacy
pinmaps removed from NuttX.
Any new boards added should set CONFIG_STM32L4_USE_LEGACY_PINMAP=n and
fully define the pins in board.h
replace all GPIO_MODE_xxMHz with GPIO_MODE_2MHz provide GPIO_ADJUST_MODE
and add legacy pinmap
For the stm32F1 pinmaps should not have contained GPIO_MODE_50MHz settings
on all pins. Speed is board dependent.
This change adds CONFIG_STM32_USE_LEGACY_PINMAP to allow for
lazy migration to using pinmaps that can have the GPIO_MODE_xxMHz set.
The work required to do this can be aided by running tools/stm32_pinmap_tool.py.
The tools will take a board.h, and use all the defconfigs with the legacy
pinmap and output the required changes that one needs to make to a board.h
file.
Eventually, CONFIG_STM32_USE_LEGACY_PINMAP will be deprecated and the legacy
pinmaps removed from NuttX.
Any new boards added should set CONFIG_STM32_USE_LEGACY_PINMAP=n and
fully define the pins in board.hf1
Pinmaps should not have contained GPIO_SPEED_xxx settings.
This is board dependent.
This change adds CONFIG_STM32_USE_LEGACY_PINMAP to allow for
lazy migration to using pinmaps without speeds.
The work required to do this can be aided by running tools/stm32_pinmap_tool.py.
The tools will take a board.h file and a legacy pinmap and outut the required
changes that one needs to make to a board.h file.
Eventually, STM32_USE_LEGACY_PINMAP will be deprecated and the legacy
pinmaps removed from NuttX.
Any new boards added should set STM32_USE_LEGACY_PINMAP=n and
fully define the pins in board.h