1. arm64/makefile: preprocess link script to make configure more flexibly
2. arm64/EXTRA_LIBS: link all staging library
Signed-off-by: chao an <anchao@xiaomi.com>
in SMP, signal processing cannot be nested, we use xcp.sigdeliver to identify whether there is currently a signal being processed, but this state does not match the actual situation
One possible scenario is that signal processing has already been completed, but an interrupt occurs, resulting in xcp.sigdeliver not being correctly set to NULL,
At this point, a new signal arrives, which can only be placed in the queue and cannot be processed immediately
Our solution is that signal processing and signal complete status are set in the same critical section, which can ensure status synchronization
Signed-off-by: hujun5 <hujun5@xiaomi.com>
In the interrupt context, we should first save the interrupt context and modify the interrupt register
to execute the signal processing program immediately after exiting the current interrupt
Signed-off-by: hujun5 <hujun5@xiaomi.com>
1. Get the value of sp from dump regs when an exception occurs,
to avoid getting the value of fp from up_getsp and causing
incomplete stack printing.
2. Determine which stack the value belongs to based on the value
of SP to avoid false reports of stack overflow
Signed-off-by: zhangyuan21 <zhangyuan21@xiaomi.com>
CURRENT_REGS may change during assert handling, so pass
in the 'regs' parameter at the entry point of _assert.
Signed-off-by: zhangyuan21 <zhangyuan21@xiaomi.com>
In smp when cpu0 calls up_cpu_resume to release the cpu1 lock, another locked cpu1 did not execute immediately,
and soon cpu0 called up_cpu_resume again, now cpu1 unable to respond to the interrupt at this time, resulting in a deadlock.
Our solution is to restore cpu1 execution from asynchronous to synchronous to ensure that cpu1 is restored.
Signed-off-by: hujun5 <hujun5@xiaomi.com>
Summary:
To reduce the count of FPU context switching will result at a
performance improve with system. it need to balance between
the using of FPU and counts of FPU trap
the PR submit a base method to see performance counts for
the FPU with NuttX procfs
Please read README.txt at chapter of FPU Support and Performance
for more information
Signed-off-by: qinwei1 <qinwei1@xiaomi.com>
minidump will backtrace failure when use C code to save user context,
because the stack push operation in C code can disrupt the stack information.
Signed-off-by: zhangyuan21 <zhangyuan21@xiaomi.com>
1 Similar to Linux and zephyr, all implementations are in arm64_arch_timer.c
2 Arm64 tickless is turned off by default. If it needs to be turned on, you need to configure the switch CONFIG_SCHED_TICKLESS ON
3 The implementation strategy for tick/tickless is to use the timer inside the CPU and implement the timer driver based on the ARCH_TIMER framework.
4 We implemented tick_* Callback functions to adapt to the driven interface to avoid time format conversion overhead
5 In arm64_tick_cancel func,The remaining time that is not used, so this value can be ignored without reading the corresponding register to obtain the remaining cycles
6 Currently, tick/tickless can takes effect in SMP and non SMP mode, ostest can pass.
Signed-off-by: hujun5 <hujun5@xiaomi.com>
The text describes an issue related to the running task in code.
The running task is only used when calling the _assert function
to indicate the task that was running before an exception occurred.
However, the current code only updates the running task during
irq_dispatch, which is suitable for ARM-M architecture but not
for ARM-A or ARM-R architecture, because their context switches
are not done through irq handler. Therefore, if the following
process is followed, the value of the running task will be incorrect:
1. task1 is running, this_task()=task1
2. do_irq is executed, setting running task()=task1
3. task1 switches to task2
4. task2 is running and generates a data abort
5. In the data abort, the _assert function is called,
and the running task obtained is still task1, but
the actual task that generated the exception is task2.
Signed-off-by: zhangyuan21 <zhangyuan21@xiaomi.com>
On a GICv2 implementation, setting GICC_CTLR.EOImode to 1 separates
the priority drop and interrupt deactivation operations.
