Attempt to service all interrupts pending in the PLIC's claim register. Ideally, this is more efficient than switching context for each interrupt received.
Provides two implementations:
- CSR_CYCLE: Cores which implement hardware performance monitoring.
- CSR_TIME: Uses the machine time registers.
Using the up_perf_xx bindings directory is more efficient than performing a nanosecond conversion on every gettime event.
Most tools used for compliance and SBOM generation use SPDX identifiers
This change brings us a step closer to an easy SBOM generation.
Signed-off-by: Alin Jerpelea <alin.jerpelea@sony.com>
1 Only the idle task can have the flag TCB_FLAG_CPU_LOCKED.
According to the code logic, btcb cannot be an idle task, so this check can be removed.
2 Optimized the preemption logic check and removed the call to nxsched_add_prioritized.
3 Speed up the scheduling time while avoiding the potential for
tasks to be moved multiple times between g_assignedtasks and g_readytorun.
Configuring NuttX and compile:
$ ./tools/configure.sh -l qemu-armv8a:nsh_smp
$ make
Running with qemu
$ qemu-system-aarch64 -cpu cortex-a53 -smp 4 -nographic \
-machine virt,virtualization=on,gic-version=3 \
-net none -chardev stdio,id=con,mux=on -serial chardev:con \
-mon chardev=con,mode=readline -kernel ./nuttx
Signed-off-by: hujun5 <hujun5@xiaomi.com>
Most tools used for compliance and SBOM generation use SPDX identifiers
This change brings us a step closer to an easy SBOM generation.
Signed-off-by: Alin Jerpelea <alin.jerpelea@sony.com>
Most tools used for compliance and SBOM generation use SPDX identifiers
This change brings us a step closer to an easy SBOM generation.
Signed-off-by: Alin Jerpelea <alin.jerpelea@sony.com>
There is a tiny possibility that when a process is started a trap is
taken which causes a context switch. This moves the kernel stack
unexpectedly and the task start logic no longer works.
Fix this by recording the initial context location, and use that to
trampoline into the user process with interrupts disabled. This ensures
the context stays intact AND the kernel stack is fully unwound before
the user process starts.
This patch unifies the extended context save/restore for RISC-V,
allowing the customized context save/restore to be used, for example,
the extended context in rv32m1.
Signed-off-by: Huang Qi <huangqi3@xiaomi.com>
Most tools used for compliance and SBOM generation use SPDX identifiers
This change brings us a step closer to an easy SBOM generation.
Signed-off-by: Alin Jerpelea <alin.jerpelea@sony.com>
Most tools used for compliance and SBOM generation use SPDX identifiers
This change brings us a step closer to an easy SBOM generation.
Signed-off-by: Alin Jerpelea <alin.jerpelea@sony.com>
After these wdog refactor:
We conducted a latency measurement using the rt-tests/cyclictest (commit cadd661) on an x86_64 NUC12 equipped with an i7-1255U processor and 16GB of LPDDR5 memory. The specific command used for this microbenchmark was cyclictest -q -l 100000 -h 30000, which is designed to assess the responsiveness of the cyclic timer.
The findings from our benchmark are summarized below, highlighting the minimum, median, and maximum latency values for each operating system tested:
Operating System Minimum Latency (us) Median Latency (us) Maximum Latency (us)
Linux 48 53 410
PreemptRT 6 57 148
Xenomai 53 53 64
NuttX 64 626 1212
NuttX (refactor) 1 1 3
In this table, "Min" indicates the shortest latency observed, "Median" represents the middle value of the latency distribution, and "Max" denotes the longest latency encountered.
The systems tested were as follows:
Linux: ACRN version 6.1.80 (commit f528146)
PreemptRT: Linux kernel 5.4.251 with the 5.4.254-rt85 patch applied
Xenomai: Linux kernel 5.4.251 patched with ipipe-core-5.4.239-x86-13
These results clearly demonstrate the varying performance of different operating systems in terms of timer latency, the refactored NuttX showing particularly low latency values.
Signed-off-by: ligd <liguiding1@xiaomi.com>
Now we have CONFIG_USEC_PER_TICK, and for our timer system, all the calculation used 'tick'.
And all the timespec should change to 'tick' before use wd_start(), so USEC2TICK() can NOT be avoided.
