Squashed commit of the following:
configs/: The few configurations that formerly set CONFIG_NFILE_DESCRIPTORS=0 should not default, rather they should set the number of descriptors to 3.
fs/: Remove all conditional logic based on CONFIG_NFILE_DESCRIPTORS == 0
tools/: Tools updates for changes to usage of CONFIG_NFILE_DESCRIPTORS.
syscall/: Remove all conditional logic based on CONFIG_NFILE_DESCRIPTORS == 0
libs/: Remove all conditional logic based on CONFIG_NFILE_DESCRIPTORS == 0
include/: Remove all conditional logic based on CONFIG_NFILE_DESCRIPTORS == 0
drivers/: Remove all conditional logic based on CONFIG_NFILE_DESCRIPTORS == 0
Documentation/: Remove all references to CONFIG_NFILE_DESCRIPTORS == 0
binfmt/: Remove all conditional logic based on CONFIG_NFILE_DESCRIPTORS == 0
arch/: Remove all conditional logic based on CONFIG_NFILE_DESCRIPTORS == 0
net/: Remove all conditional logic based on CONFIG_NFILE_DESCRIPTORS == 0
sched/: Remove all conditional logic based on CONFIG_NFILE_DESCRIPTORS == 0
sched/Kconfig: CONFIG_NFILE_DESCRIPTORS may no longer to set to a value less than 3
configs/: Remove all settings for CONFIG_NFILE_DESCRIPTORS < 3
sched/init/nx_bringup.c: Fix a naming collision.
sched/init: Rename os_start() to nx_start()
sched/init: Rename os_smp* to nx_smp*
sched/init: Rename os_bringup to nx_bringup
sched/init: rename all internal static functions to begin with nx_ vs os_
Squashed commit of the following:
Trivial, cosmetic
sched/, arch/, and include: Rename task_vforkstart() as nxtask_vforkstart()
sched/, arch/, and include: Rename task_vforkabort() as nxtask_vforkabort()
sched/, arch/, and include: Rename task_vforksetup() as nxtask_vfork_setup()
sched/: Rename notify_cancellation() as nxnotify_cancellation()
sched/: Rename task_recover() to nxtask_recover()
sched/task, sched/pthread/, Documentation/: Rename task_argsetup() and task_terminate() to nxtask_argsetup() and nxtask_terminate(), respectively.
sched/task: Rename task_schedsetup() to nxtask_schedsetup()
sched/ (plus some binfmt/, include/, and arch/): Rename task_start() and task_starthook() to nxtask_start() and nxtask_starthook().
arch/ and sched/: Rename task_exit() and task_exithook() to nxtask_exit() and nxtask_exithook(), respectively.
sched/task: Rename all internal, static, functions to begin with the nx prefix.
This makes the user interface a little hostile. People thing of an MTU of 1500 bytes, but the corresponding packet is really 1514 bytes (including the 14 byte Ethernet header). A more friendly solution would configure the MTU (as before), but then derive the packet buffer size by adding the MAC header length. Instead, we define the packet buffer size then derive the MTU.
The MTU is not common currency in networking. On the wire, the only real issue is the MSS which is derived from MTU by subtracting the IP header and TCP header sizes (for the case of TCP). Now it is derived for the PKTSIZE by subtracting the IP header, the TCP header, and the MAC header sizes. So we should be all good and without the recurring 14 byte error in MTU's and MSS's.
Squashed commit of the following:
Trivial update to fix some spacing issues.
net/: Rename several macros containing _MTU to _PKTSIZE.
net/: Rename CONFIG_NET_SLIP_MTU to CONFIG_NET_SLIP_PKTSIZE and similarly for CONFIG_NET_TUN_MTU. These are not the MTU which does not include the size of the link layer header. These are the full size of the packet buffer memory (minus any GUARD bytes).
net/: Rename CONFIG_NET_6LOWPAN_MTU to CONFIG_NET_6LOWPAN_PKTSIZE and similarly for CONFIG_NET_TUN_MTU. These are not the MTU which does not include the size of the link layer header. These are the full size of the packet buffer memory (minus any GUARD bytes).
net/: Rename CONFIG_NET_ETH_MTU to CONFIG_NET_ETH_PKTSIZE. This is not the MTU which does not include the size of the link layer header. This is the full size of the packet buffer memory (minus any GUARD bytes).
net/: Rename the file d_mtu in the network driver structure to d_pktsize. That value saved there is not the MTU. The packetsize is the memory large enough to hold the maximum packet PLUS the size of the link layer header. The MTU does not include the link layer header.
Squashed commit of the following:
sched: Rename all use of system_t to clock_t.
syscall: Rename all use of system_t to clock_t.
net: Rename all use of system_t to clock_t.
libs: Rename all use of system_t to clock_t.
fs: Rename all use of system_t to clock_t.
drivers: Rename all use of system_t to clock_t.
arch: Rename all use of system_t to clock_t.
include: Remove definition of systime_t; rename all use of system_t to clock_t.