Signed-off-by: zhangyuan21 <zhangyuan21@xiaomi.com>
Summary:
- Support arm64 pmu api, Currently only the cycle counter function is supported.
- Using ARM64 PMU hardware capability to implement perf interface, modify all
perf interface related code.
- Support for pmu init under smp.
Signed-off-by: wangming9 <wangming9@xiaomi.com>
Summary:
add arm64_serialinit/arm64_earlyserialinit function prototype
to arm64_internal.h as common function for arm64 based chip.
Testing with ostest in SP and SMP
Signed-off-by: qinwei1 <qinwei1@xiaomi.com>
Summary:
Adding virtual evaluate platform FVP. This FVP board configuration
will be used to emulate generic ARM64v8-R (Cotex-R82)series hardware
platform and provide support for these devices:
- GICv3 interrupt controllers for ARMv8-r
- PL011 UART controller(FVP)
Note:
1. ostest is PASSED at fvp ( single core and SMP)
2. the FVP tools can be download from ARM site, please check FVP
board readme.txt
TODO: merge PL011 UART driver to common place
Signed-off-by: qinwei1 <qinwei1@xiaomi.com>
Summary
Different ARM64 Core will use different Affn define, the mpidr_el1
value is not CPU number, So we need to change CPU number to mpid
and vice versa, the patch change the mpid define into platform
Signed-off-by: qinwei1 <qinwei1@xiaomi.com>
Summary
For ARM64 architecture, the arch timer is 64-bit,
the CONFIG_SYSTEM_TIME64 need to be enabled just like
x86_64 and risc-v 64
Signed-off-by: qinwei1 <qinwei1@xiaomi.com>
Summary
VMPIDR_EL2 holds the value of the Virtualization Multiprocessor ID.
From architecture manual of AArch64, the behave is:
-reading register MPIDR_EL1 in EL2, it's return real MPIDR_EL1
-reading register MPIDR_EL1 in EL1, it's return VMPIDR_EL2
So since NuttX for SMP is running at EL1 to read MPIDR_EL1 for
identify CPU id, it's need to set VMPIDR_EL2 to MPIDR_EL1 for
every CPU at boot EL2 stage.
For some platform, the bootloader or hypervisor will do that at
the EL2 stage, but not all.
Signed-off-by: qinwei1 <qinwei1@xiaomi.com>
Summary:
Adding armv8-r(Cortex-R82) support and modify some common code to
fit the change, the change including:
1. ARM Single Security State Support, ARMv8-R support only single
security state, and some GIC configure need to change and fit
2. For ARMv8-R, only have EL0 ~ EL2, the code at EL3 is not necessary
and system register for EL3 is not accessible(gcc will failed when
access these registers)
3. add base MPU configure for the platform.
Signed-off-by: qinwei1 <qinwei1@xiaomi.com>
Summary:
The aarch64 have EL0~El3 execute level and NS/S (security state),
the NuttX should be execute at EL1 in NS(ARmv8-A) or S(ARmv8-R)
state. but booting NuttX have different ELs and state while with
different platform, if NuttX runing at wrong ELs or state it will
be not normal anymore. So we need to print something in arm64_head.S
to debug this situation.
Enabling this option will need to implement up_earlyserialinit and
up_lowputc functions just you see in qemu, if you not sure,
keeping the option disable.
Signed-off-by: qinwei1 <qinwei1@xiaomi.com>
Summory
This Power State Coordination Interface (PSCI) defines a standard
interface for power management. the PCSI need to implement handling
firmware at EL2 or EL3 for ARM64. the PSCI maybe not applicable
for arm core without PCSI firmware interface implement.
Add configure option for it.
Note:
1. ostest is PASSED at qemu and fvp ( single core and SMP)
Signed-off-by: qinwei1 <qinwei1@xiaomi.com>
The function is not relevant any longer, remove it. Also remove
save_addrenv_t, the parameter taken by up_addrenv_restore.
Implement addrenv_select() / addrenv_restore() to handle the temporary
instantiation of address environments, e.g. when a process is being
created.
