The SD boot loader was not satisfactory because 1) the SD slot is on an optional board and, hence, cannot be part of a fundamental solution. And 2) it is too big.
The only storage on borard is the Winbond W25 SPI-bsed FLASH. This commit adds support for a bootload to 1) read code in HEX format from a serial port and write it to the W25 FLASH, or 2) read code in binary form from the W25 FLASH into SRAM and execute the loaded program.
boards/z80/ez80/z20x/configs: Added w25boot configuration
boards/z80/ez80/z20x/src: Add bootloader logic, w25_main.c. Add logic to manage shared SRAM memory map so that the loaded program does not clobber the bootloader memory. Add logic to recover the bootloader memory into the heap after the loaded program as started.
boards/z80/ez80/z20x/scripts: Rework scripts and configuration to support a bootloader and program build. The boolloader cannot use all of SRAM; the program must not clobber the SRAM region used by the bootloader.
board/z80/ez80/*/scripts/Make.defs: Fix optimization definition use in assembly flags. It was using the compiler optimization settings instead of the assembler optimization settings. Hence, enabling optimization would could cause assembler command line errors.
arch/z80/src/ez80/Toolchain.defs: Back out some work arounds. Now compiler optimization flags can again set set without assembler command line errors.
boards/z80/ez80/z20x/README.txt: Trivial update to size/optimization discussion.
The eZ80F92 interrupt controller is very different from the eZ80F91. The eZ80F91 has:
1. Four byte interrupt vectors
2. The vector base address register is 16-bit so the vector table can lie in RAM
Whereas the eZ80F92 has:
1. Two byte interrupt vectors
2. An 8-bit vector base address
This means that the vectors must lie in the first 16-bits of FLASH and there must be a "trampoline" to get to interrupt handlers outside of the first 64-Kb of FLASH.
arch/z80/src/ez80/Toolchain.defs: Correct some CFLAGS when optimization suppressed.
arch/z80/src/ez80/Kconfig arch/z80/src/ez80/ez80_emac.c: Remove configuration option for selecting EMAC RAM address. This is duplicated and possibly conflicting. The correct address for the RAM is provided in the linker command file. The RAM should be configured once and using this single definitions.
arch/z80/src/ez80/ez80_startup.asm and arch/z80/src/ez80/ez80f9*_init.asm. Move RAM and FLAH intialization out of MCU-specific logic to common start-up logic. We cannot call any functions until SRAM is initialized and the stack is properly initialized because the return address is stored on the stack. Use internal SRAM for the IDLE stack to avoid the chicken'n'egg problem.
boards/z80/ez80/z20x/configs/sdboot/sdboot.zdsproj: Discuss build environments.
These makefiles set the the ZiLOG runtime libraries for the eZ80 parts. The setup was, however, conditioned on CONFIG_ARCH_EZ80_EZ80F91 and, so, was not working for the eZ80F92 part (CONFIG_ARCH_EZ80_EZ80F92).
With this change, the z20x board FINALLY builds and links correctly with no errors.
Don't use MCU selection from compiler. It appears that we must compile ez80f92 code as ez80f91 so the comiler MCU selection is incorrect. Instead, use the selected CPU part from the configuration.
arch/z80/src/ez80/Toolchain.defs: Update some CFLAGS to match CFLAGS from ZDS-II IDE. Apparently, we must say that the CPU is an eZ80F91 event when compiler for eZ80F92.
boards/z80/ez80/z20x: Update linker scripts.
* tools/zds/zds_Config.mk: Move boards/z80/ez80/scripts/eZ80_Config.mk to tools/zds/zds_Config.mk where it can be shared by other ZDS-II platforms.
* boards/z16/z16f: Duplicate changes for new ZDS-II support from ez80
* boards/z80/z8: Duplicate changes for new ZDS-II support from ez80
* arch/z16/src/z16f/Toolchain.defs: Create required Toolchain.defs file for Z16f
arch/z80/arc/ez80/Toolchain.sh: Move more common toolchain definitions from Make.defs.
boards/z80/ez80/scripts/eZ80_Config.mk: Move common defines that override tools/Config.mk to this new file.
This does not solve the ez80 build problem yet but does assure that when the solution is in place, it will automatically apply to all present and future ez80 configurations.
I was over-zealous in arch/z80/src/ez80/ez80f91_handlers.asm. I added space separatros around the '+' operators. Turns out that the ZDS-II assembler can't handle the spaces in that context.
The ez80f92 is similar to the currently supported ez80f91 except that is:
1. Has no PLL and has a maximum CPU frequency of only 20MHz
2. Has no Ethernet controller
3. Timers are different
4. Has no GPIO Port A
5. Timers are different
6. It comes in a smaller package
and other small differences.
This provided the architecture (only) support for the forthcoming z20x port.
And remove syslog_init_e because all initialization is later now and we don't
distinguish the initialition phase anymore after ramlog don't need special
initialize.
Because we can get the same function by CONSOLE_SYSLOG/syslog_console_init.
