"/mnt/yang/qixinwei_vela_warnings/nuttx/include/nuttx/spinlock.h", line 252: warning #76-D:
argument to macro is empty
SP_DSB();
^
"/mnt/yang/qixinwei_vela_warnings/nuttx/include/nuttx/spinlock.h", line 261: warning #76-D:
argument to macro is empty
SP_DMB();
^
"/mnt/yang/qixinwei_vela_warnings/nuttx/include/nuttx/spinlock.h", line 252: warning #76-D:
argument to macro is empty
SP_DSB();
^
"/mnt/yang/qixinwei_vela_warnings/nuttx/include/nuttx/spinlock.h", line 261: warning #76-D:
argument to macro is empty
SP_DMB();
^
"/mnt/yang/qixinwei_vela_warnings/nuttx/include/nuttx/spinlock.h", line 296: warning #76-D:
argument to macro is empty
SP_DSB();
^
Signed-off-by: yanghuatao <yanghuatao@xiaomi.com>
when the thread to backtrace is exiting, get_tcb and up_backtrace in
different critical section may cause try to dump invalid pointer, have
to ensure the nxsched_get_tcb and up_backtrace inside same critical
section procedure.
Signed-off-by: buxiasen <buxiasen@xiaomi.com>
This adds enablers for setting various clocks to some default
values. Also, this provides helpers to grant nonsecure access
to a number of clocks. Bootloader may utilize these to make
the system boot in a deterministic manner.
Signed-off-by: Eero Nurkkala <eero.nurkkala@offcode.fi>
In the algorithm there is a subtraction (int - unsigned), which results (potentially overflowed)
unsigned.
Passing this to macro ABS and the assigning to int doesn't work ( unsigned is always >= 0 ).
Fix this by replacing (dangerous) ABS macro with stdlib's standard "int abs(int)"
and change the substraction to (int - int).
Signed-off-by: Jukka Laitinen <jukkax@ssrc.tii.ae>
This is an initial FlexSPI SPI NOR MTD driver for IMX9
This supprts M25P SPI NOR on FlexSPI for now, and can later be extended to other
SPINOR devices if needed. The following configurations are needed to use this driver:
CONFIG_IMX9_FLEXSPI_NOR=y
CONFIG_MTD_M25P=y
In addition, board initialization logic needs to call the imx9_flexspi_nor_initialize
to receive a pointer to the mtd device.
Signed-off-by: Jukka Laitinen <jukkax@ssrc.tii.ae>
Co-authored-by: Jouni Ukkonen <jouni.ukkonen@unikie.com>
During the boot phase, when we transition from tee smp to ap smp, we can use a busy waitflag to wait for the completion of the initialization of ap's core0
test:
We can use qemu for testing.
compiling
make distclean -j20; ./tools/configure.sh -l qemu-armv8a:nsh_smp ;make -j20
running
qemu-system-aarch64 -cpu cortex-a53 -smp 4 -nographic -machine virt,virtualization=on,gic-version=3 -net none -chardev stdio,id=con,mux=on -serial chardev:con -mon chardev=con,mode=readline -kernel ./nuttx
Signed-off-by: hujun5 <hujun5@xiaomi.com>
Only in the non-critical region, nuttx can the respond to the irq and not hold the lock
When returning from the irq, there is no need to check whether the lock needs to be restored
test:
We can use qemu for testing.
compiling
make distclean -j20; ./tools/configure.sh -l qemu-armv8a:nsh_smp ;make -j20
running
qemu-system-aarch64 -cpu cortex-a53 -smp 4 -nographic -machine virt,virtualization=on,gic-version=3 -net none -chardev stdio,id=con,mux=on -serial chardev:con -mon chardev=con,mode=readline -kernel ./nuttx
Signed-off-by: hujun5 <hujun5@xiaomi.com>
reduce the time consumed by function call
test:
We can use qemu for testing.
compiling
make distclean -j20; ./tools/configure.sh -l qemu-armv8a:nsh_smp ;make -j20
running
qemu-system-aarch64 -cpu cortex-a53 -smp 4 -nographic -machine virt,virtualization=on,gic-version=3 -net none -chardev stdio,id=con,mux=on -serial chardev:con -mon chardev=con,mode=readline -kernel ./nuttx
Signed-off-by: hujun5 <hujun5@xiaomi.com>
cpu0 cpu1:
user_main
signest_test
sched_unlock
nxsched_merge_pending
nxsched_add_readytorun
up_cpu_pause
arm_sigdeliver
enter_critical_section
Reason:
In the SMP, cpu0 is already in the critical section and waiting for cpu1 to enter the suspended state.