Then there must be an 'less then one tick' loss.
One resolution:
ticks++ anyway when wd_start(). But this will caused time expired more a tick.
Another resolution:
Change the testcase, and allow the following logic:
t1 = current_time();
sleep(3);
t2 = current_time();
allow: t2 - t1 >= 3;
(original test must be: t2- t1 > 3)
The original test think the time must be elapse-ing, and the (t2 - t1) must bigger then 3,
but in our system, we use 'tick' as the minimal wdog unit, then there must a precision loss.
Now we choose first resolution.
Signed-off-by: ligd <liguiding1@xiaomi.com>
This patch addresses an issue where the elapsed time was uncorrectly calculated.
Signed-off-by: ouyangxiangzhen <ouyangxiangzhen@xiaomi.com>
Signed-off-by: ligd <liguiding1@xiaomi.com>
For the nested interrupt, one thing should decleared:
We are in ISR context, but no meaning we are disabled the interrupts.
Signed-off-by: ligd <liguiding1@xiaomi.com>
This patch moved the g_wdtimernested to wd_start.c
Signed-off-by: ouyangxiangzhen <ouyangxiangzhen@xiaomi.com>
Signed-off-by: ligd <liguiding1@xiaomi.com>
If g_wdactivelist has been changed in the wdog callback, the list traversal with next pointer will cause problem.
Signed-off-by: ouyangxiangzhen <ouyangxiangzhen@xiaomi.com>
Signed-off-by: ligd <liguiding1@xiaomi.com>
This commit refactors the wdog module to use absolute time representation internally. The main improvements include:
1. Fixed recursive watchdog handling caused by calling wd_start within watchdog timeout callback function.
2. Simplified timer processing to improve performance and enhance code readability.
3. Improved accuracy of timers.
4. Reduced critical section and interrupt disable time, improving real-time performance.
Signed-off-by: ouyangxiangzhen <ouyangxiangzhen@xiaomi.com>
Signed-off-by: ligd <liguiding1@xiaomi.com>
The register context is not needed, the original idea was to provide
the user stack pointer for signal handler delivery, but the user stack
can be obtained via sp_el0 so the context registers are not needed.
SP0 is not stored upon exception entry anyways, so this code is just
completely redundant and wrong.
reason:
In SMP, when a context switch occurs, restore_critical_section is executed.
To reduce the time taken for context switching, we directly pass the required
parameters to restore_critical_section instead of acquiring them repeatedly.
Signed-off-by: hujun5 <hujun5@xiaomi.com>
reason:
In the SMP, when a context switch occurs, restore_critical_section is executed.
In order to reduce the time taken for context switching,
we inline the restore_critical_section function.
Given that restore_critical_section is small in size
and is called from only one location, inlining it does not increase the size of the image.
Signed-off-by: hujun5 <hujun5@xiaomi.com>
Most tools used for compliance and SBOM generation use SPDX identifiers
This change brings us a step closer to an easy SBOM generation.
Signed-off-by: Alin Jerpelea <alin.jerpelea@sony.com>
The vaddr field in TLBI means: Bits[55:12] of the virtual address to match.
This basically means the page offset of the virtual address, so the input
vaddr must be shifted to the page offset.
Reference TLBI VALE1IS register description from ARMv8-A reference manual.
The 12:0 bits in table descriptors are RES0 and AF is the 10th bit, so
it is not valid to set it in this case.
Fix this by moving AF to the common MMU_MT_NORMAL_FLAGS field
Make sure the user L1 page is updated to system memory when the kernel
mappings are copied.
Also, flush the I-cache when switching address environments.
Most tools used for compliance and SBOM generation use SPDX identifiers
This change brings us a step closer to an easy SBOM generation.
Signed-off-by: Alin Jerpelea <alin.jerpelea@sony.com>
Most tools used for compliance and SBOM generation use SPDX identifiers
This change brings us a step closer to an easy SBOM generation.
Signed-off-by: Alin Jerpelea <alin.jerpelea@sony.com>
According to rfc1112, section 7.2:
"An ICMP error message (Destination Unreachable, Time Exceeded, Parameter Problem, Source Quench, or Redirect) is
never generated in response to a datagram destined to an IP host group."
Signed-off-by: zhangshuai39 <zhangshuai39@xiaomi.com>