1. as we can use fork to implement vfork, so we rename the vfork to
fork, and use the fork method as the base to implement vfork method
2. create the vfork function as a libc function based on fork
function
Signed-off-by: guoshichao <guoshichao@xiaomi.com>
Fix goldfish build toolchain math library error:
/mnt/yang/vela_Goldfish/nuttx/include/libcxx/cmath:454:9: error: 'nexttowardf' has not been declared in '::'
454 | using ::nexttowardf;
| ^~~~~~~~~~~
/mnt/yang/vela_Goldfish/nuttx/include/libcxx/cmath:472:9: error: 'acosl' has not been declared in '::'
472 | using ::acosl;
| ^~~~~
/mnt/yang/vela_Goldfish/nuttx/include/libcxx/cmath:473:9: error: 'asinl' has not been declared in '::'
473 | using ::asinl;
| ^~~~~
Signed-off-by: yanghuatao <yanghuatao@xiaomi.com>
armv8-m/arm_securefault.c:69:3: warning: implicit declaration of function 'syslog_flush'; did you mean 'syslog_like'? [-Wimplicit-function-declaration]
1. Update all CMakeLists.txt to adapt to new layout
2. Fix cmake build break
3. Update all new file license
4. Fully compatible with current compilation environment(use configure.sh or cmake as you choose)
------------------
How to test
From within nuttx/. Configure:
cmake -B build -DBOARD_CONFIG=sim/nsh -GNinja
cmake -B build -DBOARD_CONFIG=sim:nsh -GNinja
cmake -B build -DBOARD_CONFIG=sabre-6quad/smp -GNinja
cmake -B build -DBOARD_CONFIG=lm3s6965-ek/qemu-flat -GNinja
(or full path in custom board) :
cmake -B build -DBOARD_CONFIG=$PWD/boards/sim/sim/sim/configs/nsh -GNinja
This uses ninja generator (install with sudo apt install ninja-build). To build:
$ cmake --build build
menuconfig:
$ cmake --build build -t menuconfig
--------------------------
2. cmake/build: reformat the cmake style by cmake-format
https://github.com/cheshirekow/cmake_format
$ pip install cmakelang
$ for i in `find -name CMakeLists.txt`;do cmake-format $i -o $i;done
$ for i in `find -name *\.cmake`;do cmake-format $i -o $i;done
Co-authored-by: Matias N <matias@protobits.dev>
Signed-off-by: chao an <anchao@xiaomi.com>
This small fix ensures all DMA pointers are correctly reseted during
DMA setup (when the driver is opened). Without this there could be rare
occurrence of driver pointer to incorrect (invalidate) DMA buffer and thus
saving incorrect characters to upper layer.
Signed-off-by: Michal Lenc <michallenc@seznam.cz>
Circular buffer does not use DMA linked list therefore function
sam_freelinklist() cannot be called as it would fail on assertion (csa
not defined). Peripheral that calls DMA should care of buffer invalidation
instead.
Signed-off-by: Michal Lenc <michallenc@seznam.cz>
Port based on arch/arm/nrf53.
Modem not fully supported yet. At the moment, initialization and AT interface work.
Sockets and GNSS interface will be added later.
Reference:https://xpack.github.io/blog/2022/05/18/riscv-none-elf-gcc-v12-1-0-2-released/
RISC-V ISA updates
Compared to previous releases, starting from 12.x, the compiler implements the new RISC-V ISA, which introduces an incompatibility issue, and builds might throw error messages like unrecognized opcode csrr.
The reason is that csr read/write (csrr*/csrw*) instructions and fence.i instruction were separated from the I extension, becoming two standalone extensions: Zicsr and Zifencei.
The solution is to add _zicsr and/or _zifencei to the -march option, e.g. -march=rv32imac becomes -march=rv32imac_zicsr_zifencei.
Initialize ICACHE way with correct mask.
Initialize scratchpad with constant g_init_marker as it has been done in HSS
Signed-off-by: Jani Paalijarvi <jani.paalijarvi@unikie.com>
Summary:
- I noticed that arm64_gic_raise_sgi() is not implemented for
GICv2 which is used for SMP + hypervisor such as qemu + kvm.
- This commit fixes this issue
Impact:
- None
Testing:
- Tested with qemu-7.1 + kvm (linux) and qemu-7.1 + hvf (macOS)
Signed-off-by: Masayuki Ishikawa <Masayuki.Ishikawa@jp.sony.com>
Summary:
- I noticed that pcsi version can not be obtained with qemu + kvm.
- Also, pci_detect hangs with qemu + hvf.