However, when cpu1 executes arm_sigdeliver, it is in the irq-disabled state but not in the critical section.
At this point, cpu1 is unable to respond to interrupts and
is continuously attempting to enter the critical section, resulting in a deadlock.
Resolve:
adjust the logic, do not entering the critical section when interrupt-disabled.
test:
We can use qemu for testing.
compiling
make distclean -j20; ./tools/configure.sh -l qemu-armv8a:nsh_smp ;make -j20
running
qemu-system-aarch64 -cpu cortex-a53 -smp 4 -nographic -machine virt,virtualization=on,gic-version=3 -net none -chardev stdio,id=con,mux=on -serial chardev:con -mon chardev=con,mode=readline -kernel ./nuttx
Signed-off-by: hujun5 <hujun5@xiaomi.com>
when repeatedly enabling and disabling string-controlled configurations,
the generated toolchain configuration may be incorrect.
Signed-off-by: xuxin19 <xuxin19@xiaomi.com>
Search and replace ARCH_BOOT_EL3 with more generic
ARCH_ARM64_EXCEPTION_LEVEL that holds the EL level
in an integer variable.
Signed-off-by: Eero Nurkkala <eero.nurkkala@offcode.fi>
This provides a capable bootloader that may be run from OCRAM.
The OCRAM contains regions that are always zero, so the linker
file avoids those with best effort.
iMX9 infrastructure expects:
- 0x20480000 (Start of OCRAM, AHAB)
- 0x2049a000 (NuttX or SPL)
- 0x204e0000 (ARM Trustzone, not used)
When started from SD-card, the offsets are:
- 0x1f000 with AHAB
- 0xa000 without AHAB
Signed-off-by: Eero Nurkkala <eero.nurkkala@offcode.fi>
Value 1021, when read from ICC_IAR0_EL1 means:
"The GIC returns this value in response to a read of ICC_IAR0_EL1 or ICC_HPPIR0_EL1 at EL3,
to indicate that the interrupt being acknowledged is one which is expected to be handled at
Non-secure EL1 or EL2. This INTID is only returned when the PE is executing at EL3 using
AArch64 state, or when the PE is executing in AArch32 state in Monitor mode."
When this happens:
- FIQ is fired on group0
- IRQ is pending at group1
So simply check and handle the interrupt. In short, this provides interrupt support for
EL3.
Signed-off-by: Eero Nurkkala <eero.nurkkala@offcode.fi>
This provides means to run NuttX completely in EL3. This may
be useful with NuttX based bootloaders that are executed from
OCRAM. Instead of SPL/U-boot combo, NuttX may replace SPL
completely.
Signed-off-by: Eero Nurkkala <eero.nurkkala@offcode.fi>
We can save execution time by
inline arm64_fullcontextrestore and arm64_switchcontext
test:
We can use qemu for testing.
compiling
make distclean -j20; ./tools/configure.sh -l qemu-armv8a:nsh_smp ;make -j20
running
qemu-system-aarch64 -cpu cortex-a53 -smp 4 -nographic -machine virt,virtualization=on,gic-version=3 -net none -chardev stdio,id=con,mux=on -serial chardev:con -mon chardev=con,mode=readline -kernel ./nuttx
Signed-off-by: hujun5 <hujun5@xiaomi.com>
Optimal size of granule is 64B (the dcache line size).
We can use it now as we don't have max. 32 granules limitation anymore.
Signed-off-by: Jani Paalijarvi <jani.paalijarvi@unikie.com>
Using user allocated buffers for DMA transfers is not safe for two reasons:
- User space memory is virtual memory, DMA needs physical memory
- User memory buffer alignment cannot be guaranteed -> cache line ops
are not safe
Add a simple allocator for DMA safe memory. It will provide contiguous
blocks of memory with D-Cache line size alignment.
NOTE: The optimal granule size is the D-Cache line size (64), but due
to restrictions in the granule allocator this would result in a maximum
block size of 2K only, thus use 256B granules instead givin 8K max block
size.
Once the granule allocator is fixed this limitation can be removed.