Revert "Parallelize depend file generation"
This reverts commit d5b6ec450f.
parallel depend ddc does not significantly speed up compilation,
intermediately generated .ddc files can cause problems if compilation is interrupted unexpectedly
Signed-off-by: xuxin19 <xuxin19@xiaomi.com>
reason:
1 On different architectures, we can utilize more optimized strategies
to implement up_current_regs/up_set_current_regs.
eg. use interrupt registersor percpu registers.
code size
before
text data bss dec hex filename
262848 49985 63893 376726 5bf96 nuttx
after
text data bss dec hex filename
262844 49985 63893 376722 5bf92 nuttx
size change -4
Configuring NuttX and compile:
$ ./tools/configure.sh -l qemu-armv8a:nsh_smp
$ make
Running with qemu
$ qemu-system-aarch64 -cpu cortex-a53 -smp 4 -nographic \
-machine virt,virtualization=on,gic-version=3 \
-net none -chardev stdio,id=con,mux=on -serial chardev:con \
-mon chardev=con,mode=readline -kernel ./nuttx
Signed-off-by: hujun5 <hujun5@xiaomi.com>
I recently imported NuttX version 6.0 (and nsh) into a Microchip
Studio project [1] on Windows to figure out what was going wrong with
the avr32dev1 build. I also briefly checked NuttX version 10.
I worked with the assumption that the avr32 (avr32dev1) specific
changes to the codebase were minimal across NuttX releases.
For the initial proof of concept I used Microchip Studio version 7.0
(with the recent Microchip's ASF updates). I use avr32-gcc (4.4.7)
hosted here [2] for building NuttX for avr32dev1 on GNU/Linux.
Even with the Microchip Studio project, I had initial debug problems
with just stepping through the code a line at a time. I had to bring
in crt0, a trampoline stub and the linker file from one of my older
projects to really build on the suspicion I had with the linker file.
Perhaps an older version of avr32-gcc did something differently. I am
not sure about this. I used avr32-objdump to see the output sections
of the generated elf file. I just had to tweak the linker script to
ensure correct linking of the sections.
With those changes, I was able to inspect the UART sections within
NuttX Microchip Studio project.
Second important change: the transmit pin: I had to reassign the pin
to see the nsh console.
These are the currently assigned UART pins:
RX: PA_24 -> Physical IC pin 59
TX: PB_02 -> Physical IC pin 24
For the avr32dev1 board, they are pins: J1 (berg pin 28) and J2 (berg
pin 10).
In addition, the PR fixes silly compilation problems with avr32dev1.
I have tested the nsh build with my avr32dev1 boards. I used Atmel ICE
to program one of them (flash at 0x80000000) and dfu-programmer to
test my other board (flash at 0x80002000). The other RS-232 parameters
are the same as they were.
References:
[1]: https://github.com/ramangopalan/nuttx_avr32dev1
[2]: https://github.com/ramangopalan/avr32-gnu-toolchain-linux_x86_64
Newly added logging in `sched/task_exit.c` obsoletes the existing
ones in `arch/up_exit()`, thus remove the latter to reduce duplications.
Signed-off-by: Yanfeng Liu <yfliu2008@qq.com>
When supporting high-priority interrupts, updating the
g_running_tasks within a high-priority interrupt may be
cause problems. The g_running_tasks should only be updated
when it is determined that a task context switch has occurred.
