I finally figured out why the ez80 code has gotten so big. It is because people have been put putting big inline functions in header files. That is a violation of the coding standard, since only c89 compatibility is required in all common code. But we have been tolerating inline function it because include/nuttx/compiler.h defines 'inline' to be nothing for C89 compilers.
As a result, static inline functions declared within a C file not so bad; the inline qualifier is ignored, if not supported, but otherwise all is well.
But it is catastrophic in header files. Those static inline functions are included as static functions and implemented in EVERY file that includes those header files, even if the functions are never called. That makes the code base huge!So there is another PR coming to fix some of the worst offenders.
This commit fixes two of the worst offenders I have encountered so far: include/nuttx/sempahore.h and cache.h. But there may be a few other changes needed. Under include/nuttx there are still inline functions thread.h, inclue/nuttx/list.h, mutex.h, tree.h, and include/nuttx/crypto/blake2s.h with no protection for compilers that do not handler the inline qualifier. Otherwise we are clean.
With the changes to these two header files, the size of the z20x build is reduced by about 40%. And incredible size savings.
The SD boot loader was not satisfactory because 1) the SD slot is on an optional board and, hence, cannot be part of a fundamental solution. And 2) it is too big.
The only storage on borard is the Winbond W25 SPI-bsed FLASH. This commit adds support for a bootload to 1) read code in HEX format from a serial port and write it to the W25 FLASH, or 2) read code in binary form from the W25 FLASH into SRAM and execute the loaded program.
boards/z80/ez80/z20x/configs: Added w25boot configuration
boards/z80/ez80/z20x/src: Add bootloader logic, w25_main.c. Add logic to manage shared SRAM memory map so that the loaded program does not clobber the bootloader memory. Add logic to recover the bootloader memory into the heap after the loaded program as started.
boards/z80/ez80/z20x/scripts: Rework scripts and configuration to support a bootloader and program build. The boolloader cannot use all of SRAM; the program must not clobber the SRAM region used by the bootloader.
* fs/nfs: Remove all nfs_checkmount call. The check just waste cpu cycle since nobody will set nm_mounted to false, and remove the unused fields(nm_mounted and n_flags) and related flags too
* fs/nfs: Fix the definition not confirm to RFC 1813 and other minor issue(unused, typo, duplication, alignment...)
* fs/nfs: Always represent error with negative number and remove the unused arguments from function
* fs/nfs: Set socket receive timeout with nfs_args->timeo and fix warning:
nfs/nfs.h:59:28: warning: large integer implicitly truncated to unsigned type [-Woverflow]
#define NFS_TIMEO (1 * NFS_HZ) /* Default timeout = 1 second */
^
nfs/nfs_vfsops.c:1857:23: note: in expansion of macro 'NFS_TIMEO'
nprmt.timeo = NFS_TIMEO;
^
^~~~~~~~~
* fs/nfs: Update the file attribute correctly in nfs_filetruncate and simplify the attrbitue conversion between NFSv3 and NuttX
* fs/nfs: Remove the unfinished and buggy EXCLUSIVE creation mode
* fs/nfs: Call nfs_fsinfo in nfs_bind instead of nfs_statfs since we should update the buffer size before transfer happen, and handle the attribute existence variance correctly.
* fs/nfs: Shouldn't insert node into list again in nfs_dup and fix other typo issue
* fs/nfs: Should skip . and .. in nfs_readdir
* fs/nfs: Remove the unnecessary dynamic allocation and the duplicated root handle storage
* imxrt: GPIO make tables const
* imxrt: Call out to board to set up FlexRAM
* imxrt: Add Knob for adding the ROM bootloaders 40Kib of RAM to heap
* imxrt: imxrt1060-evk:Add the ability to run from OCRAM
* arch/arm/src/imxrt/imxrt_usbdev.c: Add USB Device support for i.MX RT (USB OTG1)
Based on the LPC43xx USB Device driver.
* imxrt:usbotg Nxstyle fixes
Co-authored-by: thomasactia <61285689+thomasactia@users.noreply.github.com>
board/z80/ez80/*/scripts/Make.defs: Fix optimization definition use in assembly flags. It was using the compiler optimization settings instead of the assembler optimization settings. Hence, enabling optimization would could cause assembler command line errors.
arch/z80/src/ez80/Toolchain.defs: Back out some work arounds. Now compiler optimization flags can again set set without assembler command line errors.
boards/z80/ez80/z20x/README.txt: Trivial update to size/optimization discussion.
* Adding support for BQ769x0 Battery Monitor IC (Work In Progress)
* Additional changes to support BQ769x0
* Store cell count and chip type when setting up
* Added shutdown, limits, charge/discharge switch, and clear faults operations
* Added support for current measurement; some cleanup
* Updated temperature reporting. Fixed negative current reporting.
* When setting safety limits, update limit structure with actual values used.
* Added note on battery limit structure
* Updates to BQ769x0. Re-ordered fault reporting, added fault cache, added ordered fault clearing
The eZ80F92 interrupt controller is very different from the eZ80F91. The eZ80F91 has:
1. Four byte interrupt vectors
2. The vector base address register is 16-bit so the vector table can lie in RAM
Whereas the eZ80F92 has:
1. Two byte interrupt vectors
2. An 8-bit vector base address
This means that the vectors must lie in the first 16-bits of FLASH and there must be a "trampoline" to get to interrupt handlers outside of the first 64-Kb of FLASH.
arch/z80/src/ez80/Toolchain.defs: Correct some CFLAGS when optimization suppressed.
arch/z80/src/ez80/Kconfig arch/z80/src/ez80/ez80_emac.c: Remove configuration option for selecting EMAC RAM address. This is duplicated and possibly conflicting. The correct address for the RAM is provided in the linker command file. The RAM should be configured once and using this single definitions.
arch/z80/src/ez80/ez80_startup.asm and arch/z80/src/ez80/ez80f9*_init.asm. Move RAM and FLAH intialization out of MCU-specific logic to common start-up logic. We cannot call any functions until SRAM is initialized and the stack is properly initialized because the return address is stored on the stack. Use internal SRAM for the IDLE stack to avoid the chicken'n'egg problem.
boards/z80/ez80/z20x/configs/sdboot/sdboot.zdsproj: Discuss build environments.
CONFIG_FAT_MAXFNAME is set to 255 and CONFIG_NAME_MAX is set to 765
which can support max file name including Japanese characters.
Signed-off-by: Masayuki Ishikawa <Masayuki.Ishikawa@jp.sony.com>
These makefiles set the the ZiLOG runtime libraries for the eZ80 parts. The setup was, however, conditioned on CONFIG_ARCH_EZ80_EZ80F91 and, so, was not working for the eZ80F92 part (CONFIG_ARCH_EZ80_EZ80F92).
With this change, the z20x board FINALLY builds and links correctly with no errors.
Don't use MCU selection from compiler. It appears that we must compile ez80f92 code as ez80f91 so the comiler MCU selection is incorrect. Instead, use the selected CPU part from the configuration.
arch/z80/src/ez80/Toolchain.defs: Update some CFLAGS to match CFLAGS from ZDS-II IDE. Apparently, we must say that the CPU is an eZ80F91 event when compiler for eZ80F92.
boards/z80/ez80/z20x: Update linker scripts.