Summary:
1. to enable Toolchain select Kconfig option, making something depend on
the opton to be configured with menuconfig
Signed-off-by: qinwei1 <qinwei1@xiaomi.com>
This is preparation for moving address environments out of the group
structure into the tcb.
Why move ? Because the group is destroyed very early in the exit phase,
but the MMU mappings are needed until the context switch to the next
process is complete. Otherwise the MMU will lose its mappings and the
system will crash.
There were two issues with signal handling:
- With a kernel stack the "info" parameter was passed from kernel memory.
This is fixed by making a stack frame to the user stack and copying it
there.
- If the signal handler uses a system call, the kernel stack was completely
and unconditionally destroyed, resulting in a crash in the user application
There is also no need to check ustkptr, it is always NULL. Why ? Because
signal delivery is deferred when a system call is being executed.
The dependency should be vice versa; the MM_SHM should depend on the
existence of the virtual memory range allocator.
Create a new CONFIG flag CONFIG_ARCH_VMA_MAPPING, which will define that
there is a virtual memory range allocator. Make MM_SHM select that flag
Signed-off-by: Jukka Laitinen <jukkax@ssrc.tii.ae>
The current implementation of PIO Interrupt for Allwinner A64 is incomplete. This PR fixes the implementation of PIO Interrupt for all supported PIO Ports (PB, PG and PH).
### Modified Files
`arch/arm64/src/a64/a64_pio.c`, `a64_pio.h`: Add implementation of PIO Interrupt
`arch/arm64/include/a64/irq.h`: Add IRQ for PIO Port PH
`arch/arm64/src/a64/hardware/a64_pio.h`: Fix addresses of PIO Interrupt Registers
This PR adds the driver for Xingbangda XBD599 LCD Panel (based on Sitronix ST7703 LCD Controller) on PINE64 PinePhone. This PR also includes:
- The driver for X-Powers AXP803 Power Mgmt IC, which calls our driver for Allwinner A64's Reduced Serial Bus. The PMIC Driver is needed to power on the MIPI DSI Interface for the LCD Panel.
- A simple Display Driver that renders a Test Pattern on the LCD Display at startup. It calls our Allwinner A64 drivers for Display Engine, Timing Controller TCON0 and MIPI Display Serial Interface.
The NuttX Frame Buffer Driver will be implemented in the next PR.
`arch/arm64/src/a64/a64_de.c`, `a64_de.h`: Changed the Frame Buffer pointer to `const` for Allwinner A64 Display Engine
`arch/arm64/src/a64/hardware/a64_memorymap.h`: Added the Base Address for PWM, for controlling the PWM Backlight
`boards/arm64/a64/pinephone/src/pinephone_bringup.c`: Call `fb_register()` to start the Display Driver at startup
`boards/arm64/a64/pinephone/src/Makefile`: Added LCD Driver, PMIC Driver and Display Driver to Makefile
`boards/arm64/a64/pinephone/Kconfig`: Added the Kconfig option for "PINE64 PinePhone > LCD Display" (`CONFIG_PINEPHONE_LCD`) which enables the LCD Driver, PMIC Driver and Display Driver
`boards/arm64/a64/pinephone/src/pinephone_lcd.c`, `pinephone_lcd.h`: Driver for Xingbangda XBD599 LCD Panel
`boards/arm64/a64/pinephone/src/pinephone_pmic.c`, `pinephone_pmic.h`: Driver for X-Powers AXP803 Power Mgmt IC
`boards/arm64/a64/pinephone/src/pinephone_display.c`: Simple Display Driver that renders a Test Pattern in `up_fbinitialize()`
`boards/arm64/a64/pinephone/configs/lcd/defconfig`: New PinePhone Board Configuration `pinephone:lcd` that enables the LCD Driver (`CONFIG_PINEPHONE_LCD`)
`platforms/arm/a64/boards/pinephone/index.rst`: Added PinePhone Board Configuration `pinephone:lcd` that enables the LCD Driver
This PR adds the driver for Reduced Serial Bus (RSB) on Allwinner A64 SoC. The RSB Driver will be called by the upcoming Power Mgmt IC Driver for PINE64 PinePhone, to power on the LCD Display.