This commit backs out most of commit b4747286b1. That change was added because sem_wait() would sometimes cause cancellation points inappropriated. But with these recent changes, nxsem_wait() is used instead and it is not a cancellation point.
In the OS, all calls to sem_wait() changed to nxsem_wait(). nxsem_wait() does not return errors via errno so each place where nxsem_wait() is now called must not examine the errno variable.
In all OS functions (not libraries), change sem_wait() to nxsem_wait(). This will prevent the OS from creating bogus cancellation points and from modifying the per-task errno variable.
sched/semaphore: Add the function nxsem_wait(). This is a new internal OS interface. It is functionally equivalent to sem_wait() except that (1) it is not a cancellation point, and (2) it does not set the per-thread errno value on return.
sched/semaphore: Add nxsem_post() which is identical to sem_post() except that it never modifies the errno variable. Changed all references to sem_post in the OS to nxsem_post().
sched/semaphore: Add nxsem_destroy() which is identical to sem_destroy() except that it never modifies the errno variable. Changed all references to sem_destroy() in the OS to nxsem_destroy().
libc/semaphore and sched/semaphore: Add nxsem_getprotocol() and nxsem_setprotocola which are identical to sem_getprotocol() and set_setprotocol() except that they never modifies the errno variable. Changed all references to sem_setprotocol in the OS to nxsem_setprotocol(). sem_getprotocol() was not used in the OS
libc/semaphore: Add nxsem_getvalue() which is identical to sem_getvalue() except that it never modifies the errno variable. Changed all references to sem_getvalue in the OS to nxsem_getvalue().
sched/semaphore: Rename all internal private functions from sem_xyz to nxsem_xyz. The sem_ prefix is (will be) reserved only for the application semaphore interfaces.
libc/semaphore: Add nxsem_init() which is identical to sem_init() except that it never modifies the errno variable. Changed all references to sem_init in the OS to nxsem_init().
sched/semaphore: Rename sem_tickwait() to nxsem_tickwait() so that it is clear this is an internal OS function.
sched/semaphoate: Rename sem_reset() to nxsem_reset() so that it is clear this is an internal OS function.
STM32, STM32 F7: LTDC and DMA2D drivers are not permitted to set the errno.
SIM LPC31xx: Serial and console drivers are not permitted to set the errno.
SAMv7, STM32, STM32 L4: DAC and ADC drivers are not permitted to set the errno.
-------
This patch enhances networking support for the simulation under Linux.
Includes updated support for Linux TUN/TAP, and the addition of support for
Linux bridge devices.
CHANGES
-------
o Check to see if the d_txavail callback is present before calling it in
the arp send code. This prevents a segfault when simulating the telnetd
daemon with arp send enabled.
o Adjust the simulation's netdriver_loop() so it will detect and respond to
ARP requests.
o Do not attempt to take the tap device's hardware address for use by the
simulation. That hardware address belongs to the host end of the link,
not the simulation end. Generate a randomized MAC address instead.
o Do not assign an IP address to the interface on the host side of the TAP
link.
+ Provide two modes: "host route" and "bridge".
+ In host route mode, maintain a host route that points any traffic for the
simulation's IP address to the tap device. In this mode, so long as the
simulation's IP is a free address in the same subnet as the host, no
additional configuration will be required to talk to it from the host.
Note that address changes are handled automatically if they follow the
rule of if-down/set-address/if-up, which everything seems to.
+ In bridge mode, add the tap device to the specified bridge instance. See
configs/sim/NETWORK-LINUX.txt for information and usage examples. This
enables much more flexible configurations (with fewer headaches), such as
running multiple simulations on a single host, all of which can access
the network the host is connected to.
o Refresh configurations in configs/sim where CONFIG_NET=y. They default
to "host route" mode.
o Add configs/sim/NETWORK-LINUX.txt
CAVEATS
-------
- The MAC address generation code is extremely simplistic, and does not
check for potential conflicts on the network. Probably not an issue, but
something to be aware of.
- I was careful to leave it in a state where Cygwin/pcap should still work,
but I don't have a Windows environment to test in. This should be
checked.
- I don't know if this was ever intended to work with OS X. I didn't even
try to test it there.
NOTES
-----
- Was able to get telnetd working and simulate nsh over telnet, but only so
long as listen backlogs were disabled.
There appears to be a bug in the backlog code where sockets are being
returned in SYN_RCVD state instead of waiting until they're ESTABLISHED;
if you perform an immediate send after accepting the connection, it will
confuse the stack and the send will hang; additionally, the connection
will never reach ESTABLISHED state.
Can be worked around by adding a sleep(1) after the accept in telnetd. I
don't have the necessary knowledge of the IP stack to know what the
correct fix is.