- This commit fixes this issue by using hvc (hypervisor call).
Impact:
- None
Testing:
- Tested with qemu-7.1 + kvm (linux) and qemu-7.1 + hvf (macOS)
Signed-off-by: Masayuki Ishikawa <Masayuki.Ishikawa@jp.sony.com>
Summary:
- During testing with qemu + kvm, I noticed that nuttx hangs
when setting cntfrq_el0. With qemu + kvm, it starts from
EL1 because we can not specify virtualization=on
- However, I noticed that it works without setting cntfrq_el0
- This commit fixes this issue
Impact:
- None
Testing:
- Tested with qemu-7.1 (both with kvm and without kvm)
- NOTE: to work with kvm, GICv2 must be used.
Signed-off-by: Masayuki Ishikawa <Masayuki.Ishikawa@jp.sony.com>
CONFIG_ARM_TOOLCHAIN_GNU_EABI build got broken when -mthumb option was moved
from ARCHCPUFLAGS to ARCHOPTIMIZATION variable:
arm-none-eabi-ld: error: .../build/nuttx/nuttx uses VFP register arguments, /usr/lib/gcc/arm-none-eabi/5.4.1/libgcc.a(_fixunsdfdi.o) does not
arm-none-eabi-ld: failed to merge target specific data of file /usr/lib/gcc/arm-none-eabi/5.4.1/libgcc.a(_fixunsdfdi.o)
arm-none-eabi-ld: error: .../build/nuttx/nuttx uses VFP register arguments, /usr/lib/gcc/arm-none-eabi/5.4.1/libgcc.a(_udivmoddi4.o) does not
arm-none-eabi-ld: failed to merge target specific data of file /usr/lib/gcc/arm-none-eabi/5.4.1/libgcc.a(_udivmoddi4.o)
Changes the executable type built against the `make export` target fully linked by default. This greatly improves performance when loading applications, as relocations no longer need to be processed.
This change allows boards to define an additional kconfig option, which specifies the final link format of application executables.
By selecting `CONFIG_BINFMT_ELF_RELOCATABLE`, and providing an appropriate linker script, applications can be fully linked, removing the need to process relocations.
In the default configuration, the Litex ethernet peripheral contains two RX and two TX buffers. The active buffer for the peripheral should be swapped as soon as possible, in order to reduce packet loss.
This modification acknowledges the receive buffer as soon as the pending data is copied into the NuttX device data buffer. Improving reliability under heavy load.
since symbols defined in arch/elf.h is also used in other case, for example:
CC: pthread/pthread_testcancel.c machine/arm/gnu_unwind_find_exidx.c:32:8: error: unknown type name '__EIT_entry'
32 | static __EIT_entry *__exidx_start_elf;
| ^~~~~~~~~~~
Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
The following macros
__ARCH_ARM_SRC_STM32F7_HARDWARE_STM32F74XX75XX_FLASH_H
__ARCH_ARM_SRC_STM32L4_HARDWARE_STM32L4X6XX_RCC_H
are used in other header files.
Signed-off-by: Mingjie Shen <shen497@purdue.edu>
When asserting, automatically analyze whether
there is a deadlock in the thread, and if there
is a deadlock, print out the deadlocked thread.
The principle is to analyze whether there is
a lock ring through the tcb holder.
Signed-off-by: anjiahao <anjiahao@xiaomi.com>
- Save the FPU registers into the tcb so they don't get lost if the stack
frame for xcp.regs moves (as it does)
- Handle interger and FPU register save/load separately
- Integer registers are saved/loaded always, like before
- FPU registers are only saved during a context switch:
- Save ONLY if FPU is dirty
- Restore always if FPU has been used (not in FSTATE_OFF, FSTATE_INIT)
- Remove all lazy-FPU related logic from the macros, it is not needed
Why? The tcb can contain info that is needed by the context switch
routine. One example is lazy-FPU handling; the integer registers can
be stored into the stack, because they are always stored & restored.
Lazy-FPU however needs a non-volatile location to store the FPU registers
as the save feature will skip saving a clean FPU, but the restore must
always restore the FPU registers if the thread uses FPU.
This adds support for the CoreMMC v3.1 FPGA driver as described
in Microchip Handbook HB0510. The driver doesn't support DMA.
Signed-off-by: Eero Nurkkala <eero.nurkkala@offcode.fi>
USBD has many limitation that make it hard to work properly:
- only one EasyDMA channel which must be shared for all EPs
- only one DMA transfer can take place at a time
- some registers are unavailable during DMA transfer
- in case of any problems, the peripheral silently blocks,
or lose the transmitted bytes without information for the user
This commit is trying to fix these problem and makes the USBS stack more reliable.