Signed-off-by: zhangyuan21 <zhangyuan21@xiaomi.com>
to avoid the infinite recusive dispatch:
*0 myhandler (signo=27, info=0xf3e38b9c, context=0x0) at ltp/testcases/open_posix_testsuite/conformance/interfaces/sigqueue/7-1.c:39
*1 0x58f1c39e in nxsig_deliver (stcb=0xf4e20f40) at signal/sig_deliver.c:167
*2 0x58fa0664 in up_schedule_sigaction (tcb=0xf4e20f40, sigdeliver=0x58f1bab5 <nxsig_deliver>) at sim/sim_schedulesigaction.c:88
*3 0x58f19907 in nxsig_queue_action (stcb=0xf4e20f40, info=0xf4049334) at signal/sig_dispatch.c:115
*4 0x58f1b089 in nxsig_tcbdispatch (stcb=0xf4e20f40, info=0xf4049334) at signal/sig_dispatch.c:435
*5 0x58f31853 in nxsig_unmask_pendingsignal () at signal/sig_unmaskpendingsignal.c:104
*6 0x58f1ca09 in nxsig_deliver (stcb=0xf4e20f40) at signal/sig_deliver.c:199
*7 0x58fa0664 in up_schedule_sigaction (tcb=0xf4e20f40, sigdeliver=0x58f1bab5 <nxsig_deliver>) at sim/sim_schedulesigaction.c:88
*8 0x58f19907 in nxsig_queue_action (stcb=0xf4e20f40, info=0xf4049304) at signal/sig_dispatch.c:115
*9 0x58f1b089 in nxsig_tcbdispatch (stcb=0xf4e20f40, info=0xf4049304) at signal/sig_dispatch.c:435
*10 0x58f31853 in nxsig_unmask_pendingsignal () at signal/sig_unmaskpendingsignal.c:104
*11 0x58f1ca09 in nxsig_deliver (stcb=0xf4e20f40) at signal/sig_deliver.c:199
*12 0x58fa0664 in up_schedule_sigaction (tcb=0xf4e20f40, sigdeliver=0x58f1bab5 <nxsig_deliver>) at sim/sim_schedulesigaction.c:88
*13 0x58f19907 in nxsig_queue_action (stcb=0xf4e20f40, info=0xf40492d4) at signal/sig_dispatch.c:115
*14 0x58f1b089 in nxsig_tcbdispatch (stcb=0xf4e20f40, info=0xf40492d4) at signal/sig_dispatch.c:435
*15 0x58f31853 in nxsig_unmask_pendingsignal () at signal/sig_unmaskpendingsignal.c:104
*16 0x58f1ca09 in nxsig_deliver (stcb=0xf4e20f40) at signal/sig_deliver.c:199
*17 0x58fa0664 in up_schedule_sigaction (tcb=0xf4e20f40, sigdeliver=0x58f1bab5 <nxsig_deliver>) at sim/sim_schedulesigaction.c:88
*18 0x58f19907 in nxsig_queue_action (stcb=0xf4e20f40, info=0xf40492a4) at signal/sig_dispatch.c:115
*19 0x58f1b089 in nxsig_tcbdispatch (stcb=0xf4e20f40, info=0xf40492a4) at signal/sig_dispatch.c:435
*20 0x58f31853 in nxsig_unmask_pendingsignal () at signal/sig_unmaskpendingsignal.c:104
*21 0x58f1ca09 in nxsig_deliver (stcb=0xf4e20f40) at signal/sig_deliver.c:199
*22 0x58fa0664 in up_schedule_sigaction (tcb=0xf4e20f40, sigdeliver=0x58f1bab5 <nxsig_deliver>) at sim/sim_schedulesigaction.c:88
*23 0x58f19907 in nxsig_queue_action (stcb=0xf4e20f40, info=0xf4049274) at signal/sig_dispatch.c:115
*24 0x58f1b089 in nxsig_tcbdispatch (stcb=0xf4e20f40, info=0xf4049274) at signal/sig_dispatch.c:435
*25 0x58f31853 in nxsig_unmask_pendingsignal () at signal/sig_unmaskpendingsignal.c:104
*26 0x58f1ca09 in nxsig_deliver (stcb=0xf4e20f40) at signal/sig_deliver.c:199
*27 0x58fa0664 in up_schedule_sigaction (tcb=0xf4e20f40, sigdeliver=0x58f1bab5 <nxsig_deliver>) at sim/sim_schedulesigaction.c:88
*28 0x58f19907 in nxsig_queue_action (stcb=0xf4e20f40, info=0xf4049244) at signal/sig_dispatch.c:115
*29 0x58f1b089 in nxsig_tcbdispatch (stcb=0xf4e20f40, info=0xf4049244) at signal/sig_dispatch.c:435
*30 0x58f31853 in nxsig_unmask_pendingsignal () at signal/sig_unmaskpendingsignal.c:104
*31 0x58f1ca09 in nxsig_deliver (stcb=0xf4e20f40) at signal/sig_deliver.c:199
Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
1. Get the value of sp from dump regs when an exception occurs,
to avoid getting the value of fp from up_getsp and causing
incomplete stack printing.
2. Determine which stack the value belongs to based on the value
of SP to avoid false reports of stack overflow
Signed-off-by: zhangyuan21 <zhangyuan21@xiaomi.com>
It takes about 10 cycles to obtain the task list according to the task
status. In most cases, we know the task status, so we can directly
add the task from the specified task list to reduce time consuming.
It takes about 10 cycles to obtain the task list according to the task
status. In most cases, we know the task status, so we can directly
delete the task from the specified task list to reduce time consuming.
In the past, header file paths were generated by the incdir command
Now they are generated by concatenating environment variables
In this way, when executing makefile, no shell command will be executed,
it will improve the speed of executing makfile
Signed-off-by: yinshengkai <yinshengkai@xiaomi.com>