`arch/arm64/src/a64/Kconfig`: Added the Kconfig option for "A64 Peripheral Selection > RSB" (`CONFIG_A64_RSB`), which enables the RSB Driver
`arch/arm64/src/a64/hardware/a64_memorymap.h`: Added the Base Address for RSB
`arch/arm64/src/a64/Make.defs`: Added the RSB Driver to the Makefile
`arch/arm64/src/a64/a64_de.c`: Increase PLL Timeout for Allwinner A64 Display Engine
`boards/arm64/a64/pinephone/configs/nsh/defconfig`: Set PinePhone Board Config `CONFIG_BOARD_LOOPSPERMSEC` to the value computed by `calib_udelay`
`arch/arm64/src/a64/a64_rsb.c`, `a64_rsb.h`: RSB Driver for Allwinner A64
`platforms/arm/a64/boards/pinephone/index.rst`: Added RSB as supported peripheral for PinePhone
This PR adds the driver for Display Engine 2.0 on Allwinner A64 SoC. The Display Engine Driver will be called by the upcoming LCD Driver for PINE64 PinePhone.
`arch/arm64/src/a64/Kconfig`: Added the Kconfig option for "A64 Peripheral Selection > DE" (`CONFIG_A64_DE`), which enables the Display Engine Driver
`arch/arm64/src/a64/hardware/a64_memorymap.h`: Added the Base Address for Display Engine
`arch/arm64/src/a64/Make.defs`: Added the Display Engine Driver to the Makefile
`boards/arm64/a64/pinephone/configs/nsh/defconfig`: Removed Scheduler Debug Info (`CONFIG_DEBUG_SCHED_INFO`) from the PinePhone Board Config, because it garbles the Console Output.
`arch/arm64/src/a64/a64_de.c`, `a64_de.h`: Display Engine Driver for Allwinner A64
`platforms/arm/a64/boards/pinephone/index.rst`: Added Display Engine as supported peripheral for PinePhone
This PR adds the driver for TCON0 (Timing Controller) on Allwinner A64 SoC. The TCON0 Driver will be used by the upcoming Display Driver for PINE64 PinePhone.
`arch/arm64/src/a64/Kconfig`: Added the Kconfig option for "A64 Peripheral Selection > TCON0" (`CONFIG_A64_TCON0`), which enables the TCON0 Driver
`arch/arm64/src/a64/hardware/a64_memorymap.h`: Added the Base Address for TCON0
`arch/arm64/src/a64/Make.defs`: Added the TCON0 Driver to the Makefile
`arch/arm64/src/a64/a64_tcon0.c`, `a64_tcon0.h`: TCON0 Driver for Allwinner A64
`platforms/arm/a64/boards/pinephone/index.rst`: Added TCON0 as supported peripheral for PinePhone
This PR adds the driver for Allwinner A64's MIPI Display Serial Interface (DSI) and MIPI Display Physical Layer (D-PHY).
This driver will be used by the upcoming Display Driver for PINE64 PinePhone.
- `include/nuttx/crc16.h`: Added 16-bit CRC-CCITT
- `libs/libc/misc/Make.defs`: Added 16-bit CRC-CCITT to Makefile
- `arch/arm64/src/a64/Kconfig`: Added the Kconfig option for "A64 Peripheral Selection > MIPI DSI" (`CONFIG_A64_MIPI_DSI`), which enables the MIPI DSI Driver
- `arch/arm64/src/a64/hardware/a64_memorymap.h`: Added the Base Address for MIPI DSI
- `arch/arm64/src/a64/Make.defs`: Added the MIPI DSI Driver to the Makefile
- `libs/libc/misc/lib_crc16ccitt.c`: Compute 16-bit CRC-CCITT
- `arch/arm64/src/a64/mipi_dsi.c`, `mipi_dsi.h`: Compose MIPI DSI Packets (Long, Short, Short with Parameter)
- `arch/arm64/src/a64/a64_mipi_dsi.c`, `a64_mipi_dsi.h`: MIPI DSI Driver for Allwinner A64
- `arch/arm64/src/a64/a64_mipi_dphy.c`, `a64_mipi_dphy.h`: MIPI D-PHY Driver for Allwinner A64
- `platforms/arm/a64/boards/pinephone/index.rst`: Added MIPI DSI as supported peripheral for PinePhone
Co-Authored-By: Petro Karashchenko <petro.karashchenko@gmail.com>
Registers S0-S15 (D0-D7, Q0-Q3) do not need to be preserved. They can be used for passing
arguments or returning results in standard procedure-call variants.