Tested with high-speed CDCACM data transfers and that's the best I've been able to get in terms of stability.
if config_walltime_signal is enabled, NuttX_sim will receive a lot of
signals, the socket api will break and errno will be EINTR, masking irq
before calling the host socket api will avoid this problem.
Signed-off-by: zhanghongyu <zhanghongyu@xiaomi.com>
In SMP mode, the fpu owner may switch from core0 to core1,
so it is necessary to force saving the FPU context when a
context switch occurs.
This PR fixed the crash issue mentioned in #8799.
Signed-off-by: zhangyuan21 <zhangyuan21@xiaomi.com>
If a kernel stack exists, use that whenever the user process is in
privileged mode, i.e. running an exception or in system call. Previously
the exception context was stored into the user's stack, which is not ideal.
Why?
1. Because the exception entry status (REG_INT_CTX) is needed by the
kernel, and this is now in user memory which requires that the correct
user mappings are active when it is accessed.
2. The user must currently account for the exception stack frame (which
is BIG) in its own stack allocation. Moving the exception context save
to the kernel stack offloads this responsibility from the user to the
kernel, which is IMO the correct behavior.
3. The kernel access to user memory is currently allowed without condition,
however this is not ideal either. The privileged mode status CSR allows
blocking access to user memory via the STATUS_SUM-bit, which should be
disabled by default and only enabled when access to user space is really
needed. This patch allows implementing such features.
This is preparation to use kernel stack for everything when the user
process enters the kernel. Now the user stack is in use when the user
process runs a system call, which might not be the safest option.
This is a minimalistic SBI implementation for NuttX.
Provides a single service for now:
- Access to machine timer
Provides a start trampoline to start NuttX in S-mode:
- Exceptions / faults are delegated to S-mode.
- External interrupts are delegated to S-mode.
Machine mode timer is used as follows:
- The timer compare match register reload happens in M-mode, via
call gate "riscv_sbi_set_timer"
- The compare match event is dispatched to S-mode ISR, which will
notify the kernel to advance time
- Clearing the STIP interrupt does not work from S-mode,
so the call gate does this from M-mode
The only supported (tested) target for now is MPFS.
CortexR52 can have a optional FPU.
- VFPv3 with FP16
- Option 1: 16 x double-prevision registers - -mfpu=vfpv3-d16-fp16
- Option 1: 32 x double-prevision registers - -mfpu=vfpv3-fp16
Summary:
- I noticed that ./tools/configure.sh fvp-armv8r:nsh_smp shows
warning: (ARCH_CHIP_FVP_R52 && ARCH_CHIP_FVP_R82) selects ARMV8R_HAVE_GICv3 which has unmet direct dependencies (ARCH_ARM && ARCH_ARMV8R)
- I think ARMV8R_HAVE_GICv3 is only used for aarch32.
- This commit fixes this issue.
Impact:
- None
Testing:
- Tested with nsh_smp on FVP
Signed-off-by: Masayuki Ishikawa <Masayuki.Ishikawa@jp.sony.com>
This adds functionality to map pages dynamically into kernel virtual
memory. This allows implementing I/O remap for example, which is a useful
(future) feature.
Now, the first target is to support mapping user pages for the kernel.
Why? There are some userspace structures that might be needed when the
userspace process is not running. Semaphores are one such example. Signals
and the WDT timeout both need access to the user semaphore to work
properly. Even though for this only obtaining the kernel addressable
page pool virtual address is needed, for completeness a procedure is
provided to map several pages.
During initialization it isn't possible to use up_puts once it's
protected against concurrent access through a mutex lock. Instead,
using up_putc makes it similar to ESP32S2 and ESP32S3 and perfectly
fits for showprogress usage.
Basic work required for uniprocessor CortexR52 (ARMv8R AARCH32) using
GICv3 and CP15 mapped arch timer.
Tested on ARM FVP 11.20.
Port is based on ARMv8R AARCH64 and ARMv7R code. Excuse possible copy-paste leftovers.
Remove unnecessary reading of the status register when loading / unloading
the FIFOs. Reading from the IP block is slow due to BUS synchronization and
this basically makes the SPI busy loop for no reason at all, destroying the
CPU usage.
The overall benefit of these changes is approx. 25%-points, which is a
MASSIVE improvement.
Adds a driver for an FPGA fabric / CoreSPI implementation.
Supports multiple instances, assuming they reside in some base address,
offsettable by a constant value.