BTW, it isn't a good choice to use g_ramlogfops as /dev/console since nsh
will read back what it send out which will surprise most people.
it doesn't make sense that iob initialization is in up_initialize
but other memory components initialization is called in nx_start
Change-Id: Id43aeaa995f340c5943f59a0067a483ff3ac34a2
Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
To ensure size_t same as toolchain definition in the first place and rename CXX_NEWLONG to ARCH_SIZET_LONG. The change also check whether __SIZE_TYPE__ exist before CONFIG_ARCH_SIZET_LONG so our definition can align with toolchain(gcc/clang) definition automatically.
Call xxx_timer_initialize from clock subsystem to make timer ready for use as soon as possiblei and revert the workaround:
commit 0863e771a9
Author: Gregory Nutt <gnutt@nuttx.org>
Date: Fri Apr 26 07:24:57 2019 -0600
Revert "sched/clock/clock_initialize.c: clock_inittime() needs to be done with CONFIG_SCHED_TICKLESS and clock_initialize should skip clock_inittime() for external RTC case since the RTC isn't ready yet."
This reverts commit 2bc709d4b9.
Commit 2bc709d4b9 was intended to handle the case where up_timer_gettime may not start from zero case. However, this change has the side-effect of breaking every implementation of tickless mode: After this change the tickless timer structures are used before they are initialized in clock_inittime(). Initialization happens later when up_initialize is called() when arm_timer_initialize().
Since the tickless mode timer is very special, one solution might be to
1. Rename xxx_timer_initialize to up_timer_initialize
2 Move up_timer_initialize to include/nuttx/arch.h
3. Call it from clock subsystem instead up_initialize
Basically, this change make timer initialization almost same as rtc initialization(up_rtc_initialize).
For now, however, we just need to revert the change.
Gregory Nutt <gnutt@nuttx.org>
Run all .c and .h files modified in this PR through nxstyle and correct all coding standard problems.
Xiang Xiao <xiaoxiang@xiaomi.com>
Remove TIME_EXTENDED option to more conform C standard
Note: the code/data size increment is small
* Simplify EINTR/ECANCEL error handling
1. Add semaphore uninterruptible wait function
2 .Replace semaphore wait loop with a single uninterruptible wait
3. Replace all sem_xxx to nxsem_xxx
* Unify the void cast usage
1. Remove void cast for function because many place ignore the returned value witout cast
2. Replace void cast for variable with UNUSED macro
Squashed commit of the following:
Author: Gregory Nutt <gnutt@nuttx.org>
Ran nxstyle against many of the affected files. But this job was too big for today. Many of the network drivers under arch are highly non-compiant and generate many, many faults from nxstyle. Those will have to be visited again another day.
Author: Xiang Xiao <xiaoxiang@xiaomi.com>
This effects all network drivers as well as timing related portions of net/: devif_poll_tcp_timer shouldn't be skipped in the multiple card case. devif_timer will be called multiple time in one period if the multiple card exist, the elapsed time calculated for the first callback is right, but the flowing callback in the same period is wrong(very short) because the global variable g_polltimer is used in the calculation. So let's pass the delay time to devif_timer and remove g_polltimer.
Move boards to boards folder
* boards: rename configs folder to boards
This is the proposed layout after the change:
boards: - folder containing board folders
<board>: - name of each board
drivers: - extra drivers specific for platform
include: - header files for the boars
scripts: - extra scripts specific for platform
src: - board specific code
tools: - extra tools specific for platform
<config>: - board specific configuration(s)
Note:
<xxx> names are dependent on platform
This is a logical change to aim to the arch layout but this is a
huge change it should be done in several steps to lower the risk.
Signed-off-by: Alin Jerpelea <alin.jerpelea@sony.com>
* Kconfig: replace configs with boards
The change is needed after the path change
Signed-off-by: Alin Jerpelea <alin.jerpelea@sony.com>
* Makefile: replace configs with boards
The change is needed after the path change
Signed-off-by: Alin Jerpelea <alin.jerpelea@sony.com>
* Makefile.*: replace configs with boards
The change is needed after the path change
Signed-off-by: Alin Jerpelea <alin.jerpelea@sony.com>
* Make.defs: replace configs with boards
The change is needed after the path change
Signed-off-by: Alin Jerpelea <alin.jerpelea@sony.com>
* .sh: replace configs with boards
The change is needed after the path change
Signed-off-by: Alin Jerpelea <alin.jerpelea@sony.com>
* .mk: replace configs with boards
The change is needed after the path change
Signed-off-by: Alin Jerpelea <alin.jerpelea@sony.com>
* .c & .h: replace configs with boards
The change is needed after the path change
Signed-off-by: Alin Jerpelea <alin.jerpelea@sony.com>
* .bat: replace configs with boards
The change is needed after the path change
Signed-off-by: Alin Jerpelea <alin.jerpelea@sony.com>
Approved-by: Gregory Nutt <gnutt@nuttx.org>
Squashed commit of the following:
configs/makerlisp/scripts/makerlisp_ram.linkcmd: Fixup .RESET and .STARTUP. These need to be redirected to RAM since they default to ROM.
configs/makerlisp/scripts/makerlisp_ram.linkcmd: Restore some settings that should be unnecessary but are really required by the current implementation.
configs/makerlisp: Rename nsh configuratinon to nsh_flash. Create new configuration, nsh_ram, that is identical to the nsh_flash configuration except that the code runs out of external SRAM.
configs/makerlisp/scripts: Add a linker script to support execution from RAM.