This defconfig is an example of the recorded stack and it became
faulty recently after the implementation of the `up_current_regs`
functions. The `noinstrument_function` directive must be used for
preventing it from being looped when instrumentation is enabled.
Also, this commit places `sched/instrument/stack_record.c` in IRAM.
This commit ensures that RTC data is properly allocated in the RTC
segment in the linker. This fixes the reported problem about using
the legacy bootloader and RTC.
Update internal reference to get the most updated Espressif's
libraries. Those libraries are based on branch `release/v5.1` of
the ESP-IDF and include `v5.1.4` version of it.
arch/xtensa/src/esp32s3/hardware/esp32s3_sdmmc.h|esp32s3_soc.h,
boards/xtensa/esp32s3/common/include/esp32s3_board_sdmmc.h,
boards/xtensa/esp32s3/common/src/Make.defs|esp32s3_board_sdmmc.c,
boards/xtensa/esp32s3/esp32s3-devkit/src/esp32s3_bringup.c: add SD/mmc driver
Support 1-bit bus width and 4-bit bus width. Support eMMC high speed SDR mode.
Support transfer data with DMA. Support SD clock frequency up to 40MHZ.
Signed-off-by: Yinzhe Wu <Yinzhe.Wu@sony.com>
Reviewed-by: Yuezhang Mo <Yuezhang.Mo@sony.com>
Reviewed-by: Jacky Cao <Jacky.Cao@sony.com>
Tested-by: Yinzhe Wu <Yinzhe.Wu@sony.com>
The ESP32-S3-Korvo-2 is a multimedia development board based on the
ESP32-S3 chip. It is equipped with a two-microphone array which is
suitable for voice recognition and near/far-field voice wake-up
applications. The board integrates multiple peripherals such as
LCD, camera, and microSD card. It also supports JPEG video stream
processing. With all of its outstanding features, the board is an
ideal choice for the development of low-cost and low-power
network-connected audio and video products.
arch/xtensa: add support for capture driver on ESP32 and ESP32|S3|
Squashed:
Initial settings for MCPWM Capture on board level
Created lower half files - compilation ok
Using capture debug features. Simple example on fops works
Successful duty and freq calculation
Documentation update
Fixed and added interupt capabilities for all 3 capture channels
Cleaned defconfig
Renamed macros, added S3 options and moved arch source to common dir
Added support for ESP32S3
Added capture example to defconfig and renamed
Basic bring up ready. New Kconfig options for motor.
Good motor registration
Working on enabling pwm generators
Working on enabling pwm generators
Added fops functions
Success on PWM 50%
stable pwm operation for bdc
Added loopback option for testing
Improved rules on fsm
Working motor direction control
Testing new ISR for fault handling
Issues on fault ISR
Removed fault implementation (not working)
Added support for esp32s3
Documentation improvements
Added default motor spin direction
Added parameter change while running
Review fixes
arch/xtensa: add support for fault signal on motor control
Squashed:
Initial settings for MCPWM Capture on board level
Created lower half files - compilation ok
Using capture debug features. Simple example on fops works
Successful duty and freq calculation
Documentation update
Fixed and added interupt capabilities for all 3 capture channels
Cleaned defconfig
Renamed macros, added S3 options and moved arch source to common dir
Added support for ESP32S3
Added capture example to defconfig and renamed
Basic bring up ready. New Kconfig options for motor.
Good motor registration
Working on enabling pwm generators
Working on enabling pwm generators
Added fops functions
Success on PWM 50%
stable pwm operation for bdc
Added loopback option for testing
Improved rules on fsm
Working motor direction control
Testing new ISR for fault handling
Issues on fault ISR
Removed fault implementation (not working)
Added support for esp32s3
Documentation improvements
Added default motor spin direction
Added parameter change while running
Got responsive fault indicator
Working brakes - still need to work on starting isr
Fixed single-time ISR initializiation
Working soft brake on fault
Improved KConfig for BDC and BLDC
Kconfig fixed at board level
Move and unify map_rom_segments function called when starting
Simple Boot and MCUboot compatible images.
Signed-off-by: Almir Okato <almir.okato@espressif.com>
Squashed:
Initial settings for MCPWM Capture on board level
Created lower half files - compilation ok
Using capture debug features. Simple example on fops works
Successful duty and freq calculation
Documentation update
Fixed and added interupt capabilities for all 3 capture channels
Cleaned defconfig
Renamed macros, added S3 options and moved arch source to common dir
Added support for ESP32S3
Added capture example to defconfig and renamed
The Simple Boot feature for Espressif chips is a method of booting
that doesn't depend on a 2nd stage bootloader. Its not the
intention to replace a 2nd stage bootloader such as MCUboot and
ESP-IDF bootloader, but to have a minimal and straight-forward way
of booting, and also simplify the building.