Registers D16-D31 (Q8-Q15), do not need to be preserved.
Signed-off-by: zhangyuan21 <zhangyuan21@xiaomi.com>
This PR adds the drivers for Allwinner A64 PIO (Programmable I/O) and PinePhone LEDs (Red / Green / Blue).
The PIO Driver is based on the NuttX PIO Driver for Allwinner A10: [`arch/arm/src/a1x/a1x_pio.c`](https://github.com/apache/nuttx/blob/master/arch/arm/src/a1x/a1x_pio.c)
- `arch/arm64/src/a64/Make.defs`: Add PIO Driver to Makefile
- `boards/Kconfig`: Add `ARCH_HAVE_LEDS` to PinePhone
- `boards/arm64/a64/pinephone/src/pinephone.h`: Define PinePhone LEDs
- `boards/arm64/a64/pinephone/src/pinephone_boardinit.c`: Start Auto LEDs
- `boards/arm64/a64/pinephone/src/pinephone_bringup.c`: Start User LEDs
- `boards/arm64/a64/pinephone/src/Makefile`: Add LED Driver to Makefile
- `boards/arm64/a64/pinephone/configs/nsh/defconfig`: Add `CONFIG_USERLED` to `nsh` config
- `arch/arm64/src/a64/a64_pio.c`, `a64_pio.h`: Allwinner A64 PIO Driver
- `arch/arm64/src/a64/hardware/a64_memorymap.h`: PIO Memory Map
- `arch/arm64/src/a64/hardware/a64_pio.h`: PIO Definitions
- `boards/arm64/a64/pinephone/include/board.h`: Define PinePhone LEDs
- `boards/arm64/a64/pinephone/src/pinephone_autoleds.c`: Driver for Auto LEDs
- `boards/arm64/a64/pinephone/src/pinephone_userleds.c`: Driver for User LEDs
- `introduction/supported_platforms.rst`: Add Allwinner A64 as Supported Platform
- `platforms/arm/a64/boards/pinephone/index.rst`: Add PIO and LEDs to PinePhone
Summary:
- I noticed that the nsh prompt can not be shown when disabling
debug features. Actually, the prompt will be shown when a user
input happens.
- This commit fixes this issue by adding uart_xmitchars() as
other serial drivers do.
Impact:
- None
Testing:
- Tested with qemu-armv8a:netnsh on QEMU-7.1
Signed-off-by: Masayuki Ishikawa <Masayuki.Ishikawa@jp.sony.com>
It takes about 10 cycles to obtain the task list according to the task
status. In most cases, we know the task status, so we can directly
add the task from the specified task list to reduce time consuming.
It takes about 10 cycles to obtain the task list according to the task
status. In most cases, we know the task status, so we can directly
delete the task from the specified task list to reduce time consuming.
Currently NuttX on Arm64 supports Generic Interrupt Controller (GIC) Versions 3 and 4: [`arm64_gicv3.c`](https://github.com/apache/incubator-nuttx/blob/master/arch/arm64/src/common/arm64_gicv3.c), [`arm64_gic.h`](https://github.com/apache/incubator-nuttx/blob/master/arch/arm64/src/common/arm64_gic.h). This PR adds support for GIC Version 2, which is needed by [Pine64 PinePhone](https://lupyuen.github.io/articles/interrupt) based on Allwinner A64 SoC.
