- A pre-built IDF bootloader is used by default;
- `ESP32S3_PARTITION_TABLE` requires the IDF bootloader to be built
from sources.
- Native MCUboot also can be used to boot the device. It will be
built from sources and depends on !ESP32S3_PARTITION_TABLE.
- A pre-built IDF bootloader is used by default;
- `ESP32S2_PARTITION_TABLE` requires the IDF bootloader to be built
from sources.
- Native MCUboot also can be used to boot the device. It will be
built from sources and depends on !ESP32S2_PARTITION_TABLE.
- A pre-built IDF bootloader is used by default;
- `ESP32_PARTITION_TABLE` requires the IDF bootloader to be built
from sources.
- Native MCUboot also can be used to boot the device. It will be
built from sources and depends on !ESP32_PARTITION_TABLE.
By integrating the Espressif`s HAL repository into the current
ESP32-S2 implementation on NuttX, it is possible to call functions
that makes it easier to setup the registers of the ESP32-S2,
enabling the usage of common Espressif drivers.
By integrating the Espressif`s HAL repository into the current
ESP32-S3 implementation on NuttX, it is possible to call functions
that make it easier to set up the registers of the ESP32-S3 and
enables the usage of common Espressif drivers. Please note that
Espressif's HAL repository was already being used for the Wi-Fi
driver. Then, this commit includes other source files to be used
by other drivers other than Wi-Fi and reorganize the build process.
The RMT (Remote Control) character driver allows to use the RMT
peripheral (usually, a one-wire peripheral dedicated to driving
IR remote control) as a character driver.
Please note that this perpiheral depends on the lower-half specific
driver implementation.
Once these messages are thrown during the system's bring-up, it is
advisable them to be output by the syslog considering the file
system initialization.
The SmartFS partition needs to be formatted before being mounted.
Otherwise, it would throw an error message. The error message now
contains a suggestion to format the partition when such an error
is detected.
1. Configurable mapping of virtual address to psram physical address
2. Access SPIRAM memory at high physical address through bank switching
Signed-off-by: chenwen@espressif.com <chenwen@espressif.com>
1. If CONFIG_ESP32S3_PHY_INIT_DATA_IN_PARTITION and CONFIG_ESP32S3_SUPPORT_MULTIPLE_PHY_INIT_DATA are enabled,
PHY initialization data (PHY initialization data is used for RF calibration) will be loaded from a partition.
2. The corresponding PHY init data type can be automatically switched according to the country code,
China's PHY init data bin is used by default, country code can be modified through the wapi command: wapi country <ifname> <country code>.
Signed-off-by: chenwen@espressif.com <chenwen@espressif.com>
This commit sets the BLE's interrupt as a IRAM-enabled interrupt,
which enables it to run during a SPI flash operation. This enables
us to create a cache to off-load semaphores and message queues
operations and treat them when the SPI flash operation is finished.
By doing that, we avoid packet losses during a SPI flash operation.
This commit provides an interface to register ISRs that run from
IRAM and keeps track of the non-IRAM interrupts. It enables, for
instance, to avoid disabling all the interrupts during a SPI flash
operation: IRAM-enabled ISRs are, then, able to run during these
operations.
It also makes the code look more similar to the ESP32-S3 SPI flash
implementation by creating a common `esp32_spiflash_init` that is
responsible to create the SPI flash operation tasks. The function
intended to initialize the SPI flash partions was, then, renamed to
`board_spiflash_init`.
During PSRAM initialization and flash operations, the Cache needs to be disabled.
So all data and code for the aforementioned scope is required to be placed in Internal RAM.
After https://github.com/apache/nuttx/pull/11007/ was merged, the
path for some files changed, requiring the linker to be fixed to
make it run from the internal memory once again.
Using up_textheap_memalign to allocate memory if arch support textheap
for loading section.
The default system heap does not support execution permissions,
so up_textheap_memalign allocation is required.
this patch can fix issue about #11043
update esp32 elf config:
remove -CONFIG_ARCH_USE_TEXT_HEAP=y becuase ARCH_CHIP_ESP32 select
ARCH_HAVE_TEXT_HEAP
Signed-off-by: dongjiuzhu1 <dongjiuzhu1@xiaomi.com>
- migrated /README are removed from /boards
- there are a lot of READMEs that should be further converted to rst.
At the moment they are moved to Documentation/platforms and included in rst files
This commit sets the BLE's interrupt as a IRAM-enabled interrupt,
which enables it to run during a SPI flash operation. This enables
us to create a cache to off-load semaphores and message queues
operations and treat them when the SPI flash operation is finished.
By doing that, we avoid packet losses during a SPI flash operation.
This commit provides an interface to register ISRs that run from
IRAM and keeps track of the non-IRAM interrupts. It enables, for
instance, to avoid disabling all the interrupts during a SPI flash
operation: IRAM-enabled ISRs are, then, able to run during these
operations.
The board-level GPIO support is different from the already existing
button and LEDC support because it enable us to register the GPIO
pins as devices in `/dev/gpioX`. Some applications are able to use
this interface to read and write the GPIO pins.
Documentation was added regarding its usage. Please check
`Documentation/platforms/xtensa/esp32s3/boards/esp32s3-devkit/index.rst`
Provide initial support for audio through the I2S peripheral to the
CS4344 audio codec on ESP32-S3-DevKitC-1 board.
Please check documentation for usage examples.
ESP32-S3 has only one 2.4 GHz ISM band RF module, which is shared
by Bluetooth and Wi-Fi, so Bluetooth can’t receive or transmit data
while Wi-Fi is receiving or transmitting data and vice versa.
Under such circumstances, ESP32-S3 uses the time-division
multiplexing method to receive and transmit packets.
- Added Wi-Fi related symbols to the kernel-space linker;
- Allocate more RAM to the kernel (to be useb by the Wi-Fi driver).
- Create a specific defconfig.
Instead of setting kernel/user space instruction and data ROM as
hard-coded values on linker, set them according to the max size
of the kernel image set by CONFIG_ESP32S3_KERNEL_IMAGE_SIZE. This
is done by making KIROM, UIROM, KDROM and UDROM dependent on the
kernel size value. Also, override CONFIG_NUTTX_USERSPACE config
according to CONFIG_ESP32S3_KERNEL_IMAGE_SIZE by using a custom
PREBUILD definition.
drivers/sensors/bme680.c: The bme680 driver
sensor.h: Added new type of sensor (Gas) to be used for retrieving the bme680 data
esp32/common/src/esp32_bme680.c: bme680 support on esp32
esp32/esp32-sparrow_kit/esp32_bringup.c: added support for the bme680
esp32/esp32-sparrow-kit/configs/nsh/defconfig: fixed defconfig ci problem
Signed-off-by: simonatoaca <simona.alexandra2000@gmail.com>
esp32-sparrow-kit: Fixed defconfig
Signed-off-by: simonatoaca <simona.alexandra2000@gmail.com>
Code is now C89 compatible
Signed-off-by: simonatoaca <simona.alexandra2000@gmail.com>
Reused already defined sensor data structs by registering every sub-sensor separately
Signed-off-by: simonatoaca <simona.alexandra2000@gmail.com>
Implemented suggestions
Signed-off-by: simonatoaca <simona.alexandra2000@gmail.com>
board/esp32s3/common is for common board driver. It should not
include a header file from specific board. so remove include
of esp32s3-devkit.h from some of the common driver source