This commit also removes deprecated code and makes this bootloader
configuration as default for esp32s2 targets and removes the need
for running 'make bootloader' command for it.
Signed-off-by: Almir Okato <almir.okato@espressif.com>
The Simple Boot feature for Espressif chips is a method of booting
that doesn't depend on a 2nd stage bootloader. Its not the
intention to replace a 2nd stage bootloader such as MCUboot and
ESP-IDF bootloader, but to have a minimal and straight-forward way
of booting, and also simplify the building.
This commit also removes deprecated code and makes this bootloader
configuration as default for esp32s3 targets and removes the need
for running 'make bootloader' command for it.
Other related fix, but not directly to Simple Boot:
- Instrumentation is required to run from IRAM to support it during
initialization. `is_eco0` function also needs to run from IRAM.
- `rtc.data` section placement was fixed.
- Provide arch-defined interfaces for efuses, in order to decouple
board config level from arch-defined values.
Signed-off-by: Almir Okato <almir.okato@espressif.com>
By integrating the Espressif`s HAL repository into the current
ESP32-S3 implementation on NuttX, it is possible to call functions
that make it easier to set up the registers of the ESP32-S3 and
enables the usage of common Espressif drivers. Please note that
Espressif's HAL repository was already being used for the Wi-Fi
driver. Then, this commit includes other source files to be used
by other drivers other than Wi-Fi and reorganize the build process.
Once these messages are thrown during the system's bring-up, it is
advisable them to be output by the syslog considering the file
system initialization.
The SmartFS partition needs to be formatted before being mounted.
Otherwise, it would throw an error message. The error message now
contains a suggestion to format the partition when such an error
is detected.
During PSRAM initialization and flash operations, the Cache needs to be disabled.
So all data and code for the aforementioned scope is required to be placed in Internal RAM.
After https://github.com/apache/nuttx/pull/11007/ was merged, the
path for some files changed, requiring the linker to be fixed to
make it run from the internal memory once again.
This commit sets the BLE's interrupt as a IRAM-enabled interrupt,
which enables it to run during a SPI flash operation. This enables
us to create a cache to off-load semaphores and message queues
operations and treat them when the SPI flash operation is finished.
By doing that, we avoid packet losses during a SPI flash operation.
This commit provides an interface to register ISRs that run from
IRAM and keeps track of the non-IRAM interrupts. It enables, for
instance, to avoid disabling all the interrupts during a SPI flash
operation: IRAM-enabled ISRs are, then, able to run during these
operations.
Provide initial support for audio through the I2S peripheral to the
CS4344 audio codec on ESP32-S3-DevKitC-1 board.
Please check documentation for usage examples.
- Added Wi-Fi related symbols to the kernel-space linker;
- Allocate more RAM to the kernel (to be useb by the Wi-Fi driver).
- Create a specific defconfig.
Instead of setting kernel/user space instruction and data ROM as
hard-coded values on linker, set them according to the max size
of the kernel image set by CONFIG_ESP32S3_KERNEL_IMAGE_SIZE. This
is done by making KIROM, UIROM, KDROM and UDROM dependent on the
kernel size value. Also, override CONFIG_NUTTX_USERSPACE config
according to CONFIG_ESP32S3_KERNEL_IMAGE_SIZE by using a custom
PREBUILD definition.
board/esp32s3/common is for common board driver. It should not
include a header file from specific board. so remove include
of esp32s3-devkit.h from some of the common driver source
Whenever a SPI flash operation is going to take place, it's
necessary to disable both the instruction and data cache. In order
to avoid the other CPU (if SMP is enabled) to retrieve data from
the SPI flash, it needs to be paused until the current SPI flash
operation finishes. All the code that "pauses" the other CPU (in
fact, the CPU spins until `up_cpu_resume` is called) needs to run
from the instruction RAM.
Instead of using Espressif's emulated NVS to save Wi-Fi data, use
`wapi`s wireless configure initialization mechanism for saving
Wi-Fi data. It 1) avoids creating a specific storage partition
just to save Wi-Fi data (ESP32-S3's storage partition is used
instead); 2) avoids initialization problems of the emulated NVS
when SMP is enabled (the Wi-Fi driver tries to initialize it before
the actual partition is initialized); and 3) enables reconnecting
using `wapi reconnect` command and connect the device automatically
on bringup if `CONFIG_NETUTILS_NETINIT` is selected.