This 64-bit implementation of GIC v2 is mostly identical to the existing GIC v2 for 32-bit Armv7-A ([`armv7-a/arm_gicv2.c`](https://github.com/apache/incubator-nuttx/blob/master/arch/arm/src/armv7-a/arm_gicv2.c), [`armv7-a/gic.h`](https://github.com/apache/incubator-nuttx/blob/master/arch/arm/src/armv7-a/gic.h)), with minor modifications to support 64-bit Registers (Interrupt Context).
- `arch/arm64/Kconfig`: Under "ARM64 Options", we added an integer option `ARM_GIC_VERSION` ("GIC version") that selects the GIC Version. Valid values are 2, 3 and 4, default is 3.
- `arch/arm64/src/common/arm64_gicv2.c`: Implements 64-bit GIC v2 based on 32-bit [`armv7-a/arm_gicv2.c`](https://github.com/apache/incubator-nuttx/blob/master/arch/arm/src/armv7-a/arm_gicv2.c) and [`armv7-a/gic.h`](https://github.com/apache/incubator-nuttx/blob/master/arch/arm/src/armv7-a/gic.h), modified to support 64-bit Registers (Interrupt Context).
Function and Macro Names have not been changed, for easier cross-referencing between the 32-bit and 64-bit implementations of GIC v2.
- `arch/arm64/src/common/arm64_gicv3.c`: Added Conditional Compilation for GIC v3. This file will not be compiled if `ARM_GIC_VERSION` is 2.
- `arch/arm64/src/common/arm64_gic.h`: Added the Version Identifier for GIC v2. At startup we read the GIC Version from hardware and verify that it matches `ARM_GIC_VERSION`.
- `arch/arm64/include/qemu/chip.h`: Added the QEMU Base Addresses for GIC v2.
- `arch/arm64/src/common/Make.defs`: Added the source file that implements GIC v2.
- `boards/arm64/qemu/qemu-armv8a/README.txt`: Added the documentation for testing GIC v2 with QEMU.
- `boards/arm64/qemu/qemu-armv8a/configs/nsh_gicv2/defconfig`: Added the Board Configuration `qemu-armv8a:nsh_gicv2` for testing GIC v2 with QEMU. Identical to `qemu-armv8a:nsh`, except that `ARM_GIC_VERSION` is 2.
In the past, header file paths were generated by the incdir command
Now they are generated by concatenating environment variables
In this way, when executing makefile, no shell command will be executed,
it will improve the speed of executing makfile
Signed-off-by: yinshengkai <yinshengkai@xiaomi.com>
This change adds the following:
- Rename the board configuration name from qemu-a53 to qemu-v8a.
- Add the configurations for Cortex-A57 and Cortex-A72.
Signed-off-by: Hidenori Matsubayashi <hidenori.matsubayashi@gmail.com>
Use CONFIG_ARCH_CHIP_QEMU instead of CONFIG_ARCH_CHIP_QEMU_A53. This is because these configurations depend on the hardware configuration of qemu (memory map, irq numbers, etc.).
Signed-off-by: Hidenori Matsubayashi <hidenori.matsubayashi@gmail.com>
This change moves the static vars to the appropriate place to follow the coding standard. It also adds comments as sections and `static` where necessary.
Signed-off-by: Hidenori Matsubayashi <hidenori.matsubayashi@gmail.com>
The default size in QEMU system is 128MB, and the size specified in chip.h is also 128MB. However, the region size for MMU was 512MB, so fixed it.
Signed-off-by: Hidenori Matsubayashi <hidenori.matsubayashi@gmail.com>
Situation:
Assume we have 2 cpus, and busy run task0.
CPU0 CPU1
task0 -> task1 task2 -> task0
1. remove task0 form runninglist
2. take task1 as new tcb
3. add task0 to blocklist
4. clear spinlock
4.1 remove task2 form runninglist
4.2 take task0 as new tcb
4.3 add task2 to blocklist
4.4 use svc ISR swith to task0
4.5 crash
5. use svc ISR swith to task1
Fix:
Move clear spinlock to the end of svc ISR
Signed-off-by: ligd <liguiding1@xiaomi.com>
==2117790==ERROR: AddressSanitizer: global-buffer-overflow on address 0x64d9e3c0 at pc 0x59ac4e16 bp 0xcefe8058 sp 0xcefe8048
READ of size 1 at 0x64d9e3c0 thread T0
#0 0x59ac4e15 in up_nputs sim/up_nputs.c:54
#1 0x59a67e4c in syslog_default_write syslog/syslog_channel.c:220
#2 0x59a67823 in syslog_default_write syslog/syslog_write.c:101
#3 0x59a67f10 in syslog_write syslog/syslog_write.c:153
#4 0x59a651c3 in syslogstream_flush syslog/syslog_stream.c:60
#5 0x59a6564e in syslogstream_addchar syslog/syslog_stream.c:104
#6 0x59a6576f in syslogstream_putc syslog/syslog_stream.c:140
#7 0x5989fc4d in vsprintf_internal stdio/lib_libvsprintf.c:952
#8 0x598a1298 in lib_vsprintf stdio/lib_libvsprintf.c:1379
#9 0x59a64ea4 in nx_vsyslog syslog/vsyslog.c:223
#10 0x598a601a in vsyslog syslog/lib_syslog.c:68
#11 0x59b0e3dc in AIOTJS::logPrintf(int, char const*, ...) src/ajs_log.cpp:45
#12 0x59b03d56 in jse_dump_obj src/jse/quickjs/jse_quickjs.cpp:569
#13 0x59b03ea1 in jse_dump_error1(JSContext*, unsigned long long) src/jse/quickjs/jse_quickjs.cpp:602
#14 0x59b03dd9 in jse_dump_error(JSContext*) src/jse/quickjs/jse_quickjs.cpp:591
#15 0x59bed615 in ferry::DomComponent::callHook(char const*) src/framework/dom/component.cpp:65
#16 0x59bfe0ff in ferry::DomComponent::initialize() src/framework/dom/component.cpp:645
#17 0x59bb141d in dom_create_component(JSContext*, unsigned long long, unsigned long long, unsigned long long) (/home/wangbowen/project/central/vela_miot_bes_m0/bin/audio+0x365c41d)
#18 0x59b4c0d3 in AIOTJS::__createComponent(JSContext*, unsigned long long, int, unsigned long long*) (/home/wangbowen/project/central/vela_miot_bes_m0/bin/audio+0x35f70d3)
#19 0x5a56ec17 in js_call_c_function quickjs/quickjs.c:16108
Signed-off-by: wangbowen6 <wangbowen6@xiaomi.com>
so the user could disable the full image instrumentation,
but enable the instrumentation by files or directories.
Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
without UBSan
```
text data bss dec hex filename
85612 208 142258 228078 37aee nuttx
```
with UBSan:
```
text data bss dec hex filename
194290 98164 208634 501088 7a560 nuttx
```
```c
int main(int argc, FAR char *argv[])
{
uint32_t ptr[32];
printf("Hello, World!! %lu\n", ptr[64]);
return 0;
}
```
Try to run this sample:
```
nsh> hello
ubsan_prologue: ================================================================================
ubsan_prologue: UBSAN: array-index-out-of-bounds in hello_main.c:39:37
__ubsan_handle_out_of_bounds: index 64 is out of range for type 'uint32_t [32]'
ubsan_epilogue: ================================================================================
Hello, World!! 1070182368
nsh>
```
Signed-off-by: Huang Qi <huangqi3@xiaomi.com>
Summary:
- Since the stack coloration is done for every 32bits
this function should be done in the same way.
Impact:
- None
Testing:
- Tested with qemu-a53:nsh
Signed-off-by: Masayuki Ishikawa <Masayuki.Ishikawa@jp.sony.com>